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Abstract

This paper models the joint stock and bond return behavior within a structural model framework.

The framework disentangles the stock and bond’s exposures to firm value variation from their ex-

posures to the embedded call optionality. The factor portfolio targeting a unit exposure to the asset

return risk generates a significantly positive average excess return. The factor portfolio targeting

a unit optionality exposure to the volatility variation generates a significantly negative average ex-

cess return. The separation of asset return risk from optionality sheds light on the distress puzzle

in the stock and bond markets, the bet-against-beta anomaly, and the volatility premium.
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Investors are averse to risk, but they love optionality. Risk is often measured by the degree

of variation in future outcomes; whereas optionality manifests itself in a convex payoff structure.

Because high optionality often comes hand in hand with high risk, the two effects can work against

each other and generate seemingly abnormal market pricing behaviors. One such example is the

puzzling observation that stocks on companies with high default risk have delivered anomalously

low average excess returns (Campbell, Hilscher, and Szilagyi 2008), whereas bonds with high

default risk have abnormally wide credit spreads (Huang and Huang 2012).

This paper proposes to disentangle the optionality effect from the risk effect in a company’s

stock and bond. We start with the classic structural model of Merton (1974), which treats a com-

pany’s stock as a call option on the company’s firm value. Given its stylized nature, we do not use

the model to generate bottom-up pricing implications on the bond credit spread or the equity risk

premium; but rather, we use the model as a top-down value representation function to highlight the

major risk exposures of a company’s stock and bond. Under this model representation, the stock

has a positive delta exposure to the underlying firm value variation. A high level of the firm’s asset

return risk translates into a high level of stock return risk through the delta exposure. Meanwhile,

the stock also embeds positive optionality due to the convex call option payoff structure on the

firm value. This optionality affects the stock return variation through the call option’s positive

vega exposure and the variation of the asset return volatility.

The bond of the firm can be regarded as portfolio that is long the firm asset and short the

call option. As such, the bond also has positive delta exposure that complements the positive

delta exposure of the stock; nevertheless, as the bond is short the call option, its vega optionality

exposure is negative, exactly the opposite of the stock’s positive vega optionality exposure.

The optionality in the stock and the bond of a company is chiefly induced by financial leverage
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and the nature of limited liability on the company’s equity owners. The effect is small when

a company has little debt and is far from default. As a company’s debt increases, its distance

to default shortens, its default probability increases, and the embedded call optionality becomes

stronger. In this case, positive investor preference for optionality can drive up the value of a stock

with high embedded optionality, and drive down the stock return. Meanwhile, since the bond

embeds a short option exposure, the same investor preference for optionality can drive down the

bond value and widen the credit spread.

Through the Merton (1974) structural model representation, we attribute the return on the stock

and the bond of a company to their respectively delta and vega exposures, multiplied by the cor-

responding asset return and the asset return volatility change, respectively. Taking expectation on

the return attribution, we attribute the stock and bond return risk premiums to the asset return risk

premium and the optionality risk premium, the contribution of each dictated by the respective risk

exposures. When risk aversion leads to a positive asset return risk premium but preference for

optionality leads to a negative optionality risk premium, stock return risk premium is to increase

with its positive delta exposure but decline with its positive optionality exposure; whereas bond

return risk premium is to increase with both its positive delta exposure and its negative optionality

exposure.

Based on the structural return attribution analysis, we propose a joint stock and bond return

factor model that links the cross-sectional variation of the stock and bond returns to the variation

in their estimated delta and vega exposures. A cross-sectional regression on the return factor model

generates excess returns on two factor portfolios. The first portfolio targets a unit delta exposure to

the firm asset return but zero exposure to the optionality. The second portfolio targets a unit vega

optionality exposure to asset return volatility variation but zero delta exposure to the firm value

variation.
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We perform empirical analysis on the stocks and bonds on US publicly traded companies. At

the end of each month during our sample period, we implement the Merton (1974) model on each

company in our selected universe and compute the delta and vega exposures of the stock and the

bond of the company. We construct the joint stock-bond return factor model with the structurally

estimated delta and vega exposures. Model estimation shows that the asset return risk portfolio

with zero optionality exposure generates a significantly positive average excess return, consistent

with investor risk aversion. By contrast, the delta-neutral vega optionality portfolio generates a

significantly negative average excess return, reflecting strong investor preference for optionality.

Once the delta and vega exposures are neutralized, the average intercept estimate of the joint

return factor model becomes statistically insignificant. Allowing separate intercepts for the bond

and stock excess returns leads to insignificant average intercept estimates for both markets.

The structural separation of the linear asset return risk from the optionality risk sheds light

on the seemingly abnormal behaviors of stock and bond returns in relation to their default risk

exposures. On the one hand, default risk models can hardly generate credit spreads wide enough

to match market observations on corporate bonds (e.g., Eom, Helwege, and Huang 2004; Huang

and Huang 2012); on the other hand, stocks with high default risk have delivered anomalously low

average excess returns (e.g., Dichev 1998; Griffin and Lemmon 2002; Campbell, Hilscher, and

Szilagyi 2008). We show that the opposite optionality exposures in stocks and bonds, coupled with

investor preference for optionality, creates a compounding effect on the expected bond return risk

premium but an attenuating effect on stock return risk premium. The optionality exposure lowers

the expected stock excess return for companies with high default risk but raises the expected bond

excess return of the same company.

Investor preference for optionality shows up in many different forms. The most direct man-
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ifestation is in the options market, where investors are willing to pay more than the breakeven

price to buy options. As a result, writing options has been found to generate positive delta-hedged

average excess returns (e.g., Bakshi and Kapadia 2003; Cao and Han 2013). Selling variance

swaps, which can be replicated by a portfolio of options across the whole spectrum of strikes, has

also been found to generate positive risk premiums (Carr and Wu 2009). Since the chief expo-

sure of a delta-hedged option position is the return volatility variation through the vega exposure,

the well-documented negative volatility risk premium in the options market is mainly a reflection

of the positive investor preference for optionality and fundamentally an optionality risk premium.

Compared to the options market, the optionality embedded in stocks and bonds is much less direct.

Through a structural model setting and a joint stock-bond return factor model, we are able to dis-

entangle the optionality effect from the asset return risk exposure and separately identify the asset

return risk premium and the option risk premium.

The literature has also attempted to identify the optionality or volatility exposure in the stock

market by statistically estimating the stock return sensitivity on some volatility index, such as the

VIX index (e.g., Ang, Hodrick, Xing, and Zhang 2006; Harvey, Liu, and Zhu 2016; Barinov and

Chabakauri 2023). Given the excess return series on the two factor portfolios extracted from our

joint return factor model, we also estimate the statistical return beta of each stock and bond on

the two factor portfolios. We show that the statistical beta estimates are highly correlated with the

structural beta constructs. Cross-sectional Fama and MacBeth (1973)-type return regressions on

the beta estimates also generate significantly positive risk premiums on the asset return beta and

significantly negative risk premiums on the optionality beta.

The embedded optionality has also contributed to other documented bond and stock return

behaviors. Based on structural model implementations, investors have designed capital structure

arbitrage strategies that are long bond and short the stock of the same company to delta hedge
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when the bond’s credit spread is found to be wider than model valuation (e.g., Yu 2006; Duarte,

Longstaff, and Yu 2007). Such a delta-neutral strategy is effectively short the option and loads

negatively on the vega exposure. Therefore, although the strategy is designed to capture bond

mispricing, its investment performance is at least partially driven by the positive risk premium on

the strategy’s negative optionality exposure.

In the stock market, Frazzini and Pedersen (2014) find that high-beta stocks generate lower

risk-adjusted average excess returns. They propose a betting-against-beta (BAB) strategy to benefit

from the pricing anomaly. The strategy is long low beta stocks and short high beta stocks while

maintaining beta neutrality. Since high beta names tend to have high optionality, we conjecture that

the strategy embeds a short optionality exposure. We regress the BAB portfolio returns against the

returns on our optionality factor portfolio and show that the BAB portfolio has a significantly

negative loading on the optionality factor. Once the optionality exposure is hedged, the average

excess return on the BAB portfolio is no longer statistically significant.

This paper starts with the premise that investors are averse to risk but love optionality. Investor

risk aversion is a common assumption in classic asset pricing theories. The literature has also

proposed several theoretical frameworks that can generate the optionality-loving behavior. In par-

ticular, the cumulative prospect theory of Tversky and Kahneman (1992) captures this optionality-

loving behavior by generating risk aversion for gains of high probability and losses of low prob-

ability but risk seeking for losses of high probability and gains of low probability. Barberis and

Huang (2008) apply the theory to explain why stocks with lottery-like payoffs tend to be over-

priced and generate lower returns. Kumar (2009) finds that individual investors prefer stocks with

lottery features and that the demand for lottery-like stocks increases during economic downturns.

Eraker and Ready (2015) show that investors also tend to overpay for lottery-like stocks in the OTC

market. Conrad, Kapadia, and Xing (2014) highlight the role of lottery-like payoffs in explaining
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the distress puzzle in the stock market. These findings provide support to our starting premise.

This paper uses the classic Merton (1974) structural model as a top-down value representation

function to highlight the two major risk sources underlying the stock and bond of a company, i.e.,

the underlying firm value variation and the asset return volatility movement. Different from this

top-down analysis, historical efforts focus on improving the classic structural model from bottom

up by proposing different firm value dynamics and capital structure mechanisms to better match

the observed credit spread behaviors (e.g., Geske 1977; Longstaff and Schwartz 1995; Leland and

Toft 1996; Collin-Dufresne and Goldstein 2001). More recently, Bhamra, Kuehn, and Strebu-

laev (2010) embed a structural model inside a dynamic consumption-based asset pricing model to

jointly explain the equity and credit risk premiums. The two approaches complement each other.

