Recovering the Variance Premium

Steven Heston University of Maryland, College Park sheston@rhsmith.umd.edu November 2017 Preliminary

Ross (2015) Recovery:

- Recover "physical" probabilities from options.
- Limitations:
 - Requires a stationary state space.
 - Too good to be true (binomial or Black-Scholes).
- Relies on interest rate variation.
 - Constant interest rates just recover risk-neutrality.
 - Predicts that forward measure is risk-neutral.
 - Predicts long bond is log-efficient.
 - These predictions are obviously false.

New Generalized Recovery

- Heston's (2004) *Path-Independence* extends Ross Recovery Theorem to power utility.
 – Log(pricing kernel) can be cointegrated with stock.
- New restrictions between equity premium and variance premium.
 - A long "power security" is log-efficient.
- Measure and test the variance premium.

Heston (1993) Model

- Risk-neutral dynamics: $dS = rSdt + \sqrt{v}Sdz_1^*,$ (1) $dv = \kappa^*(\theta^*-v)dt + \sigma\sqrt{v}Sdz_2^*.$
- Observable "physical" dynamics: $dS = (r+\mu v)Sdt + \sqrt{v}Sdz_1,$ $dv = \kappa(\theta-v)dt + \sigma\sqrt{v}dz_2$

(2)

• Martingale Condition: $U(t)M(t) = E_t[U(t+\Delta)M(t+\Delta)].$

What is *M(t)*?

• Proposition 1:

Risk-neutral (1) and physical dynamics (2) imply a unique M(t).

$$M(t) = S(t)^{\gamma} exp(\beta t + \eta \int_0^t v(s) ds + \xi v(t)).$$

- Solve or invert the interest rate r, equity premium μ and variance premium $\kappa^* \kappa$ in terms of β , γ , η , and ξ .
 - Impose economic restrictions.
 - I hate that path-dependent η term!

Merton's (1973) Bucket Shop Assumption

- Bucket Shop Assumption on option value:
 U(t) = U(S(t),v(t),t).
- Ross's Transition-Independence Assumption: $M(t) = M(S(t),v(t),t) = e^{\beta t}h(S(t),v(t)).$

Price kernel should depend on where we are, not how we got there (through diffusion, jumps, etc.).

- M(t) should not depend on $\int_0^t v(s) ds$.
 - The state space $\{S(t), v(t)\}$ should be enough.
 - Habit persistence could be incorporated into current state variables.

Path-Independence

- Constant rate of time preference β .
- *M* should be homogeneous in *S(t)*.
 - Returns do not depend on level of S(t).
 - Options depend on moneyness, not level of S(t).
- $M(t) = e^{\beta t}S(t)^{\gamma}h(v(t)),$

where reciprocal marginal utility N(v) = 1/h(v) satisfies the P.D.E. of Linetsky and Qin (2016):

 $\frac{1}{2}\sigma^{2}vN''+[\kappa^{*}(\theta^{*}-v)-\rho\sigma\gamma v]N'+\frac{1}{2}\gamma(\gamma+1)v-\beta-(\gamma+1)r]N = 0.$

Recovery Theorem

 Given γ and risk-neutral dynamics (1), Proposition 1 shows all path-independent pricing kernels that give stationary physical dynamics.

$$h(v)=e^{\zeta v(t)},$$

where $\xi > 0$ satisfies a quadratic equation to make $\eta = 0$.

If $\gamma < 0$, then there is only one positive root.

- We have recovered the physical dynamics (2).
 - Does not recover the mean in Black-Scholes unless you know γ .
- This works in more general models.

Valuation of a "Power" Security

• P.D.E.:

$$\frac{1}{2}vS^{2}U_{ss} + \rho\sigma vSU_{sv} + \frac{1}{2}\sigma^{2}vU_{ss}$$
$$+ rSU_{s} + \kappa^{*}(\theta^{*} - v)U_{v} - rU + U_{t} = 0.$$

- Terminal Payoff: $U(S,v,t;\phi,T) = S(T)^{\phi}$
- Solution:

 $U(S,v,t;\phi,T) = S(t)^{\phi} e^{C(T-t)+D(T-t)v(t)},$ where C(.) and D(.) are complicated.

