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Abstract

The goal of this paper is to extract the joint distribution of default probabilities and
recover rates from the prices of credit default swaps and equity options. To this end,
we estimate a structural model of credit risk with a representative agent with recursive
preferences and Markov-switching states for the drift and volatility of consumption and
earnings growth. While CDS prices are sensitive to both the (risk-neutral) firm-specific
default probability and loss rates for bond holders, equity option prices are only sensitive to
the default probability because equity holders recovery very little in bankruptcy. Using the
information in both CDS rates and put option prices, we can recover default probabilities,
recovery rates, and bankruptcy costs.

∗We thank Emil Siriwardane, Colin Ward, and conference participants at the 2017 University of Connecti-
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1 Introduction

The value of a corporate debt claim depends on the likelihood that the firm’s assets are

worth less than the face value of debt, i.e., the probability of default, as well as the losses

of bondholders in default, i.e., loss given default rates. In most calibration and estimation

exercises of credit risk models, the time variation in default probabilities is accounted for, but

loss rates are assumed constant and set at long-run historical averages.

The goal of this paper is to extract the joint distribution of default probabilities and

recovery rates from the prices of credit default swaps and equity options. To this end, we

estimate a structural model of credit risk with a representative agent with recursive preferences

and Markov-switching states for the drift and volatility of aggregate consumption and firm

level earnings growth. The resulting pricing kernel is calibrated to match the aggregate equity

and option market moments. Firms issue debt, refinance when the interest coverage ratio is

too high, and optimally default when the interest coverage ratio is too low. The dynamics of

debt and equity prices also allows us to value derivative securities written on them.

Using firm-level data on CDS rates and put option prices, we estimate firm-level earnings

and costs parameters. While CDS prices are sensitive to both the (risk-neutral) firm-specific

default probability and loss rates for bond holders, equity option prices are only sensitive to

the default probability because equity holders recovery very little in bankruptcy. Using the

information in both CDS rates and put option prices, we can then recover default probabilities,

recovery rates, and bankruptcy costs.

While it is well-known that recovery rates are procyclical, estimates of default probabilities

based on credit risk models typically ignore this channel. As a consequence, estimates of de-

fault probabilities tend to be upward biased in recessions and downward biased in expansions.

Our separation into time-variation in default probabilities and time-variation in recovery rates

allows us to remove this bias and should therefore lead to a better estimate of firms’ condi-

tional default probabilities. We will test this prediction by evaluating the performance of our

estimates in hazard models and out-of-sample forecasts, and benchmark it against predictors

of firm default suggested in the previous literature. Barath and Shumway (2008) perform a

similar analysis for the distance-to-default measure inferred from the Merton (1974) model.
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Our work is also related to that of Glover (2016), who argues that the sample of observed

defaults significantly understates the average firm’s true expected cost of default due to a

sample selection bias. Firms with higher cost of default endogenously opt for a lower level of

leverage, and thus default at lower frequency all else equal. Glover argues that the negative

correlation between the probability of default and loss rates causes a downward bias in the

expected cost of default based on average observed defaults. By disentangling loss rates and

default probabilities, our study can also empirically address the validity of this channel.

2 Model

The goal of the model is capture the joint price dynamics of credit default swaps and options

written on individual firms. To this end, we assume an representative investor with recursive

preferences and consumption dynamics with Markov switching drift and volatility. It is well-

known that these assumptions generate time-varying aggregate risk premia. At the firm level,

firms choose optimal capital structure. Firms issue perpetual debt, trading off tax shields

and bankruptcy costs. After a sequence of positive earnings news, firms optimally issue more

debt and after a sequence of negative earnings news, firms optimally default.

2.1 Pricing Kernel

To allow risk premia to fluctuate with macroeconomic conditions, we follow the consumption-

based asset pricing literature and model the pricing kernel as the marginal utility of consump-

tion of a representative investor. Specifically, log aggregate consumption growth gc,t+1 follows

a Markov-switching modulated random walk

gc,t+1 = µc,t + σc,tεc,t+1, (1)

where the conditional mean µc,t and volatility σc,t of consumption growth depend on the

aggregate Markov state ξt, and εc,t+1 are standard normal innovations. The aggregate state

ξt follows a Markov chain with transition matrix P.

The representative agent has recursive preferences over consumption Ct such that her

utility function Ut solves

Ut =
{

(1− β)Cρt + βEt[Uαt+1]ρ/α
}1/ρ

, (2)
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where β is the time discount rate, α = 1− γ measures risk aversion γ and ρ = 1/(1− ψ) the

elasticity of intertemporal substitution (EIS) ψ.

The implied pricing kernel expressed in terms of the wealth-consumption ratio, λct =

Wt/Ct, which is a function of the aggregate state ξt, λ
c(ξt), reads

Mt,t+1 = βθ
(
λct+1 + 1

λct

)−(1−θ)(Ct+1

Ct

)α−1

= βθ
(
λct+1 + 1

λct

)−(1−θ)
e−γgc,t+1 , (3)

where θ = α
ρ . The wealth-consumption ratio solves the Euler equation

(λct)
θ = βθEt

[(
λct+1 + 1

)θ (Ct+1

Ct

)1−γ
]

= βθeαµc,t+
1

2
α2σ2

c,tEt
[(
λct+1 + 1

)θ]
. (4)

2.2 Unlevered Firm Value

Firm i’s earnings before interest and taxes (EBIT) Ei,t are exogenous and follow a Markov-

switching modulated random walk, whose growth rate moments depend on the aggregate

Markov state ξt. Specifically, log earnings growth gi,t+1 follows

gi,t+1 = µi,t + σi,tεt+1 + ζiνi,t+1, (5)

where the conditional mean µi,t and systematic volatility σi,t depend on the aggregate state

ξt, εt+1 are systematic standard normal innovations with correlation ρi with the aggregate

Gaussian shock εc,t+1, ζi is idiosyncratic volatility, and νi,t+1 are idiosyncratic standard normal

innovations, uncorrelated with the aggregate Gaussian shock.