The bottom-up modeling efforts offer structural mechanisms to generate the observed risk premi-

ums, whereas our top-down analysis focuses on risk magnitude and risk exposure construction and

directly estimates the risk premium of each risk source from cross-sectional return factor model

constructions. Our approach builds a bridge between classic structural modeling and empirical

return factor models.

1. Structural Decomposition of Stock and Bond Risk Exposures

This section starts with the Merton (1974) model, where the firm has a single zero-coupon bond as

its debt with a principal amount of D and expiry at time T . The equity of the firm can be regarded

as a call option on the firm value with the option’s strike price equal to the debt principal and the

option’s maturity matching the bond expiry. The debt of the firm can be regarded as a portfolio

that is long the firm asset and short the call option.
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1.1 Value representation and risk exposures

The Merton (1974) model is highly stylized with well-known biases in its model-implied credit

spreads (Eom, Helwege, and Huang 2004; Huang and Huang 2012). Nevertheless, the model

implications can still be very effective in differentiating the cross-sectional credit spread variations

of different companies (Bai and Wu 2016). The model can also generate reasonably accurate risk

sensitivities and hedging ratios (Schaefer and Strebulaev 2008). In this paper, we do not take

the Merton model at its literal meaning, but use it as a top-down value representation function

to summarize the major risk sources of the underlying securities of the company and to compute

their risk exposures. This approach is similar to how the industry and the academia in the options

market have been using the Black and Scholes (1973) and Merton (1973) (BMS) model, not as a

bottom-up option pricing model, but as a top-down value representation function to summarize the

major risk sources of an option contract (e.g., Carr and Wu 2020; Wu and Zhang 2025).

Based on the Merton model representation, we can represent the value of the stock in a com-

pany via the BMS pricing equation,

S(t,Ft ,σt) = FtN(dt)+De−rtτN(dt −σt
√

τ), (1)

with rt denoting the instantaneous riskfree rate, τ the option time to maturity, σt the asset return

volatility, N(·) the cumulative normal function, and dt the standardized moneyness measure often

referred to as the distance to default,

dt =
ln(Ft/D)+ rtτ+

1
2σ2

t τ

σt
√

τ
. (2)

Equation (1) represents the stock value variation in terms of the calendar time t and its two ma-
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jor risk sources, i.e., variations in the underlying firm value Ft and the asset return volatility σt .

Although the original Merton (1974) model assumes a geometric Brownian motion with constant

volatility, we choose an asset return volatility input σt to the pricing equation in (1) to match the

observed market capitalization of the company at each date and for each company, much like the

BMS implied volatility used in the options market to match the price of a particular option contract.

In reality, a firm can issue multiple bonds with different maturities. To apply the value rep-

resentation in (1), we set the debt principal D to the total book value of debt and set the option

maturity to the average maturity of the company’s outstanding debt. We solve for the firm value Ft

and the asset return volatility σt to match the company’s market capitalization as the equity value

St and the company’s equity return volatility estimate σS
t .

Given the stock value representation in (1), we can represent the value of the company’s bond

as the difference between the firm value and the stock value,

B(t,Ft ,σt) = Ft −S(t,Ft ,σt) = Ft(1−N(dt))−De−rτN(dt −σt
√

τ). (3)

The BMS option value representation involves two standardized moneyness measures, dt and

(dt −σt
√

τ). Under the original model dynamics assumptions, they measure the number of stan-

dard deviations by which the mean of the natural logarithm of the firm value, ln(FT ), exceeds the

natural logarithm of the debt principal, ln(D), under the share measure and the risk-neutral mea-

sure, respectively. The literature has used both measures to define the distance to default. In this

paper, we choose dt as the standardized distance to default measure because it has a more direct

linkage to the risk exposures of the stocks and bonds. From this distance to default measure, we
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can construct a default probability measure as,

pt = N(−dt). (4)

The default probability becomes larger as the distance to default shortens.

1.1.1 The delta exposure to firm value variation

The delta of an option captures the contract’s linear exposure to the underlying security’s price

movement. Under the BMS value representations in (1) and (3), the delta exposures of the stock

and the bond can be written as,

SF = N(dt) = δt , BF = 1−N(dt) = 1−δt , (5)

where SF and BF denote the partial derivatives of the stock and bond value functions against the

underlying firm value, respectively. To highlight their connections, we use δt ≡ N(dt) to denote

the delta of the stock as a call option. By being long the firm value and short the call option, the

bond has a delta exposure of 1−δt , complementing the delta of the stock.

The delta exposures of the stock and the bond of a company are both positive. As the sum of

the stock and the bond reconstructs the firm value, the deltas of the stock and bond sum to 100%.

When the firm value increases, both the stock value and the bond value increase with it. For a

company with little debt, its distance to default is large, its stock delta δt is close to one whereas

its bond delta is close zero. The firm’s stock value is much more sensitive to the firm value change

than is the bond value. As a result, the stock is as risky as the firm whereas the bond has little risk.

On the other hand, when a company has a large amount of debt and its distance to default is close
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to zero, the company’s stock and bond can become equally sensitive to the firm value variation.

Both securities become equally risky and tend to share strongly positive co-movements driven by

their equally positive delta exposures to the firm value variation.

1.1.2 The vega exposure to optionality

As a call option has a convex payoff structure, its value not only increases with the underlying

security price, but also increases with the return volatility of the underlying security. The vega

exposure, or the value sensitivity of a contract to the underlying return volatility movement, can be

used to quantify the optionality embedded in the contract. Under the BMS value representations

in (1) and (3), the vega exposures of the stock and the bond can be written as,

Sσ = Ft
√

τn(dt) = Ftνt , Bσ =−Ft
√

τn(d1) =−Ftνt , (6)

where Sσ and Bσ denote the partial derivatives of the stock and bond value functions against the

underlying asset return volatility σt and n(·) denotes the probability density function of the standard

normal distribution. We use νt ≡
√

τn(dt) to denote the vega exposure per unit firm value for the

call option. As the stock is long the call option and the bond is short the call option, the vega

exposure of the stock and the bond are exactly opposite of each other, positive for the stock and

negative for the bond.

A linear contract has linear (delta) exposure to the underlying security price movement but does

not have any vega exposure to the underlying return volatility. Aggregating the stock and bond

together recreates the firm asset, which has 100% delta exposure to the firm value by construction,

but zero vega exposure to the volatility movement. The opposite optionality exposures of the stock

and the bond cancel out each other.
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Similar to the case for the delta exposure, the relative magnitude of the optionality exposure

is directly determined by the distance to default measure dt of the company. For companies with

little debt and hence long distance to default, the optionality exposure νt is small. As a company

increases its debt and as its distance to default approaches zero, the option vega reaches its maxi-

mum value. In the rare case where a company’s distance to default dt becomes negative, the vega

exposure starts to decline again with further increasing default risk. For most companies, however,

the distances to default are positive, and both the option delta and the option vega increase with

declining distance to default.

1.2 Return attribution on the stock and the bond of a company

Based on the value representations in (1) and (3) and the risk exposure constructions in (5) and (6),

we can perform the following return attribution on the stock and the bond of a company,


dSt

Ft
dBt

Ft

=

 δt νt

1−δt −νt


 dFt

Ft

dσt

+O(dt), (7)

where we scale the instantaneous change in the stock and the bond value (dSt ,dBt) by the firm

value of the company to define the unlevered return on the stock and the bond, and we use the term

O(dt) to collect the deterministic drift terms generated by the option’s time decay and second-

order exposures to the firm value and the asset return volatility. The attribution highlights the

impacts of the two random sources of shocks (dFt/Ft ,dσt) on the stock and bond value variation.

The stock return increases with the firm’s asset return (dFt/Ft) through its delta exposure δt and

increases with the volatility change (dσt) through its vega exposure (νt). By comparison, the bond

return increases with the asset return with its positive delta exposure (1−δt) but declines with the
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volatility change due to its negative vega exposure (−νt).

Equation (7) defines the stock and bond returns in unlevered form, with the firm value as

the common denominator. This definition highlights the symmetric nature of the stock and bond

risk exposures. In the equity market, Doshi, Jacobs, Kumar, and Rabinovitch (2019) show how

leverage induces heteroskedasticity in stock returns and complicates risk-return relations; Choi

and Richardson (2015) find that leverage induces asymmetry in the stock volatility dynamics. In

the option pricing literature, researchers have also been realizing the potential instability of levered

option returns and are shifting to unlevered option return constructions for both theoretical risk

attribution and empirical analysis (e.g., Tian and Wu 2023; Fournier, Jacobs, and Orlowski 2024;

Wu and Zhang 2025; Wu and Xu 2023).

We can also readily convert the unlevered returns in (7) to levered returns via the scaling of

Ft/St and Ft/Bt , respectively,


dSt

St
dBt

Bt

=


Ft

St
0

0
Ft

Bt


 δt νt

1−δt −νt


 dFt

Ft

dσt

+O(dt). (8)

As financial leverage increases, the distance to default becomes shorter and the delta exposure

δt becomes smaller; nevertheless, the levered delta exposure of the stock return,
Ft

St
δt , increases.

Furthermore, the financial leverage amplifies the increasing absolute vega exposure with increasing

leverage for both stock and bond returns. As a result, holding asset return volatility fixed, levered

returns on both the stock and the bond become riskier as financial leverage increases.
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1.3 Decomposing bond and stock return risk premium

Based on the structural return attribution in (8), we can decompose the stock and bond return risk

premiums into risk premiums on the firm’s asset return risk and the volatility risk through their

respective delta and vega exposures.