Long-Term Power Security

• When
$$\phi = -\gamma$$
, $D(\infty) \rightarrow -\xi$.

 Long-term option prices reveal variance preference!

$$U(S(t), v(t), t; -\gamma, T) =$$

$$E_t \Big[\frac{U(S(T), v(T), T; -\gamma, T) M(S(T), v(T), T)}{M(S(t), v(t), t)} \Big].$$

Model-Free Test

• When $\phi = -\gamma$, the gross return on a long Power Security is the reciprocal of marginal rate of substitution.

$$R_{\infty}(t+\Delta) \equiv \lim_{T \to \infty} \frac{U(S(t+\Delta), v(t+\Delta), t+\Delta; -\gamma, T)}{U(S(t), v(t), t; -\gamma, T)} = \frac{M(S(t), v(t), t)}{M(S(t+\Delta), v(t+\Delta), t+\Delta)}$$

- i.e., the long-term Power Security is growth optimal.
- Use Breeden-Litzenberger to construct power security from vanilla options.
- This even works when the Power Security uses a proxy S*, as long as log(S*) is cointegrated with log(S), which is cointegrated with log(M).

Estimating the Variance Premium

- If γ , $\rho < 0$, then the model predicts a positive equity premium and negative variance premium.
- Two strategies (which nobody reports!):
 - Monthly VIX² portfolio.
 - Adjust for exact number of days in trading month.
 - Portfolio has log-payoff,
 - 99% correlated with variance swap.
 - Bimonthly VXV^2 portfolio.
 - Buy the 3-month *VXV*² portfolio,
 - sell 2 months later using the VIX² price.
 - 99% correlated with two-month variance swap + VIX^2 .

Monthly Data

- CRSP risk-free T-bill return.
- CBOE S&P 500 Total Return Index.
- VIX 1990-2016 (27 years).
- VXV 2008-20016 (only 9 years).

VIX and VXV

Option Volatility Indices Are 99% Correlated

Monthly Summary Statistics, 1990-2016 (VXV is 2008-2016)

Summary Statistics of Monthly Data, 1990-2016								
						Correlations		
		Standard	Auto-		Risk-Free	S&P500	VIX	vxv
	<u>Mean</u>	<u>Deviation</u>	<u>Correlation</u>		<u>Return</u>	<u>Return</u>	<u>Return</u>	<u>Return</u>
VIX	19.8	7.5	0.84					
vxv	23.0	8.3	0.87					
Risk-free return	0.2%	0.2%	0.98		1.00	0.03	0.08	0.27
S&P return	0.9%	4.2%	0.04		0.03	1.00	-0.19	-0.58
VIX return	-53.8%	59.4%	-0.09		0.08	-0.19	1.00	0.86
Bimonthly VXV return	-33.6%	85.4%	-0.05		0.27	-0.58	0.86	1.00

GMM Restrictions on Gross Returns $R_i(t)$ and Excess Returns

- Average (unconditional) equity premium: $E[(R_{S\&P}(t)-R_{f}(t))M(t)] = 0.$
- Average variance premium: $E[(R_{VIX}(t)-R_f(t))M(t)] = 0.$
- Average risk-free return (gives β):
 E[R_f(t)M(t)] = 1.
- Conditional risk-free return: $E[VIX^{2}(t)(R_{f}(t+\Delta)M(t+\Delta)-1)] = 0, \text{ or}$ $Cov[VIX^{2}(t), R_{f}(t+\Delta)M(t+\Delta)] = 0.$

Recovery Restrictions

Restrictions on Recovered Parameters

Restrictions on Risk Premia

Restrictions on Risk Premia

Conclusion

- The pricing kernel *M(t)* should jointly explain the cross-section of returns and the conditional predicted level.
- GMM does not reject with three parameters (β, γ, ξ) and four moments:
 - Unconditional equity premium,
 - Unconditional variance premium,
 - Unconditional risk-free return level,
 - Covariance between $VIX^2(t)$ and $R_f(t+1)$.