The unlevered firm value is the present value of after-tax earnings. The corporate income

tax rate is η and provides a motive for firms to issue defaultable debt. The after-tax cum-

earnings asset value Ai,t is given by

Ai,t = (1− η)Ei,t + Et[Mt,t+1Ai,t+1]. (6)

Since earnings grow exponentially, we detrend all valuation equations by earnings and solve

for stationary valuations ratios, such as the cum-earnings asset-earnings ratio, λai,t = Ai,t/Ei,t,

λai (ξt) = 1− η + Et[Mt,t+1e
gi,t+1λai (ξt+1)], (7)

which depends on the aggregate state ξt.
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2.3 Debt Value

Firms can issue perpetual debt to take advantage of the tax benefits of debt financing. Op-

timally leverage is determined as the trade off between tax shields and bankruptcy costs. In

addition, firms can issue more debt in the future or declare default.

The interest coverage ratio κi,t is defined as the ratio of current earnings Ei,t to coupon

ci,s based on the most recent debt issuance date s

κi,t =
Ei,t
ci,s

.

When firms are hit by a sequence of negative earning shocks, earnings might not be sufficient

to cover interest expenses. Eventually, the interest coverage ratio falls below the aggregate

state dependent threshold κDi,t = κDi (ξt) and equity holders optimally declare default.

In the opposite case, firms receive a sequence of positive earnings news and the interest

coverage ratio rises. A rising interest coverage ratio also implies lower leverage and a shrinking

benefit of tax shields. Consequently, when the interest coverage ratio exceeds the aggregate

state dependent threshold κIi,t = κIi (ξt), firms issue more debt such that the interest coverage

ratio resets to the optimal state dependent interest coverage ratio κ̄i,t = κ̄i(ξt) = Ei,t

ci,t
. Impor-

tantly, firms do not refinance every period because of proportional debt issuance costs. Both

issuance and optimal interest coverage ratios are set to maximize total firm value.

Given these dynamics, the cum-coupon debt value is given by

Di,t = 1{κi,t≤κD
i,t}(1− ωi,t)Ai,t

+ 1{κD
i,t<κi,t<κI

i,t}
(
ci,s + Et[Mt,t+1Di,t+1]

)
(8)

+ 1{κI
i,t≤κi,t}

(
ci,s +

ci,s
ci,t

Et[Mt,t+1Di,t+1]

)
,

where ωi,t are aggregate state dependent bankruptcy costs. The first term captures the cash-

flows in default when κi,t ≤ κDi,t. When the interest coverage ratio varies between the default

and issuance thresholds, κDi,t < κi,t < κIi,t, firms optimally do not adjust their capital structure

and pay coupon ci,s in perpetuity, as described by the second term. The last term captures

debt value when firms issue additional debt in case the interest coverage ratio exceeds the

issuance threshold, κIi,t ≤ κi,t. When new debt is issued at date t, coupon payments increase
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from ci,s to ci,t. While current bond holders are entitled to coupon payments ci,s in perpetuity,

they also receive the fraction ci,s
ci,t

of the new bond’s value, Et[Mt+1Di,t+1].

As the debt value trends with earnings, we solve for the stationary cum-coupon debt-

earnings ratio, λdi,t = Di,t/Ei,t,

λdi (κi,t, ξt) = 1{κi,t≤κD
i,t}(1− ωi,t)λ

a
i (ξt)

+ 1{κD
i,t<κi,t<κI

i,t}

(
1

κi,t
+ Et[Mt,t+1e

gi,t+1λdi (κi,te
gi,t+1 , ξt+1)]

)
(9)

+ 1{κI
i,t≤κi,t}

(
1

κi,t
+
κ̄i,t
κi,t

Et[Mt,t+1e
gi,t+1λdi (κ̄i,te

gi,t+1 , ξt+1)]

)
,

which depends on the firm’s interest coverage ratio and aggregate state. Given default, is-

suance, and leverage ratios, this fixed point equations is well defined. Next, we solve for the

optimal ratios.

To model the time-variation in bankruptcy costs, we assume a logistic function such that

ωi,t =
ω̄

1 + e(µc,t/σc,t−a)b
, (10)

where ω̄ controls the maximum, a the level, and b the sensitivity of bankruptcy costs.

Bankruptcy costs should be higher when the conditional mean of consumption growth µc,t is

low or when the conditional volatility of consumption growth σc,t is high, requiring that the

coefficient b is positive.

2.4 Equity Value

Equity holders decide about the optimal timing of default by maximizing the cum-dividend

equity value Si,t

Si,t = max
{

0, 1{κi,t<κI
i,t}
(
(1− η)(Ei,t − ci,s) + ψe(Ei,t − ci,s)1{Ei,t<ci,s} + Et[Mt,t+1Si,t+1]

)
+ 1{κI

i,t≤κi,t}
(
(1− η)(Ei,t − ci,s) + (1− ψd)(Di,t(ci,t)− ci,t)− (Di,t(ci,s)− ci,s) (11)

+ Et[Mt,t+1Si,t+1]
)}
.

Intuitively, when the interest coverage ratio is less than the issuance thresholds, κi,t < κIi,t,

firms pay after-tax dividends of (1−η)(Ei,t−ci,s). However, when earnings are not sufficient to

cover interest expenses, Ei,t < ci,s, the firm has to raise equity which trigger equity issuance
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costs ψe. When the present value of after-tax dividends is less than zero, equity holders

declare default and the equity value drops to zero, which is captured by the first term in

the max-operator. When the interest coverage ratio rises and exceeds the issuance threshold,

κIi,t ≤ κi,t, firms lever up and equity holders receive a special dividend in the amount of the

ex-coupon price of newly issued debt, Di,t(ci,t)−ci,t, net of debt issuance costs ψd and existing

bond holder ex-coupon value, Di,t(ci,s)− ci,s.

