Credit and Option Risk Premia

Lars-Alexander Kuehn¹ David Schreindorfer² Florian Schulz³

¹Carnegie Mellon University

²Arizona State University

³University of Washington

2017 Conference on Derivatives and Volatility Chicago Board Options Exchange November 9, 2017

Motivation

- ► Credit spread puzzle
 - Firms have low leverage and low actual default probabilities.
 - But credit spreads are large.
- Bankruptcy cost puzzle
 - Andrade and Kaplan (1998) estimate distress costs of 10-23% of firm value.
 - ▶ Glover (2016) estimates distress costs of 45% of firm value.
 - Chen (2010) estimates time varying distress costs.
- CDS rate = Probability of default \times Loss given default

CDS Rates

Implied Volatility

Implied Volatility Skew

Contribution

- Solve a structural model of credit risk
 - Epstein-Zin pricing kernel with Markov switching fundamentals
 - Price debt and equity
 - Price CDS and option contracts
- New generalized solution approach
- Estimate time variation in bankruptcy costs at the firm-level
- Use joint information of CDS rates and implied volatilities
- ▶ IV moments are informative about the composition of risk

Literature

- Reduced-form credit risk models: Duffie, Singelton (1999); Berndt, et al. (2008)
- Structural credit risk models: Hackbarth, Miao, and Morellec (2006); Chen, Collin-Dufresne, Goldstein (2009); Bhamra, Kuehn, Strebulaev (2010), Chen (2010)
- ▶ Structural estimation: Hennessy, Whited (2007), Glover (2016)
- Credit and option pricing: Carr, Wu (2009, 2011); Collin-Dufresne, Goldstein, Yang (2012); Seo, Wachter (2016); Culp, Nozawa, Veronesi (2017); Kelly, Manzo, Palhares (2016); Reindl, Stoughton, Zechner (2016)
- Consumption-based option pricing: Drechsler, Yaron (2010); Backus, Chernov, Martin (2011); Schreindorfer (2014); Seo, Wachter (2015)
- Asset pricing with disaster risk: Barro (2006); Gabaix (2012); Gourio (2012); Wachter (2013)

- Exogenous pricing kernel
- ▶ Firms issue perpetual debt and choose optimal leverage
- Firms can raise equity and issue more debt
- ► Firms can default

Pricing Kernel

 \blacktriangleright Log aggregate consumption growth $g_{c,t+1}$ follows

$$g_{c,t+1} = \mu_{c,t} + \sigma_{c,t} \varepsilon_{c,t+1}$$

▶ Drift and volatility of consumption growth depend on the aggregate Markov state ξ_t .

Pricing Kernel

▶ Log aggregate consumption growth $g_{c,t+1}$ follows

$$g_{c,t+1} = \mu_{c,t} + \sigma_{c,t} \varepsilon_{c,t+1}$$

- Drift and volatility of consumption growth depend on the aggregate Markov state ξ_t.
- Epstein-Zin pricing kernel is

$$M_{t,t+1} = \beta^{\theta} \left(\frac{\lambda_{t+1}^c + 1}{\lambda_t^c}\right)^{-(1-\theta)} e^{-\gamma g_{c,t+1}}$$

• λ_t^c is the wealth-consumption ratio.

Unlevered Firm Value

• Log earnings growth $g_{i,t+1}$ follows

$$g_{i,t+1} = \mu_t + \sigma_t \varepsilon_{t+1} + \zeta \nu_{i,t+1}$$

- Drift and volatility of earnings growth depend on the aggregate Markov state ξ_t.
- Systematic ε_{t+1} and idiosyncratic $\nu_{i,t+1}$ Gaussian shocks.

Unlevered Firm Value

• Log earnings growth $g_{i,t+1}$ follows

$$g_{i,t+1} = \mu_t + \sigma_t \varepsilon_{t+1} + \zeta \nu_{i,t+1}$$

- Drift and volatility of earnings growth depend on the aggregate Markov state ξ_t.
- ▶ Systematic ε_{t+1} and idiosyncratic $\nu_{i,t+1}$ Gaussian shocks.
- Corporate income tax rate is η .
- After-tax asset value is

$$A_{i,t} = (1 - \eta)E_{i,t} + \mathbb{E}_t[M_{t,t+1}A_{i,t+1}] \qquad E_{i,t+1} = e^{g_{i,t+1}}E_{i,t}$$

