Recovering the Variance Premium

Steven Heston
University of Maryland, College Park sheston@rhsmith.umd.edu
November 2017
Preliminary

Ross (2015) Recovery:

- Recover "physical" probabilities from options.
- Limitations:
- Requires a stationary state space.
- Too good to be true (binomial or Black-Scholes).
- Relies on interest rate variation.
- Constant interest rates just recover risk-neutrality.
- Predicts that forward measure is risk-neutral.
- Predicts long bond is log-efficient.
- These predictions are obviously false.

New Generalized Recovery

- Heston’s (2004) Path-Independence extends Ross Recovery Theorem to power utility.
- Log(pricing kernel) can be cointegrated with stock.
- New restrictions between equity premium and variance premium.
- A long "power security" is log-efficient.
- Measure and test the variance premium.

Heston (1993) Model

- Risk-neutral dynamics:

$$
\begin{align*}
& d S=r S d t+\sqrt{v} S d z_{1}^{*}, \tag{1}\\
& d v=\kappa^{*}\left(\theta^{*}-v\right) d t+\sigma \sqrt{v} S d z_{2}{ }^{*} .
\end{align*}
$$

- Observable "physical" dynamics:

$$
\begin{align*}
& d S=(r+\mu v) S d t+\sqrt{v} S d z_{1}, \tag{2}\\
& d v=\kappa(\theta-v) d t+\sigma \sqrt{v} d z_{2} .
\end{align*}
$$

- Martingale Condition:
$U(t) M(t)=E_{t}[U(t+\Delta) M(t+\Delta)]$.

What is $M(t)$?

- Proposition 1:

Risk-neutral (1) and physical dynamics (2) imply a unique $M(t)$.

$$
M(t)=S(t)^{\gamma} \exp \left(\beta t+\eta \int_{0}^{t} v(s) d s+\xi v(t)\right) .
$$

- Solve or invert the interest rate r, equity premium μ and variance premium $\kappa^{*}-\kappa$ in terms of β, γ, η, and ξ.
- Impose economic restrictions.
- I hate that path-dependent η term!

Merton’s (1973) Bucket Shop Assumption

- Bucket Shop Assumption on option value:

$$
U(t)=U(S(t), v(t), t) .
$$

- Ross's Transition-Independence Assumption:

$$
M(t)=M(S(t), v(t), t)=e^{\beta t h}(S(t), v(t)) .
$$

Price kernel should depend on where we are, not how we got there (through diffusion, jumps, etc.).

- $M(t)$ should not depend on $\int_{0}^{t} v(s) d s$.
- The state space $\{S(t), v(t)\}$ should be enough.
- Habit persistence could be incorporated into current state variables.

Path-Independence

- Constant rate of time preference β.
- M should be homogeneous in $S(t)$.
- Returns do not depend on level of $S(t)$.
- Options depend on moneyness, not level of $S(t)$.
- $M(t)=e^{\beta t} S(t)^{\gamma} h(v(t))$,
where reciprocal marginal utility $N(v)=1 / h(v)$ satisfies the P.D.E. of Linetsky and Qin (2016):
$\left.1 / 2 \sigma^{2} v N^{\prime \prime}+\left[\kappa^{*}\left(\theta^{*}-v\right)-\rho \sigma \psi\right] N^{\prime}+1 / 2 \gamma(\gamma+1) v-\beta-(\gamma+1) r\right] N=0$.

Recovery Theorem

- Given γ and risk-neutral dynamics (1), Proposition 1 shows all path-independent pricing kernels that give stationary physical dynamics.
$h(v)=e^{\xi v(t)}$,
where $\xi>0$ satisfies a quadratic equation to make $\eta=0$. If $\gamma<0$, then there is only one positive root.
- We have recovered the physical dynamics (2).
- Does not recover the mean in Black-Scholes unless you know γ.
- This works in more general models.