As the equity value trends with earnings, we solve for the stationary cum-dividend equity-

earnings ratio, λsi,t = Si,t/Ei,t,

λsi (κi,t, ξt) = max

{
0, 1{κi,t<κI

i,t}

(
(1− η)

(
1− 1

κi,t

)
+ ψe

(
1− 1

κi,t

)
1{κi,t<1}

+ Et[Mt,t+1e
gi,t+1λsi (κi,te

gi,t+1 , ξt+1)]

)
+ 1{κI

i,t≤κi,t}

(
(1− η)

(
1− 1

κi,t

)
+

(
1− ψd −

κ̄i,t
κi,t

)
λd,exi (κ̄i,t, ξt) (12)

+ Et[Mt,t+1e
gi,t+1λsi (κ̄i,te

gi,t+1 , ξt+1)]

)}
,

which depends on the firm’s interest coverage ratio and aggregate state. Given the cum-

dividend equity-earnings ratio, the optimal state depend default threshold satisfies

κDi (ξt) = max{κi,t : λsi (κi,t, ξt) ≤ 0}. (13)

Equity holders declare default when the interest coverage ratio falls below this default trigger.

2.5 Levered Firm Value

Levered firm value is the sum of the value of debt and equity. Management chooses the

optimal issuance threshold κIi,t and the optimal coverage ratio κ̄i,t to maximize the cum cash

flow firm value.
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In stationary terms, the levered firm value to earnings ratio, λfi,t, is given by

λfi (κi,t, ξt) = 1{κi,t≤κD
i,t}(1− ωi,t)λ

a
i (ξt)

+ 1{κD
i,t<κi,t<κI

i,t}

(
1− η +

η

κi,t
+ ψe

(
1− 1

κi,t

)
1{κi,t<1}

+ Et
[
Mt,t+1e

gi,t+1λfi (κi,te
gi,t+1 , ξt+1)

])
(14)

+ 1{κI
i,t≤κi,t}

(
1− η +

η

κi,t
− ψdλd,exi (κ̄i,t, ξt) + Et

[
Mt,t+1e

gi,t+1λfi (κ̄i,te
gi,t+1 , ξt+1)

])
.

Intuitively, in the case of default, when the interest coverage ratio drops below the default

threshold, κi,t ≤ κDi,t, bond holders recover the fraction 1−ω of asset value. When the interest

coverage ratio varies between the default and issuance thresholds, κDi,t < κi,t < κIi,t, firms

optimally do not adjust their capital structure and cash-flows equal after-tax earnings 1 − η

plus tax shields in the amount η/κi,t. When the interest coverage ratio exceeds the issuance

threshold, κIi,t ≤ κi,t, firms issue additional debt and cash-flows equal after-tax earnings 1− η

plus tax shields η/κi,t net off issuance costs ψdλ
d,ex
i,t .

Maximizing firm value implies that the state dependent optimal interest coverage ratio is

given by

κ̄i(ξt) = arg max
κ

{
− ψλd,exi (κ, ξt) + Et[Mt,t+1e

gi,t+1λfi (κegi,t+1 , ξt+1)]
}

(15)

which captures the marginal issuance costs and future tax benefit trade off. Similarly, the

state dependent optimal issuance threshold is given by the interest coverage ratio when the

firm continuation value of issuance dominantes the one without issuance

κIi (ξt) = min{κi,t : Et[Mt,t+1e
gi,t+1λfi (κ̄i,te

gi,t+1 , ξt+1)] ≥ Et[Mt,t+1e
gi,t+1λfi (κi,te

gi,t+1 , ξt+1)]}.

2.6 Credit Default Swaps

Given the price dynamics of debt and equity, we are now equipped to price derivative securities

written on them. In this section, we tackle the pricing of credit default swaps and in the

following section the pricing of put option contracts. We first derive a closed-form expression

for the one-period CDS contract, which we then extended to any horizon.
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2.6.1 One-Period Contract

Firm i defaults at time τi when its interest coverage ratio κi,t drops below the default threshold

κDi,t such that

τi = inf{t : κi,t ≤ κDi,t}. (16)

The one-period CDS rate z1 equates the present value of the payments made by the insurance

seller and the insurance buyer. The insurance seller receives the CDS rate tomorrow in the

case of no default. The value of its claim is

z1(κi,t, ξs, ξt)Et
[
Mt,t+1(1− 1{τi=t+1})

]
.

In the case of default tomorrow, the insurance seller has to payout the loss rate x to the

insurance buyer, which are the after-tax firm value net of bankruptcy costs, (1− ωt+1)Ai,t+1,

relative to their initial investment, Di,s, and given by

xi,t+1,s = 1− (1− ωi,t+1)Ai,t+1

Di,s
.

The value of the insurance buyer’s claim is

Et
[
Mt,t+11{τi=t+1}Li,t+1,s

]
.

By equating these to values and changing measure, the one-period CDS rate z1 is given by

z1(κi,t, ξs, ξt) =
EQ
t

[
1{τi=t+1}xi,t+1,s

]
1− EQ

t

[
1{τi=t+1}

] , (17)

which depends on the firm’s interest coverage ratio κi,t, the most recent debt issuance state

ξs, the aggregate state ξt, and loss rates to bond holders Li,t+1,s. We further define the

risk-neutral one-period default probability by

q1
i,t = EQ

t

[
1{τi=t+1}

]
(18)

and the risk-neutral loss rate given default

LQ
i,t,s = EQ

t

[
xi,t+1,s|τi = t+ 1

]
. (19)

Given these definition, the CDS rate can be written as

z1(κi,t, ξs, ξt) =
EQ
t [Li,t+1,s|τi = t+ 1]EQ

t

[
1{τi=t+1}

]
1− EQ

t

[
1{τi=t+1}

] , (20)
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and the log CDS rate can be approximated by

ln(z1
i,s,t) ≈ ln(q1

i,t) + ln(LQ
i,t,s). (21)

This approximation illustrates that credit spreads are zero if default does not occur in ex-

pectations, implying that both terms are zero. In contrast, credit spreads increase in the

risk-neutral default probability and loss rate.