Debt Value

- Firms can issue perpetual debt to take advantage of the tax benefits of debt financing.
- The interest coverage ratio is defined as

$$\kappa_{i,t} = \frac{E_{i,t}}{c_{i,s}}$$

Debt Value

- Firms can issue perpetual debt to take advantage of the tax benefits of debt financing.
- The interest coverage ratio is defined as

$$\kappa_{i,t} = \frac{E_{i,t}}{c_{i,s}}$$

The debt value is given by

$$D_{i,t} = 1_{\{\kappa_{i,t} \le \kappa_{t}^{D}\}} (1 - \omega_{t}) A_{i,t} + 1_{\{\kappa_{t}^{D} < \kappa_{i,t} < \kappa_{t}^{I}\}} (c_{i,s} + \mathbb{E}_{t}[M_{t,t+1}D_{i,t+1}]) + 1_{\{\kappa_{t}^{I} \le \kappa_{i,t}\}} \left(c_{i,s} + \frac{c_{i,s}}{c_{i,t}} \mathbb{E}_{t}[M_{t,t+1}D_{i,t+1}]\right)$$

Bbankruptcy costs vary with the aggregate economy

$$\omega_t = \frac{\bar{\omega}}{1 + e^{a + b\mu_{c,t}/\sigma_{c,t}}}$$

Equity Value

Equity holders decide about the optimal timing of default by maximizing the equity value

$$S_{i,t} = \max \left\{ 0, 1_{\{\kappa_{i,t} < \kappa_{t}^{I}\}} \left((1-\eta)(E_{i,t} - c_{i,s}) + \psi_{e}(E_{i,t} - c_{i,s}) 1_{\{E_{i,t} < c_{i,s}\}} + \mathbb{E}_{t}[M_{t,t+1}S_{i,t+1}] \right) + 1_{\{\kappa_{t}^{I} \le \kappa_{i,t}\}} \left((1-\eta)(E_{i,t} - c_{i,s}) + \Delta_{i,t} + \mathbb{E}_{t}[M_{t,t+1}S_{i,t+1}] \right) \right\}$$

Equity Value

Equity holders decide about the optimal timing of default by maximizing the equity value

$$S_{i,t} = \max \left\{ 0, 1_{\{\kappa_{i,t} < \kappa_{t}^{I}\}} \left((1-\eta)(E_{i,t} - c_{i,s}) + \psi_{e}(E_{i,t} - c_{i,s}) 1_{\{E_{i,t} < c_{i,s}\}} + \mathbb{E}_{t}[M_{t,t+1}S_{i,t+1}] \right) + 1_{\{\kappa_{t}^{I} \le \kappa_{i,t}\}} \left((1-\eta)(E_{i,t} - c_{i,s}) + \Delta_{i,t} + \mathbb{E}_{t}[M_{t,t+1}S_{i,t+1}] \right) \right\}$$

- Debt issuances proceeds $\Delta_{i,t}$ are net of debt issuance costs ψ_d .
- Firms face equity issuance costs ψ_e .
- The optimal state depend default threshold satisfies

$$\kappa^D(\xi_t) = \max\{\kappa_{i,t} : S(\kappa_{i,t}, \xi_t) \le 0\}$$

Levered Firm Value

- Levered firm value is the sum of the value of debt and equity.
- ► Management chooses the optimal issuance threshold κ^I_t and the optimal coverage ratio κ̄_t to maximize levered firm value

$$F_{i,t} = 1_{\{\kappa_{i,t} \le \kappa_{t}^{D}\}} (1 - \omega_{t}) A_{i,t} + 1_{\{\kappa_{t}^{D} < \kappa_{i,t} < \kappa_{t}^{I}\}} ((1 - \eta) E_{i,t} + \eta c_{i,s} + \psi_{e}(E_{i,t} - c_{i,s}) 1_{\{E_{i,t} < c_{i,s}\}} + \mathbb{E}_{t} [M_{t,t+1}F_{i,t+1}]) + 1_{\{\kappa_{t}^{I} \le \kappa_{i,t}\}} ((1 - \eta) E_{i,t} + \eta c_{i,s} - \psi_{d} D_{i,t}^{ex} + \mathbb{E}_{t} [M_{t,t+1}F_{i,t+1}])$$