Proposition 1 The stock risk premium (SRP) and bond risk premium (BRP) of a company can

be decomposed into two structural components: (1) their delta exposures to the underlying firm

value variation and the firm’s asset return risk premium (RRP) and (2) their vega exposures to the

underlying asset volatility variation and the optionality risk premium (ORP),

 SRPt

BRPt

=


Ft

St
0

0
Ft

Bt


 δt νt

1−δt −νt


 RRPt

ORPt

 , (9)

where the risk premiums (SRP, BRP) and (RRP, ORP) are defined as annualized expectation dif-

ferences under the two probability measures (P and Q) on the corresponding risk sources,

 SRPt

BRPt

≡ 1
dt

(
EP

t −EQ
t

)
dSt

St
dBt

Bt

 ,

 RRPt

ORPt

≡ 1
dt

(
EP

t −EQ
t

) dFt

Ft

dσt

 . (10)

Proof. Take expectation on the stock and bond return attribution in (8) under the statistical measure

(P) and the risk-neutral measure (Q), respectively. Perform annualization by (1/dt). Taking the

difference between the two annualized expectations leads to equation (9), with the risk premiums

defined in (10).

Based on our general premise that investors are averse to risk but love optionality, we form the

following empirically testable hypothesis on the two types of risk premiums.
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Hypothesis 1 We hypothesize that the presence of investor risk aversion implies a positive aver-

age return risk premium whereas investor preference for optionality implies a negative average

optionality risk premium.

Under our hypothesis, the stock return risk premium would increase with its positive delta

exposure but declines with its positive vega optionality exposure. By contrast, due to the bond’s

negative vega exposure, the bond risk premium would increase with both its positive delta exposure

and the absolute magnitude of its negative vega exposure.

2. Data Processing and Summary Behaviors

We perform a joint analysis of the stocks and bonds on US publicly traded companies based on

the following data sources: the Center for Research in Security Prices (CRSP) for stock return

information, the WRDS Bond database for bond return information, and Compustat for quarterly

financial information.

2.1 Sample construction

We start with the CRSP database for the stock pricing information. We include all the stocks listed

on the NYSE, AMEX, and NASDAQ stock exchanges.

We use the WRDS Bond CRSP Link to merge all the corporate bonds from the WRDS Bond

Dataset to the CRSP dataset. The WRDS Bond Database sources data from TRACE Standard

dataset, TRACE Enhanced dataset, and the Mergent Fixed Income Securities Database (FISD).

The Database provides monthly price, return, coupon, and maturity information for all corporate
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bonds traded since July 2002. We filter the bond data using criteria similar to that in Bessembinder,

Kahle, Maxwell, and Xu (2009): (1) The bonds are listed/traded in the US public market. We

exclude bonds issued through private placement, under the 144A rule, Yankee Bonds, bonds that

are not denominated in US dollar, and bonds from issuers outside the jurisdiction of the United

States. (2) The bonds belong to one of the three types: US Corporate Debentures (‘CDEB’), US

Corporate MTN (‘CMTN’) or US Corporate MTN Zero (‘CMTZ’). (3) The bonds have either fixed

or zero coupon type. (4) Bond prices are above $1 and below $1000. (5) Bond maturities are no

less than one year. (6) Bond prices have shown variations in the last three months. A company

can have several outstanding bond issuances. At each month, we aggregate the bond-level monthly

return and maturity to company level using the bond outstanding as weights.

We merge the company financial information from Compustat to the CRSP dataset using the

CRSP/Compustat Link Table. The financial statement for a company is released quarterly. We

assume that the financial statement information becomes available two months after the end of the

company’s financial quarter.

To be included in our final sample, we require that the company has (1) valid current stock and

bond pricing information and return calculation over the next month, (2) 1-year stock daily return

history to construct the stock volatility estimator, and (3) valid firm financial report information to

implement the structural model.

The final sample consists of 120,840 company-month observations for 1,392 issuing companies

spanning the period from July 2002 to November 2020 for a total of 221 months. The selected

number of firms per month ranges from 348 to 658, and averages at 547.
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2.2 Estimating stock and bond risk exposures

To estimate the stock and bond risk exposures, at each month t and for each company i, we perform

a simple implementation of the Merton (1974) model. The procedure is similar to standard litera-

ture practices (e.g., Vassalou and Xing 2004; Bharath and Shumway 2008; Bai and Wu 2016). We

take the company’s market capitalization as the equity value St,i, the company’s total book value

of debt (short-term debt plus long-term debt) as the strike of the call option Dt,i, and the weighted

average maturity of the company’s outstanding bonds as the maturity of the option τt,i.

We use the past 1-year daily stock return history to construct a stock return volatility estimator

σS
t,i. We also construct a bond return volatility estimator σB

t,i using the past 3 years of bond monthly

excess return history, when a minimum of 12 monthly observations are available. When both the

stock and bond return volatility estimators are available, we link them to the asset return volatility

via a value-weighted average,

σt,i =
St,i

Ft,i
σ

S
t,i +

Ft,i −St,i

Ft,i
σ

B
t,i. (11)

When we do not have enough bond return history to construct the bond return volatility estima-

tor, we link the asset return volatility σt,i to the stock return volatility estimator σt,i via the delta

exposure,

σt,i =
St,i

Ft,iN(dt,i)
σ

S
t,i. (12)

We use the zero-coupon Treasury yield matching the average bond maturity as the riskfree rate

rt . We obtain fixed-term zero-coupon Treasury yields from the Federal Reserve Economic Data

(FRED) database and interpolate the yield curve to generate the rate at the average bond maturity.

The maximum maturity of the FRED yield curve is 30 years. For bond average maturities longer
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Table 1
Summary behaviors of risk exposures

Mean SD Percentile values Tails
1 25 50 75 99 Skewness Kurtosis

A. Model inputs

Debt-equity (D/S) 0.87 1.81 0.03 0.21 0.43 0.88 7.71 8.60 108.27
Bond maturity (τ) 8.53 4.79 1.86 5.32 7.28 10.82 24.13 1.88 7.16
Stock volatility (σS) 0.35 0.14 0.16 0.25 0.31 0.41 0.83 1.83 6.94

B. Model outputs

Debt ratio (B/F) 0.28 0.19 0.02 0.13 0.23 0.38 0.83 1.00 0.62
Asset volatility (σ) 0.26 0.11 0.10 0.19 0.24 0.31 0.64 2.05 12.32
Distance to default (d) 2.84 1.53 0.31 1.87 2.60 3.51 7.93 1.63 7.68
Default probability (%) 3.93 7.54 0.00 0.24 1.07 3.96 37.98 3.95 21.04
Delta (δ) 0.96 0.08 0.62 0.96 0.99 1.00 1.00 -3.95 21.04
Vega (ν) 0.16 0.22 0.00 0.02 0.07 0.22 0.92 2.07 5.09

Entries report time-serial averages of the cross-sectional statistics, including the cross-sectional average
(Mean), standard deviation (SD), percentile values, skewness, and excess kurtosis. Panel A reports the
statistics on the inputs to the structural model. Panel B reports the statistics on the model outputs.

than 30 years, we perform flat extrapolation and set the interpolated rate to the rate at 30 years.

With these inputs, we solve for the company’s firm value Ft,i and asset return volatility σt,i from

the option pricing representation in (1) and the volatility linkage equation in (11) or (12). We then

compute the company’s distance to default dt,i, the delta δt,i and the vega νt,i risk exposure.

Table 1 reports the time-series averages of the cross-sectional statistics on the inputs and the

outputs of our structural model implementation. The statistics include the cross-sectional average

(Mean), standard deviation (SD), percentile values at 1, 25, 50, 75, and 99th percentiles, and the

cross-sectional skewness and excess kurtosis of the distribution. Panel A reports the statistics

on the inputs of the structural model, including the ratio of total book value of debt to market

capitalization (D/S), the average bond maturity (τ), and the stock return volatility estimator (σS).
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For our selected universe, the companies have an average debt-equity ratio of 0.87, but with a large

cross-sectional variation, from an average of 0.03 at the first percentile to an average of 7.71 at the

99th percentile. The cross-sectional distributions show high positive skewness and large excess

kurtosis. The bond maturity averages at 8.53 years, and ranges from 1.86 at the first percentile to

24.13 at the 99th percentile. The stock return volatility estimators average at 35%, but can vary

cross-sectionally from 16% at the first percentile to 83% at the 99th percentile.

Panel B reports the statistics on the model outputs. The market value of debt to firm value

(B/F), or the debt ratio, averages at 28%, and varies from 2% to 83% within the 1-99th percentile

range. The asset return volatility estimates average at 26%, varying from 10% to 64% within the

1-99th percentile range.

The average distance to default (d) is large at 2.84. As a result, the average default probability

(p) is low at merely 3.93%. Nevertheless, the cross-sectional distribution of default probability is

highly asymmetric with a heavy right tail. The average default probability can reach as high as

37.98% at the 99th percentile.

Corresponding to the large average distance to default and low default probability, the average

stock delta (δ) exposure is very high at 96%. In fact, for over 25% of the companies, the delta

exposures are close to 100% for their stocks. The vega (ν) exposure averages at 0.16, and varies

from 0 to 0.92 within the 1-99th percentile.