Since the underlying asset for CDS contracts are bonds, CDS contracts are sensitive to

both the term structure of risk-neutral default probabilities as as well as to risk-neutral loss

rates. Since risk-neutral loss rates are not observable without an economic model, most

reduced form credit risk models are calibrated to average actual loss rates. The contribution

of this paper is to disentangle the variation of credit spreads into the variation of default risk

and loss rates. To this end, we use the market information of put option prices. Since equity

holders recovery close to nothing in the case of default, put option contracts are only sensitive

to the risk of default.

To see this intuition more clearly, we compute the variance of the log-linearized one-period

CDS rate

Var(ln(z1
i,s,t)) = Var(ln(q1

i,t)) + Var(ln(LQ
i,t,s)) + 2Cov(ln(q1

i,t), ln(LQ
i,t,s)). (22)

While most reduced form credit risk models assign all variation of credit spreads to risk-

neutral default probabilities because of constant loss rates, we use put prices to measure the

volatility of default probabilities. Given the observed variance of CDS rates, we can then

estimate the variance of loss rates.

Given the Gaussian-Markov switching environment, we can derive a closed-form expression

for both the risk-neutral default probability as well as the risk-neutral loss rate. This step

facilitates the structural estimation of the model because we do not have to rely on Monte-

Carlo pricing for CDS rates. More specifically, the risk-neutral one-period default probability

is given by

q1
i,t = EQ

t [Φ(ai,t+1)] ai,t+1 =
log
(
κD
i,t+1

κi,t

)
− µQ

i,t

σ̄i,t
(23)

where ai,t+1 is the negative of the distance-to-default and σ̄i,t is total asset volatility.
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2.6.2 Multi-Period Contract

More generally, the no-arbitrage monthly CDS rate zT for horizon T equates the present value

of the payments made by the insurance seller and the insurance buyer and is given by

zT (κi,t, ξs, ξt) =

∑T
h=1 E

Q
t

[
1{τi=t+h}xi,t+h,s

]
/Rft,t+h∑T

h=1(1− EQ
t

[
1{τi≤t+h}

]
)/Rft,t+h

, (24)

which depends on the firm’s interest coverage ratio κi,t, the most recent debt issuance state ξs,

the aggregate state ξt, and loss rates to bond holders L. In the case of default, bond holders

take over the firm recover the after-tax firm value net of bankruptcy costs, (1−ωi,t+h)Ai,t+h,

such that their losses are relative to their initial investment, Di,s, and given by

xi,t+h,s = 1−
(1− ωi,t+h)Ai,t+h

Di,s
= 1−

(1− ωt+h)λai,t+h

λdi (κ̄i,s, ξs)

κi,t+h
κ̄i,s

. (25)

The pricing of multi-period CDS contracts requires the h-period ahead conditional default

probability given by

qhi,t = EQ
t

[
1{τi=t+h}

]
. (26)

By the law of iterated expectation, this probability can be computed recursively

qhi,t = EQ
t

[
qh−1
i,t+1

]
,

starting with the one-period probability (23). The risk-neutral h-period ahead default proba-

bility can be further decomposed into the actual default probability, phi,t, and a risk adjustment,

measured by a covariance with the pricing kernel, such that

qhi,t = phi,t + Covt

(
Mt,t+h

E[Mt,t+h]
, 1{τi=t+h}

)
. (27)

Since defaults tend to cluster in recessions when marginal utility is high, this covariance is

positive. Consequently, credit spreads are high if the risk compensation and actual default

probabilities are high. Similarly, the risk-neutral loss rate given default can be decomposed

into the average loss rate under the physically measure, which is observable in the data, and

a risk compensation, measured by a covariance with the pricing kernel, such that

LQ
i,s,t = Li,s,t + Covt

(
Mt,t+1

E[Mt,t+1]
, xi,t+1,s|1{τi=t+1}

)
. (28)
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Since marginal utility is countercyclical in our model and loss rates tend to be countercyclical,

the covariance is positive. Thus, credit spreads are large if our model endogenously generates

countercyclical loss rates.

2.7 Equity Option Pricing

The value of a European put option with maturity T and strike price X is given by

Pi,t = Et[Mt,T max{X − Si,T , 0}]. (29)

The put price-earnings ratio λpi,t = Pi,t/Ei,t solves

λpi,t = Et[Mt,T max{λsi,tK − egi,t+1+...+gi,Tλs,exi,T , 0}], (30)

where K = X/Si,t is the option moneyness and λs,exi,T is the ex-dividend price-earnings ratio.

Because the Black-Scholes-Merton formula is homogeneous of degree zero in the spot price of

the underlying and the strike price, implied volatilities can then be found based on λpi,t and

K.

3 Empirics

3.1 Firm Level Moments

The data used in the empirical section of this paper are collected from a number a sources.

Daily data on credit default swaps (CDS) for a large sample of debt issuers are obtained

from Credit Market Analysis Ltd. (CMA) for the period from January 2004 to August 2014.

The CMA dataset has information on pricing (bid and ask quotes) and contract terms of

the underlying debt and credit default swaps (e.g., currency, debt seniority, credit event of

restructuring, and tenor of the CDS contract). Mayordomo, Pena, and Schwartz (2010) find

that the CMA database leads the price discovery process in comparison with other CDS

databases including Markit. We focus on five-year credit spreads, which tend to be the most

liquid, and spreads for the shorter tenor of one year.