Simulation: Debt Issuance

Simulation: Default

Firm *i* defaults at time τ_i when its interest coverage ratio $\kappa_{i,t}$ drops below the default threshold κ_t^D such that

$$\tau_i = \inf\{t : \kappa_{i,t} \le \kappa_t^D\}$$

Firm *i* defaults at time τ_i when its interest coverage ratio $\kappa_{i,t}$ drops below the default threshold κ_t^D such that

$$\tau_i = \inf\{t : \kappa_{i,t} \le \kappa_t^D\}$$

PV of issuance seller cash-flow

$$\sum_{h=1}^{T} \mathbb{E}_t \left[M_{t,t+h} \mathbb{1}_{\{\tau_i = t+h\}} x_{i,t+h,s} \right] \qquad x_{i,t+h,s} = 1 - \frac{(1 - \omega_{t+h}) A_{i,t+h}}{D_{i,s}}$$

Firm *i* defaults at time τ_i when its interest coverage ratio $\kappa_{i,t}$ drops below the default threshold κ_t^D such that

$$\tau_i = \inf\{t : \kappa_{i,t} \le \kappa_t^D\}$$

PV of issuance seller cash-flow

$$\sum_{h=1}^{T} \mathbb{E}_t \left[M_{t,t+h} \mathbb{1}_{\{\tau_i = t+h\}} x_{i,t+h,s} \right] \qquad x_{i,t+h,s} = 1 - \frac{(1 - \omega_{t+h}) A_{i,t+h}}{D_{i,s}}$$

PV of issuance buyer cash-flow

$$z_{i,s,t}^{T} \sum_{h=1}^{T} \mathbb{E}_{t} \left[M_{t,t+h} (1 - 1_{\{\tau_{i} \le t+h\}}) \right]$$

The log one-period CDS rates can be approximated by

$$\ln(z_{i,s,t}^1) \approx \ln(q_{i,t}^1) + \ln(L_{i,t,s}^{\mathbb{Q}})$$

where

$$q_{i,t}^1 = \mathbb{E}_t^{\mathbb{Q}}\left[1_{\{\tau_i = t+1\}}\right] \qquad L_{i,t,s}^{\mathbb{Q}} = \mathbb{E}_t^{\mathbb{Q}}[x_{i,t+1,s}|\tau_i = t+1]$$

is the risk-neutral one-period default probability and the risk-neutral loss rate given default.

The log one-period CDS rates can be approximated by

$$\ln(z_{i,s,t}^1) \approx \ln(q_{i,t}^1) + \ln(L_{i,t,s}^{\mathbb{Q}})$$

where

$$q_{i,t}^{1} = \mathbb{E}_{t}^{\mathbb{Q}} \left[1_{\{\tau_{i} = t+1\}} \right] \qquad L_{i,t,s}^{\mathbb{Q}} = \mathbb{E}_{t}^{\mathbb{Q}} [x_{i,t+1,s} | \tau_{i} = t+1]$$

is the risk-neutral one-period default probability and the risk-neutral loss rate given default.

▶ The variance of the log-linearized one-period CDS rate is

$$\operatorname{Var}(\ln z_{i,s,t}^1) = \operatorname{Var}(\ln q_{i,t}^1) + \operatorname{Var}(\ln L_{i,t,s}^{\mathbb{Q}}) + 2\operatorname{Cov}(\ln q_{i,t}^1, \ln L_{i,t,s}^{\mathbb{Q}})$$

► The value of a European put option with maturity *T* and strike price *X* is given by

$$P_{i,t} = \mathbb{E}_t[M_{t,T}\max\{X - S_{i,T}, 0\}]$$

- Using the Black-Scholes model, we solve for implied volatilities.
- Option prices are not sensitive to loss rates because equity holders recover nothing in the case of default.
- Equity options are compound options.