Valuation of a "Power" Security

- P.D.E.:

$$
\begin{aligned}
& 1 / 2 v S^{2} U_{S S}+\rho \sigma v S U_{S V}+1 / 2 \sigma^{2} v U_{S S} \\
& +r S U_{S}+\kappa^{*}\left(\theta^{*}-v\right) U_{v}-r U+U_{t}=0 .
\end{aligned}
$$

- Terminal Payoff:

$$
U(S, v, t ; \phi, T)=S(T)^{\phi} .
$$

- Solution:
$U(S, v, t ; \phi, T)=S(t)^{\phi} e^{C(T-t)+D(T-t) v(t)}$,
where $C($.$) and D($.$) are complicated.$

Long-Term Power Security

- When $\phi=-\gamma, D(\infty) \rightarrow-\xi$.
- Long-term option prices reveal variance preference!

$$
\begin{gathered}
U(S(t), v(t), t ;-\gamma, T)= \\
E_{t}\left[\frac{U(S(T), v(T), T ;-\gamma, T) M(S(T), v(T), T)}{M(S(t), v(t), t)}\right] .
\end{gathered}
$$

Model-Free Test

- When $\phi=-\gamma$, the gross return on a long Power Security is the reciprocal of marginal rate of substitution.

$$
\begin{aligned}
& R_{\infty}(t+\Delta) \equiv \lim _{T \rightarrow \infty} \frac{U(S(t+\Delta), v(t+\Delta), t+\Delta ;-\gamma, T)}{U(S(t), v(t), t-\gamma, T)} \\
&=\frac{M(S(t), v(t), t)}{M(S(t+\Delta), v(t+\Delta), t+\Delta)} .
\end{aligned}
$$

- i.e., the long-term Power Security is growth optimal.
- Use Breeden-Litzenberger to construct power security from vanilla options.
- This even works when the Power Security uses a proxy S^{*}, as long as $\log \left(S^{*}\right)$ is cointegrated with $\log (S)$, which is cointegrated with $\log (M)$.

Estimating the Variance Premium

- If $\gamma, \rho<0$, then the model predicts a positive equity premium and negative variance premium.
- Two strategies (which nobody reports!):
- Monthly VIX² portfolio.
- Adjust for exact number of days in trading month.
- Portfolio has log-payoff,
- 99% correlated with variance swap.
- Bimonthly VXV² portfolio.
- Buy the 3-month $V X V^{2}$ portfolio,
- sell 2 months later using the VIX² price.
- 99% correlated with two-month variance swap + VIX².

Monthly Data

- CRSP risk-free T-bill return.
- CBOE S\&P 500 Total Return Index.
- VIX 1990-2016 (27 years).
- VXV 2008-20016 (only 9 years).

VIX and VXV

Option Volatility Indices Are 99\% Correlated

Monthly Summary Statistics, 1990-2016 (VXV is 2008-2016)

Summary Statistics of Monthly Data, 1990-2016

GMM Restrictions on Gross Returns $R_{i}(t)$ and Excess Returns

- Average (unconditional) equity premium:

$$
E\left[\left(R_{\text {sp } P}(t)-R_{f}(t)\right) M(t)\right]=0 .
$$

- Average variance premium:

$$
E\left[\left(R_{v i x}(t)-R_{f}(t)\right) M(t)\right]=0 .
$$

- Average risk-free return (gives β):

$$
E\left[R_{f}(t) M(t)\right]=1 .
$$

- Conditional risk-free return:

$$
E\left[V I X^{2}(t)\left(R_{f}(t+\Delta) M(t+\Delta)-1\right)\right]=0 \text {, or }
$$

$$
\operatorname{Cov}\left[V I X^{2}(t), R_{f}(t+\Delta) M(t+\Delta)\right]=0 .
$$

Recovery Restrictions

Restrictions on Recovered Parameters

Restrictions on Risk Premia

Restrictions on Risk Premia

Conclusion

- The pricing kernel $M(t)$ should jointly explain the cross-section of returns and the conditional predicted level.
- GMM does not reject with three parameters (β, γ, ξ) and four moments:
- Unconditional equity premium,
- Unconditional variance premium,
- Unconditional risk-free return level,
- Covariance between VIX $^{2}(t)$ and $R_{f}(t+1)$.