As our interest is on the joint behavior of prices of CDS contracts and equity options, we

also require that equity options are available. We therefore focus our analysis on constituents
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of the S&P 100 index, an index of blue chip companies across multiple industry groups, which

ensures that individual stock options are listed for each index constituent.

Equity option data are obtained from OptionMetrics, which provides end-of-day bid and

ask quotes on traded put and call options as well as implied volatilities (IV) on a number of

contracts standardized across maturity and moneyness (implied volatility surface). Individual

equity options are American style, and OptionMetrics uses binomial trees to compute implied

volatilities that account for early exercise. For the majority of our analysis, we focus on the

latter implied volatility surface data as it provides a relatively stable number of contracts

and allows a more homogenous analysis across firms than would be the case with the traded

option quotes.

For the subset of firms that comprise the S&P 100 index, we only retain observations on

CDS contracts with no restructuring (XR) or modified restructuring clause (MR), on senior

debt, denominated in US dollars. After applying these initial filters to data on credit default

swaps, and merging with OptionMetrics, we are left with a sample of 106 unique firms, covering

a total of 9,457 firm-month observations during the sample period 2004 to 2014. Table 1 lists

the firms included in our sample.

We average daily mid-quotes of the CDS contracts within a calendar month to obtain a

time series of monthly average credit default swap rates for each firm. Over the entire sample

period, the average (median) firm’s 1-year and 5-year CDS rates are 44.1 basis points (21.9

bp) and 85.4 basis points (54.5 bp) with considerable variation both across firms and within

firms over time.

To obtain estimates of the level of implied volatility for each firm, we interpolate implied

volatilities of one-month out-of-the money call and put options with strike prices closest to the

current stock price. We measure option skew as the difference between the implied volatility

of a put option that is one standard deviation out of the money (using the estimate of IV

level) and the implied volatility of the at-the-money option (the IV level). We then average

the daily estimates for each firm to obtain a monthly time series of firm-level implied volatility

level and skew. Over the entire sample period, the average firm’s estimates are 0.27 (level)

and 0.042 (skew).

Equity market data are from CRSP and we obtain quarterly data on corporate poli-
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cies from Compustat. Debt is measured as current liabilities (DLCQ) plus long-term debt

(DLTTQ). Using CRSP data, market equity is the product of share price (PRC) and number

of shares outstanding (SHROUT). Leverage is defined as debt divided by debt plus market

equity. The market-to-book ratio is the ratio of debt plus market equity to total assets (ATQ).

Over the entire period, the average (median) firm in our sample has market leverage of, on

average, about 25.6% (17.6%). Monthly equity log returns for firms in our sample average

0.46% with a standard deviation of 7.61%.

Table 2 summarizes moments of monthly averages of firm fundamentals, equity returns,

option characteristics and CDS rates.

3.2 Consumption Dynamics

We use real non-durable and service consumption to estimate the consumption growth dy-

namics (1). While the majority of the consumption-based asset pricing literature uses either

annual or quarterly data, we uses monthly data covering the years 1960 to 2016 because the

goal of the model is to match monthly option and CDS moments. For parsimony, we esti-

mate a 4-state Markov switching model with 2 drift and 3 volatility regimes using maximum

likelihood. The parameter estimates are reported in Panel A of Table 3.

As the post war period has generated very smooth consumption dynamics, we add a

disaster state to the Markov chain. Barro and Ursa (2012) report that consumption disasters

occur with a probability of 3.6%, have an average duration of 3.7 years, and cause an average

cumulative drop in consumption of 21.6%. For parsimony, we assume that the economy can

only switch into a depression from a severe recession with the low drift and high volatility

regime. The resulting calibration is summarized in Panels B and C of Table 3.

3.3 Calibration

In Table 4, we summarize the calibrated parameters. Following Bansal and Yaron (2004), we

assume that the representative agent a high EIS of 2 and time discount rate β close to one to

achieve a low and stable risk-free rate.

To calibrate the conditional moments of earning growth, we use monthly earnings data as

reported by Robert Shiller for the S&P 500. Similar to Bansal and Yaron (2004), we assume
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little correlation between the aggregate Gaussian shocks and set the drift states µi by scaling

the consumption states µc by the factor φµ = 2 to match the monthly correlation between

consumption and aggregate earnings of 11.4%, i.e., µi = φµ(µc − Pµc) + Pµc.

We also calibrate debt and equity issuance costs. As Altinkilic and Hansen (2000) report,

debt issuance costs are small, especially, for our sample of S&P100 firms. While in the

model firms issue debt after a sequence of good shocks, firms raise equity when they are in

financial distress and earnings have dropped below interest expenses. Consequently, equity

issuance costs have to capture more than just underwriting fees. In particular, firms with net

operating losses potentially face the market for lemons phenomenon. In addition, firms do

not fully capture net operating loss carry-forwards and carry-backs as shown in Cooper and

Knittel (2006).

3.4 Estimation

We structurally estimate the remaining parameters with simulated method of moments (SMM).

Specifically, we are interested in the corporate tax rate τ , idiosyncratic risk ζi, the amount

of systemic risk in earnings σi = φσσc, risk aversion γ, and the level a and cyclicality b

of bankruptcy costs. To estimate these 6 parameters, we compute time-series moments of

leverage, returns, CDS, and option moments.

The estimated parameter vector θ = (τ, ζi, φσ, γ, a, b) minimizes a distance metric between

key moments from actual data, ΨD, and moments from simulated model data, ΨM (θ). Given

an arbitrary parameter vector θ, we solve the model numerically, simulate 100 firms for

120,000 months. Since US consumption has not declined by 10% or more, which is the

disaster definition of Barro and Ursa (2012), we exclude the disaster state in the simulation.