CDS Rates

Default Probabilities

Option Moments

Data

- Credit Market Analysis (CMA)
 - Monthly data from 2004 to 2014
 - S&P 100 constituents
 - ▶ 5-year tenor, senior debt, dollar denominated, XR or MR
- OptionMetrics
 - Monthly data from 2004 to 2014
 - S&P 100 constituents
 - IV surface adjusted for early exercise
- CRSP-Compustat
 - Debt: DLCQ + DLTTQ
 - Earnings: OIBDPQ
 - Monthly returns and market capitilization
- BEA NIPA
 - Monthly real non-durable and service consumption growth

Consumption Dynamics

Consumption States				
	$\mu_{c,h}$ 0.2935	$\mu_{c,l}$ 0.0932	$\mu_{c,d}$ -0.6180	
	$\sigma_{c,l}$ 0.1855	$\sigma_{c,h}$ 0.4211	$\sigma_{c,d}$ 0.8422	
Transition Matrix				
(μ_h, σ_l)	(μ_l,σ_l)	(μ_h, σ_h)	(μ_l, σ_h)	(μ_d, σ_d)
0.9912	0.0029	0.0059	0.0000	0
0.0223	0.9718	0.0001	0.0058	0
0.0061	0.0000	0.9910	0.0029	0
0.0001	0.0060	0.0223	0.9567	0.0149
0	0	0	0.0225	0.9775

Calibrated Parameters

EIS	ψ	2
Time discount rate	β	0.996
Consumption-earnings correlation	ρ	0.1
Drift scaling	ϕ_{μ}	2
Bankruptcy costs maximum	$\bar{\omega}$	0.6
Debt issuance costs	ψ_d	0.005
Equity issuance costs	ψ_e	0.1

Estimated Parameters

		Model 1	Model 2
Risk aversion	$\gamma \ \phi_\sigma \ \zeta$	8.97	9.39
Aggregate volatility scaling		12.65	6.74
Idiosyncratic volatility		0.05	0.07
Tax rate	au a b	0.22	0.22
Bankruptcy cost level		-4.84	-5.91
Bankruptcy cost cyclicality		0.83	6.33

SMM Moments

_

	Data	Model 1	Model 2
Average leverage	25.46		25.38
Average excess returns	0.47		0.78
Average 1-year CDS	0.44		0.26
Average 5-year CDS	0.80		0.84
Average ATM-IV	26.92		
Average IV Skew	4.32		
S.D. of leverage	2.16		2.58
S.D. of returns	4.68		3.40
S.D. of 1-year CDS	0.59		0.43
S.D. of 5-year CDS	0.50		0.53
S.D. of ATM-IV	10.51		
S.D. of IV Skew	2.15		

SMM Moments

	Data	Model 1	Model 2
Average leverage Average excess returns Average 1-year CDS Average 5-year CDS Average ATM-IV Average N/ Skow	25.46 0.47 0.44 0.80 26.92		25.38 0.78 0.26 0.84 37.41
S.D. of leverage S.D. of returns S.D. of 1-year CDS S.D. of 5-year CDS S.D. of ATM-IV S.D. of IV Skew	4.32 2.16 4.68 0.59 0.50 10.51 2.15		2.58 3.40 0.43 0.53 2.78 1.63

SMM Moments

	Data	Model 1	Model 2
Average leverage	25.46	25.45	25.38
Average excess returns	0.47	0.65	0.78
Average 1-year CDS	0.44	0.15	0.26
Average 5-year CDS	0.80	0.72	0.84
Average ATM-IV	26.92	32.08	37.41
Average IV Skew	4.32	4.26	5.48
S.D. of leverage	2.16	2.31	2.58
S.D. of returns	4.68	2.79	3.40
S.D. of 1-year CDS	0.59	0.32	0.43
S.D. of 5-year CDS	0.50	0.52	0.53
S.D. of ATM-IV	10.51	5.23	2.78
S.D. of IV Skew	2.15	1.47	1.63

CDS Decomposition

	Model 1	Model 2
Average bankruptcy costs	58.83	29.58
S.D. of bankruptcy costs	0.49	25.23
Average LGD under ℙ	95.92	97.76
Average LGD under ℚ	95.97	97.79
S.D. of LGD under ℙ	0.92	0.33
S.D. of LGD under ℚ	0.96	0.31
Average 5-year def. probability under \mathbb{P}	0.54	0.75
Average 5-year def. probability under \mathbb{Q}	3.60	3.73
S.D. of 5-year def. probability under \mathbb{P}	0.63	0.62
S.D. of 5-year def. probability under \mathbb{Q}	2.16	1.82

Conclusion

- Solve a structural model of credit risk
 - ▶ Epstein-Zin pricing kernel with Markov switching fundamentals
 - Price debt and equity
 - Price CDS and option contracts
- Estimate time variation in bankruptcy costs
- Use joint information of CDS rates and implied volatilities
- IV moments are informative about the composition of risk