To visualize the cross-sectional distributional behaviors of the risk exposures, we estimate the

density of the cross-sectional distribution each month using a Gaussian kernel and a bandwidth

twice the default choice (Simonoff 1996). Figure 1 plots the time-series averages of the density

estimates. Panel A plots the average cross-sectional distribution of the distance to default measure

(d), which has a reasonably symmetric bell shape. When we convert the distance to default into
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Figure 1
Distributions of delta and vega exposures.
The bars in each panel represent the time-series average of the cross-sectional probability density estimates.
The four panels are for four variables: (A) distance to default (d); (B) default probability (p); (C) delta (δ);
(D) vega (ν). The densities are estimated with a Gaussian kernel with twice the default bandwidth choice.

a default probability measure, p = N(−d), and estimate the density of the default probability,

panel B shows that the average cross-sectional distribution of the probability density is highly

asymmetric. A large proportion of the companies have very low default probabilities, as shown

by the heavy dark mass on the left side. Meanwhile, the plot highlights the wide dispersion of the

default probabilities on the right tail.

Panel C plots the average cross-sectional density of the stock delta exposure (δ). As the delta is

simply one minus the default probability δ= 1− p, the density function shape of the delta exposure
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represents a mirror image of the density function shape of the default probability, where the wide

dispersion is on the side of high default probability and low delta exposure.

Panel D plots the average density of the vega exposure (ν). At a given maturity, the vega

exposure reaches its maximum as the distance to default approaches zero. The distance to default

estimates are predominantly positive. Out of the 120,840 company-month observation, only 215

observations have negative distance to default estimates. Therefore, for the majority of firms, the

vega exposure estimates largely increase with declining distance to default and increasing default

probability.

The distance to default measure (d) simultaneously determines the company’s default probabil-

ity (p=N(−d)) and the company’s stock and bond risk exposures. The delta δ is simply one minus

the default probability. The vega ν depends both on the distance to default and the bond maturity,

ν =
√

τn(d). Since the average bond maturity varies within a narrow range, the cross-sectional

variation of the vega exposure is also mainly dictated by the variation of distance to default.

To highlight the linkage between the distance to default and default probability on the one side

and the delta and vega exposures on the other, we perform local linear regression at each date on

the delta and vega exposures against the distance to default measure and the default probability

measure, respectively. The local linear regression applies a Gaussian kernel with twice the default

bandwidth choice. Figure 2 plot the time-series averages of the estimated relations, with the circles

denoting the average percentile values of the distance to default in panel A and default probability

in panel B, at 5, 10, 25, 50, 75, 90, and 90th percentiles, respectively. Panel A shows the average

dependence structure of the delta (solid line) and vega (dash-dotted line) exposures on distance to

default. The bond’s delta exposure is simply one minus the stock delta exposure, and the bond’s

negative vega exposure has the same absolute value as the stock’s positive vega exposure. As
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Figure 2
Delta and vega exposures at different default risk levels.
Lines plot the time-series averages of the delta (solid lines) and vega (dash-dotted lines) exposure at different
distance to default (panel A) and the default probability levels (panel B). The circles denote the values of
the distance to default and default probability at 5, 10, 25, 50, 75, 90, and 95th percentiles, respectively.

distance to default increases, the stock delta exposure increases while the vega exposure declines.

When we plot the average relations of the exposures against the default probability measure in

panel B, about half of the companies are clustered to the left with very small default probabilities

and the lines highlight the exposure variations of the companies with significant default risks. As

the default probability increases, the stock’s delta exposure declines, but the embedded optionality,

as measured by the vega exposure, increases.

2.3 Stock and bond returns

For each selected company at each month, we construct the stock and bond returns over the next

month. The stock returns are directly from CRSP. The bond returns for each company are weighted

average of the monthly returns on all the selected bonds for that company. We deduct the one-

month Treasury bill rate from the monthly returns to construct the excess returns. The monthly

Treasury bill rate data are obtained from French’s online data library.
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Table 2
Summary behaviors of stock and bond returns

Mean SD Default risk quintile
1 2 3 4 5

A. Company default risk
Default probability 3.93 7.54 0.05 0.36 1.11 3.18 14.96

B. Stock return
Return (%) 11.41 103.13 10.52 11.42 11.59 11.99 11.55
Volatility (%) 34.51 14.33 25.37 29.03 32.01 36.82 49.30
Beta 1.09 0.43 0.87 0.97 1.04 1.17 1.40
Delta exposure 1.47 0.67 1.13 1.24 1.34 1.51 2.13
Vega exposure 0.41 1.07 0.01 0.03 0.11 0.29 1.62

C. Bond return
Return (%) 6.21 27.56 4.95 6.08 5.89 6.81 7.33
Volatility (%) 7.81 5.03 5.64 6.65 7.33 8.39 11.08
Delta exposure 0.09 0.12 0.01 0.03 0.06 0.11 0.27
Vega exposure -0.50 0.56 -0.12 -0.26 -0.43 -0.66 -1.03

Entries report the time-series averages of the cross-sectional statistics on the stock and bond monthly excess
returns, including the cross-sectional average (Mean), standard deviation (SD), and averages at each default
risk quintile constructed based on the default probability estimates. Panel A repeats the statistics on the
default probability, based on which the quintile portfolios are constructed. Panels B and C report the statistics
on the stock and bond excess returns, respectively, as well as the risk exposures. The mean excess return
and return volatility are in annualized percentages.

Table 2 reports the time-series averages of the cross-sectional statistics of the stock and bond

monthly excess returns. At each month, we compute the cross-sectional average (Mean) and stan-

dard deviation (SD) of the stock and bond monthly excess returns. We also sort the companies into

default risk quintiles based on the default probability estimates and compute the average stock and

bond monthly excess returns and their risk exposures for each quintile portfolio. Panel A repeats

the mean and standard deviation statistics on the default probability, as well as the average default

probability levels at the five quintiles. The average default probability increases from merely 5

basis points at the first quintile to 14.96% at the fifth quintile.
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Panel B reports the stock excess return behavior, including the mean annualized excess return,

the annualized return volatility, the stock return beta, and the stock’s levered delta and vega expo-

sures. The stock return volatility and beta estimators are directly constructed from the daily stock

return histories at each date. The levered delta and vega exposures are constructed by multiplying

the unlevered delta and vega exposure estimates (δt,i,νt,i) with the leverage multiple Ft/St . The

annualized monthly stock excess return averages at 11.41%. The annualized stock return volatility

averages at 34.51%. Across the five default risk quintiles, the mean excess return first increases

with the default risk from 10.52% at the first quintile to 11.99% at the fourth quintile. As the

default risk further increases, the average stock excess return becomes lower at 11.55% at the fifth

quintile. The quintile portfolio return volatility and beta estimates both increase monotonically

with default probability, driven by increasing levered delta and vega exposures.

Panel C reports the bond excess return behavior. The annualized mean bond excess return av-

erages at 6.21%. The bond return volatility estimators computed from the monthly excess return

histories have an average of 7.81%. The mean excess returns are similar for the first three quin-

tiles, but increase strongly at the last two quintiles as the average default risk becomes significantly

larger. The bond’s levered delta exposure and its absolute vega exposure both increase monoton-

ically with the default probability quintile. As a result, the bond return volatility also increase

monotonically with the risk quintile.

The unlevered delta exposures of stocks and bonds sum to one and their unlevered vega ex-

posures are exactly opposite of each other. The levered exposures lose this mirror image because

different leverage multiples F/S and F/B are applied to the stock and bond returns, respectively.

Compared to the levered exposures of the stock returns, the bond returns have much smaller levered

delta exposures across all risk quintiles, but larger absolute vega exposures.
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3. A Joint Stock and Bond Return Factor Model

We hypothesize that investors are averse to risk but love optionality; nevertheless, it is inherently

difficult to disentangle the two effects because optionality tends to increase hand in hand with

volatility and the two types of risk exposures tend to be highly correlated. We implement the

Merton (1974) structural model for each company to separate the delta and vega exposures of the

stock and the bond for that company. Under this structural setting, the cross-sectional variations of

the delta exposure δt,i = N(dt,i) and the vega exposure νt,i =
√

τt,in(dt,i) are largely dictated by the

variation of the distance to default measure (dt,i). For much of the universe with strictly positive

distance to default estimates, N(dt,i) and n(dt,i) have a monotonic relation. As a result, with the

bond maturity varying within a narrow range, the two risk exposures are structurally linked by the

distance to default measure and are hardly separable.

To better disentangle the two types of exposures, we propose the following joint cross-sectional

stock and bond return factor model,

 SURt+1

BURt+1

= ζt+1 +

 δt νt

1−δt −νt


 ηδ,t+1

ην,t+1

+

 es,t+1

eb,t+1

 , (13)

where (SURt+1,BURt+1) denote the (Nt ×1) vectors of stock and bond unlevered excess returns

over the next month (t + 1), respectively, across the universe of Nt companies, (δt ,νt) denote

the two (Nt × 1) vectors of the stock unlevered delta and vega exposures, and (1− δt ,−νt) de-

note the two (Nt × 1) vectors of the bond unlevered delta and vega exposures. At each month

t, Equation (13) stacks the two sets of excess returns into a (2Nt × 1) vector and links it to the

corresponding (2Nt ×2) stacked delta and vega exposure matrix.