Note that the disaster state still affects prices.

Based on the simulated data panel, we calculate the model moments ΨM (θ) as well as

the objective function [ΨD −ΨM (θ)]′W [ΨD −ΨM (θ)]. The parameter estimate θ̂ is found by

searching globally over the parameter space. We use the diagonal matrix of the optimal spec-

tral density as weighting matrix and implement the global minimization via a particle swarm

algorithm. Computing standard errors for the parameter estimate requires the Jacobian of

the moment vector, which we find numerically via a finite difference method.
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4 Results

Tables 5 and 6 summarize the SMM estimation. In Table 5, we report parameter estimates

for risk aversion γ, aggregate volatility scaling φσ, corporate tax rate τ , idiosyncratic risk ζi,

and the level a and cyclicality b of bankruptcy costs for two models. Model 2 targets moments

based on leverage, excess returns, 1-year and 5-year CDS rates. For each variable, we first

compute the cross-sectional average and then measure the time-series mean and variance. For

Model 1, we also add at-the-money implied volatility (IV ATM) and the implied volatility

skew (IV skew) as moments. The target moments and data is reported in Table 6. All

moments in Tables 6 to 8 are in percent.

In Table 7, we report model implied moments, which were not necessarily targeted but

the estimation. Model 2 matches well leverage on average (25.4%) and its standard deviation

(2.6%). The model also generates reasonable average credit spreads at the 1-year (26bps) and

5-year horizon (84bps) and credit spread volatilities at the 1-year (43bps) and 5-year horizon

(53bps). In contrast, the Model 2 overstates average excess returns (0.77%) and stock return

volatility (3.4%).

To match the data, Model 2 requires risk aversion of 9.4 and total asset volatility of 7.5%.

In Table 8, we decompose credit risk into LGD and 5-year cumulative default probabilities

both under the physical P and risk-neutral measure Q. The estimated bankruptcy costs

parameters are a = −5.9 and b = 6.3, implying average bankruptcy costs of 29.6% with a

standard deviation of 25.2%. These estimates are close to the ones reported in Glover (2006)

but he estimates constant bankruptcy costs. Similar to Chen (2010), our estimates imply

strongly countercyclical bankruptcy costs.

A shortcoming of the model is the high average LGD rate (97.8%). The reason is that it

too cheap for equity holders to raise equity and keep the firm alive, even when earnings drop

below coupon payments. Eventually, they declare default, when the present value of dividends

turns negative. But their optimal default threshold is very low such that LGD rates are large

on average. Larger equity issuance costs would alleviate this problem.

A solution to the credit spread puzzle requires that firms have low leverage (25.4%) and

low physical default probabilities (0.75%), which our model satisfies. At the same time,
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risk-neutral cumulative 5-year default probability are large at about 3.7%. This effect arises

because preferences make the low growth rate regimes more likely under the risk-neutral

measure. Since the risk-neutral dynamics are key for pricing, credit spreads are large. Figure

6 illustrates this effect.

In Model 1, we also target option pricing moments, in particular, mean and variance

of at-the-money implied volatility and the implied volatility skew. While Model 2 highly

overstates at-the-money implied volatility (37.4%) and the implied volatility skew (5.5%),

Model 1 generates reasonable at-the-money implied volatility (32.1%) and implied volatility

skew (4.3%).

The model can match option moments because of the depression state, which makes

out-of-the-money put options a valuable hedge against severe economic downturns. Our

model mechanism avoids the critique of Backus, Chernov, and Martin (2011), who show

that consumption-based asset pricing models based on variable rare disasters as in Barro

(2006) severely overstate the option skew. The reason is that we model depressions as a

state of persistently lower growth rates and higher volatility as opposed to a one-shot drop

in consumption as in the previous literature. The later mechanism has a far more severe

effect on the value of short-dated options. The top two panels of Figure 5 shows option

characteristics in the model as a function of the firm’s state. The horizontal axis shows the

firm’s leverage ratio (which is a one-to-one function of its interest-coverage-ratio), whereas the

two lines represent two of the model’s five macroeconomic states. The model replicates the

fact that, for any economic regime, both the level and skew of the implied volatility surface

are increasing in leverage. For a fixed leverage ratio, the level of implied volatilities is higher

in recessions, whereas the skew is roughly unchanged. It is important to note, however, that

leverage ratios increase in recessions, so that the observed level and skew are both higher in

recessions than in expansions, as in the data.

Model 1 does a better job in matching both credit and option markets, while Model

1 performs better on credit risk moments only. What are the economics? Since Model 2

overstates at-the-money IV and IV skew, Model 1 has less idiosyncratic risk (7.1%) than

Model 2 (5.1%) and also less total risk 6.7% relative to 7.5%. The reduction in total risk

implies a better fit for option market moments. At the same time, the aggregate volatility
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scaling parameter increases from 6.7 for Model 2 to 12.7 for Model 1, implying that a larger

fraction of total risk is systematic.

For Model 1 to match credit spreads, the model requires not only more systematic risk in

earnings but also higher bankruptcy costs. In Model 1, the estimated bankruptcy costs param-

eters are a = −4.8 and b = 0.8, implying average bankruptcy costs of 58.8% with a standard

deviation of 0.5%. Thus, adding option market moments to the estimation of bankruptcy

costs is important because option IV and skew is informative about the composition of risk.

5 Conclusion
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Figure 1: This figures shows five percentiles of the cross-sectional CDS distribution.

Figure 2: This figures shows five percentiles of the cross-sectional market leverage distribution.
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Figure 3: This figures shows five percentiles of the cross-sectional implied volatility distribu-
tion.