Performing the cross-sectional regression on the (Nt × 1) stock or bond excess returns alone

25



against their respective delta and vega exposures would face a potential collinearity issue because

the two exposures are highly correlated for a given stock or bond universe. Over our sample period,

the cross-sectional correlations between the stock unlevered delta and vega exposures (δt,i and νt,i)

average at −89%. Since the bond’s unlevered delta exposure is (1− δt,i) and its unlevered vega

exposure is −νt,i, the cross-sectional correlations between the bond’s unlevered delta and vega

exposures are the same and equally negative. Stacking the exposures on stocks and bonds together

helps break this collinearity. The stacked delta and vega exposures have an average cross-sectional

correlation of 44%. The stacking also expands the range of the two regressors. Table 1 shows

that the estimates for δt,i have a narrow average range of variation between 0.62 and 1 within the

1-99th percentiles, and the estimates for νt,i vary between 0 and 0.92 on average within the 1-99th

percentiles. The stacking expands the delta exposure to a much wider range of [0,1] and also

doubles the vega exposure range to an average of (−0.92,0.92) within the 1-99th percentiles. The

expanded range and the broken collinearity between the two types of exposures for the stacked

excess returns can help disentangle the two types of risk exposures and enhance the identification.

We perform the cross-sectional regression with value weighting. We use the firm value of each

company as the weight for the unlevered stock and bond excess returns and their exposures. The

factor model can be specified either in unlevered excess returns as in (13) with the firm value as

value weights or in levered excess returns with the corresponding stock and bond value as value

weights. The value weighted regressions would generate identical slope coefficient estimates for

the two types of specifications.

The slope estimates from the factor return model represent the excess returns on the two risk

factor portfolios, with ηδ,t+1 capturing the excess return on the asset return risk portfolio that

targets a unit asset return risk exposure but zero vega optionality exposure, and ην,t+1 capturing

the excess return on the optionality risk portfolio that targets a unit vega exposure but zero delta

26



Table 3
Summary behaviors of joint stock-bond return factor models

Model A. Unadjusted B. Volatility-adjusted C. Beta-adjusted
ζ ηδ ην ζ ηδ ην ζ ηδ ην

Mean 0.23 7.72 -5.41 -0.25 41.08 -43.17 0.03 11.26 -12.21
Volatility 2.25 10.77 6.26 2.37 52.79 53.27 2.31 14.62 14.34
NW 0.39 2.98 -3.59 -0.42 3.35 -3.49 0.06 3.31 -3.66
IR 0.10 0.72 -0.86 -0.11 0.78 -0.81 0.01 0.77 -0.85

Adjusted-R2 28.68 30.73 30.91

Entries report the summary statistics on the coefficient estimates of the joint stock and bond return factor
model. The statistics include the mean return (Mean) and return volatility (Volatility) in annualized per-
centages, Newey-West t-statistics (NW), and annualized information ratio (IR). The last row reports the
time-series averages of the adjusted-R2 estimates in percentages. The three panels represent three model
specifications that differ in the adjustment of the risk exposures: (A) unadjusted, (B) adjusted by asset
return volatility, and (C) adjusted by asset return beta.

risk exposure. The time-series averages of the excess returns on the two factor portfolios can

be regarded as the average estimates of the return risk premium and optionality risk premium,

respectively. The factor model in (13) also incorporates an intercept ζt+1, the estimate of which

represents the excess return on a joint stock and bond portfolio with neutralized exposures to the

delta and vega risk.

Panel A of Table 3 reports the summary time-series behaviors of the cross-sectional regression

estimates for the joint return factor model in (13). The statistics include the annualized percentage

mean return (Mean), annualized percentage return volatility (Volatility), Newey and West (1987)

t-statistics (NW), and the annualized information ratio (IR). The last row reports the time-series

averages of the percentage adjusted R2 estimates of the cross-sectional regressions. On average,

the factor model can explain 28.68% of the joint stock-bond cross-sectional return variation.

The return risk portfolio that targets a unit delta exposure but zero vega exposure has an annual-

ized mean excess return of 7.72% and an annualized volatility of 10.77%. The mean excess return
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estimate is strongly positive and statistically significant with a Newey and West (1987) t-value of

2.98. Investing in this portfolio generates an annualized information ratio of 0.72.

The optionality risk portfolio that targets a unit vega exposure and zero delta exposure has

an annualized mean excess return of −5.41%, and an annualized return volatility of 6.26%. The

mean excess return is strongly negative and strongly statistically significant with a Newey and

West (1987) t-value of −3.59. Shorting the optionality risk portfolio generates an annualized

information ratio estimate at 0.86.

By construction, the intercept portfolio has zero delta and vega exposure. The excess returns on

the zero-risk portfolio average at merely 23 basis points and are not statistically different from zero.

The intercept portfolio with neutralized delta and vega exposures does not generate significantly

positive or negative average excess returns.

3.1 Adjusting risk magnitude difference across firms

The return factor model in (13) assumes that the same delta and vega exposure are priced the

same across different companies. In practice, even for the same delta and vega risk exposure,

different companies can show different degrees of firm value variations, as reflected by the different

magnitudes of the asset return volatility estimates. The variation of the asset return volatility

can also differ across different companies, potentially in proportion to the asset return volatility

level. To accommodate the risk magnitude differences across different companies, we propose an

alternative return factor model specification that adjusts the risk exposures with the asset return
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volatility level differences across different companies,

 SURt+1

BURt+1

= ζt+1 +

 δtσt νtσt

(1−δt)σt −νtσt


 ηδ,t+1

ην,t+1

+

 es,t+1

eb,t+1

 . (14)

By adjusting the risk exposures with the asset return volatility σt , Equation (14) replaces the com-

mon market pricing per unit exposure assumption in (13) with common market pricing per unit

of risk-adjusted exposure, where the risk adjustment is through the asset return volatility estimate

of each company. Table 3 reports the the estimation results on this volatility-adjusted risk factor

model in panel B. With the volatility adjustment on the risk exposures, the time-series average on

the adjusted R2 estimates increases to 30.73%.

The volatility adjustment changes the scale of the factor portfolios, making the magnitudes of

the mean excess returns not directly comparable. More informative are the absolute t-values of the

mean excess returns and the absolute annualized information ratios. With the volatility adjustment,

the average excess return on the asset return risk portfolio remains strongly positive and the average

excess return on the optionality risk portfolio remains strongly negative. In particular, long the

asset return risk portfolio generates an annualized information ratio of 0.78, whereas shorting

the optionality risk portfolio generates an annualized information ratio of 0.81. The time-series

average of the intercept estimates remains small and insignificant.

Classic asset pricing theories often differentiate systematic risk from diversifiable risk and ar-

gue that only systematic risk is priced because idiosyncratic risk can be diversified away without

cost. To examine this diversification effect, we propose another return factor model by replacing
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the asset total return volatility adjustment σt with the asset return beta βt ,

 SURt+1

BURt+1

= ζt+1 +

 δtβt νtβt

(1−δt)βt −νtβt


 ηδ,t+1

ην,t+1

+

 es,t+1

eb,t+1

 . (15)

Analogous to the asset return volatility computation in (12), we estimate the stock return beta (βS
t,i)

based on the past 1-year daily return history at each time t and for each company i, and convert the

stock return beta to asset return beta by adjusting for the delta exposure,

βt,i =
St,i

Ft,iN(dt,i)
β

S
t,i. (16)

Table 3 summarizes the regression results of this beta-adjusted return factor model in panel C.

Compared to the volatility adjustment, beta adjustment generates slightly higher average adjusted

R2 estimate at 30.91%. The information ratios and the t-values of the risk factor portfolio returns

are very similar, with the information ratio slightly lower on the return risk portfolio and slightly

higher on the optionality portfolio. The average intercept estimates remain small and insignificant.

Overall, the evidence lends support to the hypothesis of common market pricing per unit of

risk-adjusted exposure. Furthermore, adjusting the risk exposures with asset return beta generates

slightly higher average R2 estimate than adjusting the risk exposures with asset return volatility.

3.2 Accommodating potential market segmentation

The intercepts in the return factor model specifications in (13)-(15) capture the excess returns on a

joint stock-bond portfolio with zero delta and vega exposures. Estimation shows that on average,

the stock and bond market together does not charge a risk premium once the delta and vega risk
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exposures are neutralized.

To accommodate potential market segmentation in the sense that the stocks and bonds are

priced differently after controlling for their risk exposures, we replace the single intercept with

two dummy variables to construct separate zero-risk portfolios on the stock and bond markets,

respectively,

 SURt+1

BURt+1

=

 1s 0

0 1b


 ζs,t+1

ζb,t+1

+

 δtat νtat

(1−δt)at −νtat


 ηδ,t+1

ην,t+1

+

 es,t+1

eb,t+1

 ,

(17)

where (1s,1b) denote two dummy variable vectors separating out the stock and bond excess returns.

The coefficient estimates (ζs,t+1,ζb,t+1) on the two dummy variables capture the excess returns on

the zero-risk stock and bond portfolios, respectively. As before, we consider three types of risk

exposure adjustments: (A) no adjustment (at = 1), (B) asset return volatility adjustment (at = σt),

and (C) asset return beta adjustment (at = βt).

Table 4 reports the summary behaviors of the coefficient estimates. The return behaviors for

the delta and vega factor portfolios are similar to those reported in Table 3. The asset return risk

factor portfolio generates significantly positive average excess returns whereas the optionality risk

factor portfolio generates significantly negative average excess returns. The magnitudes and signs

for the average intercept estimates vary with different risk adjustments, but none are statistically

different from zero. Therefore, once the delta and vega risk exposures are neutralized, neither the

stock market nor the bond market generates significant average excess returns.
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Table 4
Summary behaviors of joint stock-bond return factor models with separate intercepts

Model A. Unadjusted B. Volatility-adjusted C. Beta-adjusted
ζs ζb ηδ ην ζs ζb ηδ ην ζs ζb ηδ ην

Mean 0.29 0.17 7.72 -5.32 -0.63 0.08 41.37 -40.15 -0.13 0.19 11.26 -11.74
Volatility 4.12 1.09 10.79 6.13 4.29 1.23 53.56 50.05 4.13 1.16 14.72 13.69
NW 0.29 0.58 2.97 -3.62 -0.61 0.23 3.32 -3.45 -0.14 0.64 3.29 -3.69
IR 0.07 0.16 0.72 -0.87 -0.15 0.07 0.77 -0.80 -0.03 0.16 0.77 -0.86

Adjusted-R2 29.13 31.20 31.35

Entries report the summary statistics on the coefficient estimates of the joint stock and bond return factor
model with separate intercepts. The statistics include the mean return (Mean) and return volatility (Volatil-
ity) in annualized percentages, Newey-West t-statistics (NW), and annualized information ratio (IR). The
last row reports the time-series averages of the adjusted R2 estimates in percentages. The three panels rep-
resent three specifications that differ on the adjustment of the risk exposures: (A) unadjusted, (B) adjusted
by asset return volatility, and (C) adjusted by asset return beta.

3.3 Evidence and discussion on the factor return behavior

Estimating the joint return factor model generates the excess return time series on the delta and

vega factor portfolios. The two excess return series also show distinct time-series variations. The

correlation estimates between the two excess return series from specifications (13)–(15) are at

−44%, −26%, and −13%, respectively. The lowest absolute correlation estimate comes from the

specification in (15), lending further support to beta risk adjustment on the risk exposures. Figure 3

plots the 1-year moving average of the excess return time series on the two factor portfolios, solid

line for the asset return risk factor portfolio and dashed line for the optionality risk portfolio. The

factor portfolios are constructed with asset return beta adjustment as in specification (15). The

monthly excess returns are very noisy. Applying the moving average removes the short-term noise

and reveals the longer-term variation patterns of the underlying risk premiums.

The solid line in Figure 3 shows that the asset return risk portfolio generates positive excess

returns on average and moves largely in line with the business cycle. The excess returns are high
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Figure 3
Time-series variation of factor portfolio returns
Lines plot the 1-year moving average of the excess return series on the asset return risk portfolio (solid
line) and the optionality risk portfolio (dashed line), obtained from the cross-sectional regression of the joint
return factor model in (15).

during booming market conditions, but become negative during the 2008–2009 financial crises

and the ensuing recession. The strongly significant positive average excess return per unit beta

exposure is in line with the implication of classic capital asset pricing theories (e.g., Sharpe 1964;

Lintner 1965; Black 1972; Merton 1980; Campbell and Cochrane 1999; He and Krishnamurthy

2013). Investors are on average risk averse and require an average positive compensation for taking

on risky investments.

By comparison, the dashed line in Figure 3 shows that the optionality risk portfolio generates

strongly negative excess returns on average. Just as investors are risk averse and ask for a risk

compensation, the highly negative average excess return per unit vega exposure highlights the

market’s strong preference for positive optionality exposure.

The literature has proposed various channels to generate the positive investor preference for op-

tionality. In particular, the cumulative prospect theory of Tversky and Kahneman (1992) captures
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this optionality-loving behavior by generating risk aversion for gains of high probability and losses

of low probability but risk seeking for losses of high probability and gains of low probability. In

line with its theoretical prediction, several studies find that securities with lottery-like payoffs tend

to generate lower returns on average (e.g., Barberis and Huang 2008; Kumar 2009; Boyer, Mitton,

and Vorkink 2010; Conrad, Kapadia, and Xing 2014; Eraker and Ready 2015).

The most direct evidence on investor preference for optionality comes from the options market,

where researchers have found that investors are willing to pay a high premium to buy options.

Bakshi and Kapadia (2003) document that the delta-hedged stock option returns are on average

negative. Carr and Wu (2009) use a portfolio of options across all strikes at a fixed maturity to

create a synthetic variance swap contract and find that the synthetic variance swap contracts on

stock index options bear a highly negative variance risk premium. The negative variance risk

premium reflects the fact that investors are willing to pay a high premium to gain the positive

convexity of the variance payoff structure.

Based on implementation of structural models, investors have designed capital structure arbi-

trage strategies. The strategy is to long bonds, or short credit default swap contracts, and short the

stock of the same company to hedge the delta exposure when the credit spreads of the company

are deemed too high relative to model valuation (e.g., Yu 2006; Duarte, Longstaff, and Yu 2007).

Such a delta-neutral strategy is effectively short the embedded call option and loads negatively on

the vega exposure. Hence, although the strategy is designed to capture bond mispricing, its invest-

ment performance is at least partially driven by the positive risk premium on the strategy’s negative

optionality exposure. In experimenting with different capital structure arbitrage implementations,

Bajlum and Larsen (2007) find that using implied volatility from equity options results in a sub-

stantial gain in strategy execution and highly significant excess returns. We conjecture that such

an implementation at least partially accounts for the volatility risk premium and enhances the
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identification of true mispricing opportunities. For future research, constructing long-short bond

portfolios with explicit vega neutrality constraint can better highlight the statistical arbitrage oppor-

tunities from bond mispricing, while minimizing the contributions from the optionality exposure.

3.4 Statistical risk exposures on the factor return series

We have constructed the delta and vega exposures for the stock and the bond of a company based

on an implementation of the Merton (1974) structural model. Alternatively, we can also estimate

the statistical exposures of any security returns on the two factor return series. While the structural

construction is more fundamental driven, the statistical approach is more generally applicable, even

to securities with ambiguous structures and unknown optionality.

We estimate the statistical exposures of the stock and bond excess returns on the two factor

excess return series with a 3-year rolling window. At each date t and for each company i, we

generate the beta estimates on the two factor portfolios with a bivariate time-series regression on

the stock and bond excess returns, respectively

rs,t,i = at,i +βδ
s,t,iηδ,t +βν

s,t,iην,t + es,t,i,

rb,t,i = at,i +βδ

b,t,iηδ,t +βν

b,t,iην,t + eb,t,i,

(18)

where (rs,t,i,rb,t,i) denote the vector of stock and bond excess returns for company i over the past

3-year history at month t and (ηδ,t ,ην,t) denote the corresponding historical vector of the excess

returns on the delta and vega factor portfolios. The slope coefficients (βδ
s,t,i,β

ν
s,t,i,β

δ

b,t,i,β
ν

b,t,i) are

the stock and bond’s statistical risk exposure estimates on the two factor portfolios. We perform

the regression estimation as long as we have 12 monthly observations during the past 3 years.

Table 5 reports in panel A the time-series averages of the cross-sectional summary statistics on
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Table 5
Summary behaviors of stock and bond return exposures

Exposure A. Statistical B. Structural C. Correlation
Average Median SD Average Median SD Average

βδ
s 0.94 0.96 0.69 0.96 1.05 0.43 0.93

βν
s 0.22 0.28 0.76 0.14 0.07 0.51 0.49

βδ

b 0.10 0.07 0.22 0.09 0.04 0.13 0.75
βν

b -0.32 -0.24 0.24 -0.31 -0.21 0.75 0.80

Entries report the time-series averages of the cross-sectional summary statistics on the stock and bond return
risk exposure estimates. Panel A generates the risk exposure estimates statistically from a 3-year rolling-
window regression of the stock and bond excess returns on the two factor excess return series. Panel B
constructs the risk exposures through the implementation of the Merton structural model. The statistics
include the value-weighted average, the median, and cross-sectional standard deviation (SD). Panel C reports
the time-series averages of the value-weighted cross-sectional correlation estimates between the two sets of
risk exposure estimates.

the four sets of statistical risk exposure estimates obtained from the above return regressions. The

statistics include the value-weighted average, the median, and the cross-sectional standard devia-

tion (SD). For value weighting, we use stock value on stock return exposures and bond value for

bond return exposures. For comparison, panel B reports the summary statistics on the correspond-

ing structural risk exposure estimates based on our implementation of the structural model,

βδ
s,t,i =

Ft,i

St,i
δt,i βt,i, βν

s,t,i =
Ft,i

St,i
νt,i βt,i

βδ

b,t,i =
Ft,i

Bt,i
(1−δt,i) βt,i, βν

b,t,i =−
Ft,i

Bt,i
νt,i βt,i

(19)

where we first lever up the unlevered delta and vega exposures of the stock and bond and then

adjust the levered exposures by the company’s asset return beta βt,i.

The statistics in panels A and B compare the average magnitudes and variations on the two

sets of exposure estimates. In panel C, we measure the value-weighted cross-sectional correlation

between the two sets of risk exposure estimates and report the time-series average of the cross-
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sectional correlations on each exposure. The structural risk exposure estimates are available on the

full sample of 120,840 company-month observations. The rolling-window beta estimation starts

1 year from the start of the sample in July 2003 and does not generate estimates for companies

with fewer than 12 monthly historical observations. The procedure generates statistical beta esti-

mates on 102,937 company-month observations. For comparability, the statistics in the table are

computed over the common sample of the statistical and structural estimates.

The statistical and structural estimates on the stock return delta exposure βδ
s have similar aver-

age magnitudes at 0.94–0.96, but the statistical estimates vary over a wider range with an average

cross-sectional standard deviation estimate of 0.69, compared to a standard deviation estimate of

0.43 for the structural estimates. The larger variation of the statistical estimates can come from

statistical estimation errors with the monthly returns; nevertheless, the two sets of estimates show

very high cross-sectional correlations, averaging at 93%. The high average correlation estimate

suggests that the statistical return regression can effectively identify the stock return’s delta expo-

sure, although with somewhat larger noise.