Figure 4: This figures shows five percentiles of the cross-sectional implied volatility skew
distribution.
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Figure 5: This figures shows derivative prices as a function of firms’ leverage ratio for the
benchmark calibration. The monthly CDS rate is reported in bps p.a.
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Table 1: Sample Firms

# Company Name First Date Last Date

1 3M Company 01/2004 08/2014
2 AES Corp. 01/2004 11/2008
3 AT&T Corp. 01/2004 11/2005
4 AT&T Inc. 01/2004 08/2014
5 Abbott Laboratories 08/2005 08/2014
6 Alcoa Inc. 01/2004 02/2012
7 Allstate Corp 01/2004 08/2014
8 Altria Group Inc 01/2004 08/2014
9 American Electric Power Co Inc 01/2004 02/2014
10 American Express Company 01/2004 08/2014
11 American International Group, Inc. 01/2004 08/2014
12 Amgen Inc 01/2004 08/2014
13 Anadarko Petroleum Corp. 03/2012 08/2014
14 Anheuser-Busch Companies Inc. 01/2004 11/2008
15 Apache Corp 03/2011 08/2014
16 Apple Inc. 05/2013 08/2014
17 Avon Products 01/2004 02/2012
18 Baker Hughes Inc. 01/2004 05/2013
19 Baxter International Inc. 01/2004 08/2014
20 Black & Decker Corporation 01/2004 02/2007
21 Boeing Co. 01/2004 08/2014
22 Bristol-Myers Squibb Co 01/2004 08/2014
23 Burlington Northern Santa Fe Corp. 01/2004 02/2010
24 CVS Caremark Corporation 03/2007 08/2014
25 Campbell Soup Company 01/2004 02/2011
26 Capital One Financial Corp. 12/2006 08/2014
27 Caterpillar Inc. 08/2005 08/2014
28 Chevron Corporation 10/2005 08/2014
29 Cigna Corp 01/2004 11/2008
30 Cisco Systems Inc. 01/2004 08/2014
31 Citigroup Inc 01/2004 08/2014
32 Clear Channel Communications Inc 01/2004 07/2008
33 Coca-Cola Co 01/2004 08/2014
34 Colgate-Palmolive Company 01/2004 08/2014
35 Computer Sciences Corp. 01/2004 06/2007
36 ConocoPhillips 12/2006 08/2014
37 Costco Wholesale Corp. 01/2009 08/2014
38 Dell Inc 07/2004 12/2012
39 Devon Energy Corporation 12/2008 08/2014
40 Dow Chemical Company 01/2004 08/2014
41 Du Pont E.I. de Nemours & Co 01/2004 08/2014
42 EL Paso Corp 01/2004 11/2008
43 Eli Lilly and Company 03/2012 08/2014
44 Emerson Electric Co. 03/2011 08/2014
45 Entergy Corp 01/2004 02/2012
46 Exelon Corporation 01/2004 08/2014
47 Exxon Mobil Corporation 01/2004 08/2014
48 FedEx Corporation 01/2004 08/2014
49 Ford Motor Co 01/2004 08/2014
50 General Dynamics Corp 01/2004 08/2014
51 General Electric Company 08/2013 08/2014
52 Gillette Company 01/2004 09/2005
53 Goldman Sachs Group Inc 01/2004 08/2014
54 HCA Inc 01/2004 11/2006
55 Halliburton Co 01/2004 08/2014
(continued on next page)
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# Company Name First Date Last Date

56 Hartford Financial Services Group 01/2004 11/2008
57 Heinz (HJ) Co. 01/2004 05/2013
58 Hewlett-Packard Co 01/2004 08/2014
59 Home Depot Inc. 01/2004 08/2014
60 Honeywell International Inc 01/2004 08/2014
61 Intel Corporation 11/2008 08/2014
62 International Business Machines Corp. 01/2004 08/2014
63 International Paper Co. 01/2004 11/2008
64 Johnson & Johnson 01/2004 08/2014
65 Lehman Brothers Holdings Inc. 01/2004 09/2008
66 Lockheed Martin Corporation 12/2008 08/2014
67 Lowe‘s Companies, Inc. 12/2008 08/2014
68 Lucent Technologies Inc. 01/2004 11/2006
69 McDonald’s Corporation 01/2004 08/2014
70 Medtronic Inc. 01/2004 08/2014
71 Merrill Lynch & Co Inc 01/2004 12/2008
72 Metlife, Inc. 06/2009 08/2014
73 Microsoft Corp. 05/2008 08/2014
74 Monsanto Company 03/2009 08/2014
75 Morgan Stanley 01/2004 08/2014
76 Nextel Communications Inc 01/2004 08/2005
77 Nike Inc. 03/2009 08/2014
78 Norfolk Southern Corp. 01/2004 08/2014
79 Occidental Petroleum Corp. 09/2008 08/2014
80 Oracle Corporation 01/2004 08/2014
81 Pepsico Inc. 01/2004 08/2014
82 Pfizer Inc 01/2004 08/2014
83 Philip Morris International Inc. 05/2008 08/2014
84 Procter & Gamble Co 01/2004 08/2014
85 RadioShack Corp 01/2004 10/2006
86 Schering-Plough Corporation 12/2008 11/2009
87 Schlumberger Ltd 01/2004 08/2014
88 Southern Company 04/2008 08/2014
89 Target Corporation 07/2005 08/2014
90 Texas Instruments Inc. 04/2008 08/2014
91 Time Warner Inc. 01/2004 08/2014
92 Toys R US Inc. 01/2004 07/2005
93 U.S. Bancorp 07/2008 08/2014
94 Union Pacific Corp. 03/2011 08/2014
95 Unisys Corporation 01/2004 09/2006
96 United Parcel Service Inc. 11/2005 08/2014
97 United Technologies Corp. 01/2004 08/2014
98 UnitedHealth Group Inc 01/2008 08/2014
99 Verizon Communications Inc 08/2004 08/2014
100 Wal-Mart Stores Inc. 01/2004 08/2014
101 Walgreen Company 08/2014 08/2014
102 Wells Fargo & Company 01/2004 08/2014
103 Weyerhaeuser Co 01/2004 02/2012
104 Williams Cos. Inc. 01/2004 11/2013
105 Wyeth 11/2008 10/2009
106 Xerox Corp. 01/2004 02/2012

25



Table 2: Data Summary Statistics
The table shows moments of monthly averages of firms in our sample for the period from
January 2004 to August 2014.