The statistical estimates on the stock return optionality exposure (βν
s ) are larger and show wider

dispersion than its structural counterparts. The statistical exposure estimates have a value-weighed

average of 0.22 and a median of 0.28, compared to the value-weighted average of 0.14 and the

median of 0.07 for the structural estimates. The statistical estimates also have larger standard

deviation at 0.76, compared to the standard deviation estimate of 0.51 for the structural estimates.

The two sets of estimates show positive cross-sectional correlation on average, but the average

estimate of 49% is lower than that on the stock delta exposure. Compared to the structural vega

exposure estimates, the larger statistical estimates may capture some other forms of optionality

(such as operational optionality) not fully captured by the structural model.
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Compared to the stock return’s delta exposure, the bond return’s delta exposure are much

smaller, averaging at 0.1 for the statistical estimates and 0.09 for the structural estimates. De-

spite the small average magnitudes, the two sets of estimates have highly positive cross-sectional

correlation estimates averaging at 75%.

As bonds are short the call option in the structural model, the structural estimates for the bond

return optionality exposure are all negative, with a value-weighted average of −0.31. The average

statistical bond optionality exposure estimate is also negative with a similar magnitude at −0.32.

Interestingly, the statistical exposure estimates show much narrower cross-sectional variation, with

an average standard deviation of 0.24, compared to an average standard deviation of 0.75 on the

structural estimates. The value-weighted cross-sectional correlations between the two sets of esti-

mates remain highly positive, with a sample average of 80%.

We further examine whether we can effectively extract the factor portfolios from the statistical

risk exposure estimates via the following joint stock and bond return factor model,

 SERt+1

BERt+1

= ζt+1 +

 βδ
s,t βν

s,t

βδ

b,t βν

b,t


 ηδ,t+1

ην,t+1

+

 es,t+1

eb,t+1

 , (20)

where at each month t we regress the stacked one-month ahead levered excess returns on the

stocks and bonds (SERt+1,BERt+1) against their corresponding stacked statistical delta and vega

risk exposures. We use the stock and bond values as the weights for the stock and bond returns, re-

spectively. Table 6 reports the summary statistics of the regression estimates. Leaving the first year

of data for statistical beta estimation, we perform the cross-sectional regression monthly from July

2003 to November 2020 for 209 months. The statistics are computed on the regression estimates

over the 209 months.
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Table 6
Joint stock and bond return factor model on statistical risk exposure estimates

ζ ηδ ην

Mean 0.84 10.27 -8.35
Volatility 2.08 12.59 15.65
NW 1.63 3.33 -2.00
IR 0.40 0.82 -0.53

Adjusted-R2 33.50

Entries report the summary statistics of the coefficient estimates from the cross-sectional regression of
stacked stock and bond excess returns on their respective statistical beta estimates on the asset return risk
portfolio and the optionality risk portfolio. The statistics include the mean return (Mean) and return volatil-
ity (Volatility) in annualized percentages, Newey-West t-statistics (NW), and the annualized information
ratio (IR). The last row reports the time-series averages of the percentage adjusted R2 estimates.

With the statistical risk exposure estimates, the average excess return on the asset return risk

factor portfolio remains significantly positive and the average excess return on the optionality risk

factor portfolio remains significantly negative. The absolute magnitudes of the average excess

return estimates are smaller than those extracted from the structural risk exposure estimates. Fur-

thermore, the average intercept estimate becomes larger and marginally significant. The smaller

average slope coefficient estimates and the larger average intercept suggest that the statistical risk

exposures are potentially noisier than the structural risk exposure estimates, leading to larger bi-

ases due to errors-in-variable issues. Nevertheless, for securities or portfolios with other sources of

optionality that are hard to quantify structurally (such as the growth options discussed in Barinov

and Chabakauri (2023)), regressing their excess returns on the excess return of the optionality risk

portfolio provides an effective alternative in estimating the optionality exposures.

In related literature, Ang, Hodrick, Xing, and Zhang (2006) use changes in the VIX index to

proxy the volatility risk variation and estimate stock return betas on the VIX change. They find that

stocks with high exposures to the volatility index variation generate low average excess returns.
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4. Embedded Optionality and Risk-Return Behaviors

For a security with a convex payoff structure, high volatility means high risk, but it also generates

high optionality value. The entanglement of risk with optionality, combined with the opposite

investor preference for the two sources of risk, can confound the return-return analysis on the

security. Applying our structural decomposition of the two risk types, this section strives to shed

light on some seemingly anomalous risk-return behaviors.

4.1 The distress puzzle on stocks and bonds

Researchers have found that for companies with high default risk, their stocks tend to earn abnor-

mally low average excess returns whereas their bonds tend to bear abnormally high credit spreads.

Our structural separation of the asset return risk from optionality can help explain these puzzling

pricing behaviors.

Proposition 1 decomposes the stock risk premium (SRP) and bond risk premium (BRP) for a

company at a given date t into contributions from (1) their delta exposures and the asset return risk

premium (RRP) and (2) their vega exposures and the optionality risk premium (ORP):

SRPt =

[
Ft

St
δt

]
RRPt +

[
Ft

St
νt

]
ORPt ,

BRPt =

[
Ft

Bt
(1−δt)

]
RRPt −

[
Ft

Bt
νt

]
ORPt .

(21)

While investors are averse to risk and demand a positive average asset return risk premium, their

positive preference for optionality exposures generates a negative average optionality risk pre-

mium. For companies with high default risk, the large positive vega exposure of their stocks

combined with the negative optionality risk premium lowers the stock risk premium, whereas the
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highly negative vega exposure of their bonds further increases the bond risk premium.

To highlight the relative contributions of the two types of risk exposures to stock and bond risk

premiums, we start with a set of prefixed levels of default probabilities (p) from 0 to 10%, and

take the pooled sample average values on the asset return volatility (σ = 26.28%), the asset return

beta (β = 0.81), the riskfree rate (r = 2.74%), and the bond maturity (τ = 8.53). Based on these

average values, we convert the set of default probabilities into delta (δ) and vega (ν) exposures and

market debt and equity ratios (B/F,S/F) through the structural model. Furthermore, we set the

average asset return risk premium and optionality risk premium based on the estimations results

on the return factor model in (15),

RRP = βηδ, ORP = βην, (22)

with (ηδ,ην) denoting the average annualized excess returns on the return risk portfolio and the

optionality risk portfolio, respectively. Finally, we combine the average risk premium estimates

with the stock and bond risk exposures to generate the stock and bond risk premium at each default

probability level.

Figure 4 plots the schematic relations. Panels A and B plot the stock and bond risk exposures at

different levels of default probabilities, with the dash line in each panel denoting the delta exposure

and the dash-dotted line denoting the vega exposure. Panels C and D plot the corresponding stock

and bond risk premium contributions from the two exposures, with the dashed line for asset return

risk premium contribution and the dash-dotted line for the optionality risk premium contribution.

The solid lines in panels C and D plot the total stock and bond return risk premium, respectively,

as the summation of the contributions from the two risk exposures.

At zero debt and zero default probability, the stock’s delta exposure starts at 100%. As the
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Figure 4
Decompose stock and bond risk premium variation with default risk
Panels A and B plot the stock and bond risk exposures at different levels of default probabilities. In each
panel, the dash line denotes the delta risk exposure and the dash-dotted line denotes the vega risk exposure.
Panels C and D plot the corresponding risk premium contributions from the two types of risk exposures,
with the solid lines denoting the total stock and bond risk premium, respectively, as the summation of the
contributions from the two risk sources.
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leverage and accordingly the default probability increase, the distance to default shortens and the

unlevered delta δ declines; nevertheless, the leverage multiple (F/S) also increases so that the

stock’s levered delta exposure (F/S)δ increases slowly with increasing default risk, as highlighted

by the dashed line in panel A of Figure 4.

The stock’s vega exposure also starts at zero when the company has zero debt and hence zero

optionality. As the default probability increases, the dash-dotted line in panel A of Figure 4 shows

that the stock’s levered vega exposure increases almost linearly and much faster than the delta

exposure increase. The vega exposure ultimately surpasses the delta exposure when the default

probability is higher than 20%.

In Panel C, as the default probability increases, the dashed line shows that the increasing delta

exposure on the stock generates increasingly positive stock risk premium, but the dash-dotted line

shows that the increasing vega exposure generates increasingly negative risk premium. The solid

line plots the total stock risk premium as the sum of the two contributions. The stock risk premium

starts at 9.07% at zero default probability and according zero optionality contribution. As the

default probability increases, the stock risk premium initially increases and reaches a maximum of

10.57% when the default probability reaches 0.74%. As the default probability increases further,

the negative risk premium contribution from the optionality exposure starts to overtake the positive

risk premium contribution from the delta exposure. The stock risk premium declines and ultimately

becomes negative when the default probability exceeds 17.72%.

The low, or even negative, stock risk premium for financially distressed companies is in line

with the literature findings (e.g., Dichev 1998; Campbell, Hilscher, and Szilagyi 2008). At the

same time, the non-monotonic relation suggests that empirical analysis of stock return dependence

on the default probability can lead to unstable results, and can become particularly sensitive to the
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inclusion or exclusion of a few observations with very default probabilities.

The relation between bond risk premium and the default probability is monotonic and much

stronger. As shown in Panel B of Figure 4, the bond has zero delta exposure and zero vega exposure

at zero default probability. As the default probability increases, the bond’s delta exposure becomes

increasingly positive while its vega exposure becomes increasingly negative. As highlighted in

panel D of Figure 4, both exposures lead to increasingly positive bond risk premium contributions.

In particular, the highly positive contributions from the negative optionality exposure make the

expected excess returns on distress bonds seem abnormally high.