Quantiles
Variable Mean S.D. Min 0.25 Mdn 0.75 Max

Leverage 0.2546 0.0216 0.2154 0.2417 0.2502 0.2635 0.3332
Log Returns (percent) 0.5174 4.6746 -23.6156 -1.3549 1.3602 2.9430 11.5785
CDS rate 1-year (bp) 44.1237 59.2457 7.0986 14.5443 25.9309 44.9193 315.2057
CDS rate 5-year (bp) 79.5972 50.2398 29.1947 51.2816 69.0547 86.7866 299.4803
IV 0.2692 0.1051 0.1619 0.2100 0.2360 0.2863 0.7825
Skew 0.0432 0.0215 0.0206 0.0304 0.0374 0.0462 0.1522
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Table 3: Consumption Dynamics
Based on monthly real non-durable and service consumption for the years 1960 to 2016, we
estimate a 4-state Markov chain using maximum likelihood.

Panel A: ML Estimation

µc,h µc,l σc,h σc,l
0.2935 0.0932 0.4211 0.1855

(0.0119) (0.0241) (0.0153) (0.0087)

phhµ pllµ phhσ pllσ
0.9971 0.9776 0.9939 0.9941

(0.0202) (0.0031) (0.0058) (0.0045)

Panel B: Consumption and Earnings States

µc,h µc,l µc,d
0.2935 0.0932 -0.6180

σc,l σc,h σc,d
0.1855 0.4211 0.8422

µh µl µd
0.3485 -0.0521 -1.4745

Panel C: Transition Matrix

(µh, σl) (µl, σl) (µh, σh) (µl, σh) (µd, σd)
0.9912 0.0029 0.0059 0.0000 0
0.0223 0.9718 0.0001 0.0058 0
0.0061 0.0000 0.9910 0.0029 0
0.0001 0.0060 0.0223 0.9567 0.0149

0 0 0 0.0225 0.9775
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Table 4: Calibrated Parameters

EIS ψ 2
Time discount rate β 0.996
Consumption-earnings correlation ρ 0.1
Drift scaling φµ 2
Bankruptcy costs maximum ω̄ 0.6
Debt issuance costs ψd 0.005
Equity issuance costs ψe 0.1
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Table 5: SMM Parameter Estimates

Parameter Model 1 Model 2

Risk aversion γ 8.9739 9.3898
Aggregate volatility scaling φσ 12.6524 6.7387
Tax rate τ 0.2210 0.2191
Idiosyncratic volatility ζi 0.0509 0.0712
Bankruptcy cost level a -4.8367 -5.9145
Bankruptcy cost cyclicality b 0.8276 6.3269
J-test J 0.1082 0.0388
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Table 6: SMM Moments

Data Model 1 Model 2

Average leverage 25.4622 25.4473 25.3791
Average excess returns 0.4657 0.6527 0.7775
Average 1-year CDS 0.4412 0.1478 0.2589
Average 5-year CDS 0.7960 0.7247 0.8397
Average IV ATM 26.9235 32.0791 37.4105
Average IV skew 4.3228 4.2607 5.4838
Variance of leverage 0.0463 0.0534 0.0668
Variance of returns 0.2170 0.0778 0.1158
Variance of 1-year CDS 0.0035 0.001 0.0019
Variance of 5-year CDS 0.0025 0.0027 0.0028
Variance of IV ATM 1.0968 0.2734 0.0772
Variance of IV skew 0.0459 0.0216 0.0265
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Table 7: Model Implied Moments

Data Model 1 Model 2

Average leverage 25.4622 25.4473 25.3791
Average excess returns 0.4657 0.6527 0.7775
Average 1-year CDS 0.4412 0.1478 0.2589
Average 5-year CDS 0.7960 0.7247 0.8397
Average IV ATM 26.9235 32.0791 37.4105
Average IV skew 4.3228 4.2607 5.4838
S.D. of leverage 2.1592 2.3114 2.5836
S.D. of returns 4.6766 2.7890 3.4024
S.D. of 1-year CDS 0.5925 0.3202 0.4325
S.D. of 5-year CDS 0.5024 0.5155 0.5327
S.D. of IV ATM 10.5141 5.2285 2.7790
S.D. of IV skew 2.1510 1.4686 1.6284
Correlation: leverage, 1-year CDS 81.0254 32.0273 42.4492
Correlation: leverage, 5-year CDS 80.6382 68.5033 80.7723
Correlation: 5-year CDS, IV ATM 92.2990 70.9865 80.7106
Correlation: 5-year CDS, IV skew 91.0976 31.4147 33.7302
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Table 8: CDS Decomposition

Model 1 Model 2

Average bankruptcy costs 58.8261 29.5787
S.D. of bankruptcy costs 0.4860 25.2268
Average LGD under P 95.9246 97.7624
Average LGD under Q 95.9678 97.7872
S.D. of LGD under P 0.9184 0.3273
S.D. of LGD under Q 0.9577 0.3047
Average 5-year def. probability under P 0.5362 0.7534
Average 5-year def. probability under Q 3.6029 3.7320
S.D. of 5-year def. probability under P 0.6280 0.6229
S.D. of 5-year def. probability under Q 2.1647 1.8173
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