Earlier literature (e.g., Eom, Helwege, and Huang 2004; Huang and Huang 2012) finds that

the average credit spreads on corporate bonds look too high relative to their actual level of default

probabilities. The plots in Panel D of Figure 4 show that the embedded negative optionality and the

negative optionality risk premium can be a significant contributor to the abnormally large bond risk

premium. Classic structural models account for the asset return risk premium, but they often fail

to account for the optionality risk premium. One exception is Cremers, Driessen, and Maenhout

(2008), who incorporate jumps in the asset return dynamics and show that incorporating option-

implied jump risk premium can bring the predicted credit spread levels much closer to observed

levels. While the paper resorts to a different dynamics specification and different interpretation,

calibrating their model to the index options market allows them to capture the well-documented

volatility risk premium.

4.2 Hidden optionality exposure in high-beta stocks

Classic asset pricing theories often start with investor risk aversion and predict that the expected

excess return on a stock increases with the stock’s return risk, as measured by the stock’s return
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beta on a market portfolio. The excess return behavior of our asset return risk factor portfolio is

in line with this theoretical prediction. The average excess return on the asset return risk factor

portfolio is highly positive and strongly statistically significant.

In contrast to our strong finding, the empirical support for a positive risk-return relation in the

stock market has been weak. Many studies even find the relation to be negative.1 In particular,

Frazzini and Pedersen (2014) show that stocks with higher beta estimates generate lower average

excess returns per unit risk. Based on this evidence, they construct a betting-against-beta (BAB)

stock portfolio that is long stocks with low beta and short stocks with high beta while maintain-

ing beta neutrality on the portfolio. The portfolio generates significantly positive average excess

returns.

Since stocks with high risk also tend to have high optionality exposures, we conjecture that

the embedded optionality exposure and investor preference for positive optionality may have also

contributed to the observed anomalous risk-return relation. As a stock’s risk increases, its return

risk premium should increase with the risk level; nevertheless, if the embedded positive optionality

exposure also increases with the risk, this optionality exposure can generate a negative optionality

risk premium that partially cancels out the positive return risk premium contribution, weakening

or even reversing the observed risk-return relation.

To examine our hypothesis and to highlight the entanglement of stock return risk and optional-

ity, at each month t, we sort the stocks in our universe based on their 1-year historical return beta

estimates (βS
t,i) and construct five quintile portfolios. Table 7 reports the time-series averages of the

quintile portfolio return beta estimates in the first row of statistics in panel A. The average return

beta increases from 0.55 in the first quintile to 1.72 in the fifth quintile.

1See, for example, Campbell 1987; Breen, Glosten, and Jagannathan 1989; Turner, Startz, and Nelson 1989;
Nelson 1991; Glosten, Jagannathan, and Runkle 1993; Whitelaw 1994; Harvey 2001.
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Table 7
Risk and returns across stock beta quintiles

Beta quintile 1 2 3 4 5

A. Risk and return across beta quintiles
Beta (βδ

s ) 0.55 0.84 1.04 1.27 1.72
Optionality (βν

s ) 0.05 0.10 0.16 0.30 0.71
Excess return 9.57 11.18 12.63 11.33 12.39
Excess return per unit beta 16.55 12.92 11.56 8.37 6.76

B. Average risk premium decomposition
Return risk premium (RRP) 6.24 9.46 11.75 14.33 19.40
Optionality risk premium (ORP) -0.63 -1.16 -2.01 -3.65 -8.67
Stock risk premium (SRP) 5.61 8.29 9.74 10.68 10.73
Stock risk premium per unit beta 10.12 9.88 9.34 8.39 6.23

At each month, we sort the stocks based on the 1-year stock return beta estimates and form quintile stock
portfolios. Entries report the summary statistics on the quintile portfolios. Panel A reports the time-series
averages of each quintile portfolio’s stock return beta (βδ

s ), optionality exposure (βν
s ), excess return, and

excess return per unit beta. Panel B computes the average risk premium decomposition for each portfolio
based on the average portfolio risk exposure estimates, including the average asset return risk premium
contribution (RRP), the average optionality risk premium contribution (ORP), the total stock risk premium
(SRP) as the sum of return risk premium and optionality risk premium, and the stock risk premium per unit
beta.
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The second row of the panel reports the time series averages of the stock’s optionality exposure

(βν
s ) for each quintile portfolio, which is constructed structurally as in (19) by adjusting the vega

exposure (ν) with the leverage multiple (F/S) and the asset return beta. As the stock’s return

risk exposure increases from the first to the fifth quintile, the stock’s optionality exposure also

increases, from an average of 0.05 at the first quintile to 0.71 at the fifth quintile.

The third row of the panel reports the time-series averages of the quintile stock portfolio excess

return, which no longer show a monotonic pattern across the beta quintiles. The average excess

returns first increase with the beta quintile from 9.57% at the first quintile to 12.63% at the third

quintile. As the return beta further increases, the quintile portfolio average excess returns start to

decline to 11.33% and 12.39% at the fourth and fifth quintile, respectively.

When we scale each quintile portfolio excess return by the quintile portfolio beta, the last

row of the panel shows that the average excess return per unit beta declines sharply with the beta

quintile, from 16.55% at the first quintile to 6.76% at the fifth quintile, in line with Frazzini and

Pedersen (2014)’s finding. The pattern allows them to form a beta-neutral betting-against-beta

portfolio with significantly positively average excess returns.

In panel B of Table 7, we perform a schematic average risk premium decomposition on the

beta quintile portfolios based on the average market pricing estimates from the joint return factor

model in (15). The average market price of the asset return risk (ηδ) is estimated at 11.26% and

the average market price of the optionality risk (ην) is at −12.21% (Panel C, Table 3). Multiplying

the average market price of return risk of 11.26% with the return risk exposure (βδ
s ) in the first row

of panel A generates the average return risk premium (RRP) for each quintile portfolio in the first

row of panel B, which increases from 6.24% at the first quintile to 19.4% at the fifth quintile.

Meanwhile, multiplying the average market price of optionality risk of −12.21% with the op-
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tionality exposure (βν) in the second row of panel A generates the average optionality risk premium

(ORP) for each quintile portfolio in the second row of panel B, which varies from −0.63% at the

first quintile to −8.67% at the fifth quintile. Summing the two risk premium contributions gen-

erates the total average stock risk premium (SRP) for each quintile. As the return beta increases,

the total risk premium first increases, but then reaches a plateau. Dividing the stock risk premium

by the average return beta of each quintile in the last row of the panel shows a similarly declining

pattern as the observed average excess return per unit beta in the last row of panel A.

Under our model structure, the average asset return risk premium per unit beta exposure is

strongly positive and does not vary across the stock beta quintiles; nevertheless, as the stock return

beta increases, the stock’s optionality exposure increases. It is the increasing optionality exposure

that drives the declining stock risk premium per unit beta across the stock beta quintile.

To quantify the contribution of the optionality exposure to the betting-against-beta (BAB) port-

folio, we create the excess return series on a beta-against-beta portfolio (rbab,t+1) by being short a

unit beta exposure to the fifth high-beta quintile portfolio and long a unit beta exposure to the first

low-beta quintile portfolio at each month. This portfolio is beta-neutral by construction. It gener-

ates an annualized average excess return of 9.79%, an annualized return volatility of 16.161%, an

annualized information ratio of 0.59, and a Newey and West (1987) t-value of 2.46.

We regress this BAB excess return series against the excess return on the optionality factor

portfolio (ην,t+1) obtained from the cross-sectional regression on the joint return factor model

in (15). The regression generates an R2 estimate of 5.01%. The factor loading slope is estimated at

−0.26, highly statistically significant with a Newey and West (1987) t-value of −3.27. The slope

estimate shows that the BAB portfolio has a significantly negative exposure to the optionality risk.

The intercept of the regression represents the average excess return of the BAB portfolio with
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neutralized optionality exposure. The intercept has an annualized estimate of 6.63%, but the es-

timate is not statistically significant with a t-value of 1.64. With the optionality exposure neu-

tralized, the average excess return on the BAB portfolio is no longer statistically significant over

our sample period, highlighting the important contribution of the optionality exposure to the ob-

served risk-return anomaly. Just as stocks on financially distressed companies have both high risk

and high optionality, the BAB portfolio is by constructing beta neutral, but with strongly negative

optionality exposure.

5. Conclusion

It is well recognized that investors should receive more compensation for bearing more risk. At the

same time, investors are also willing to pay for optionality. When the embedded optionality of the

securities increases with the risk level, the different preferences for risk and optionality can create

seemingly puzzling risk-return behaviors.

In this paper, we propose to disentangle the asset return risk exposure from the optionality

exposure in the stock and bond of a company through a structural model representation, and we

propose to enhance the separate identification of the asset return risk premium and the optionality

risk premium through a joint stock-bond return factor model. Performing cross-sectional regres-

sions of the stock and bond excess returns jointly against their structurally constructed delta and

vega exposures generates the excess returns on the two factor portfolios that target each of the two

risk exposures. Estimation results confirm our starting hypothesis. The factor portfolio targeting

a unit exposure to asset return risk but zero exposure to optionality generates a significantly posi-

tive average excess return, consistent with investor risk aversion. By contrast, the factor portfolio

targeting a unit exposure to optionality but without directional exposure to firm value variation
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generates a significantly negative average excess return, reflecting positive investor preference for

optionality exposure. The separation of risk from optionality, together with the separate risk pre-

mium estimates, sheds light on the distress puzzle in the stock and bond markets and helps explain

the betting-against-beta and volatility risk premiums in the stock market.
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