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Abstract
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empirically document a term structure where short-term prices vary due to fluctuations
in expected variance, while long-term prices vary due to fluctuations in variance risk
premia. In contrast, prominent asset pricing models predict that this term structure is
flat. Finally, my findings highlight that intermediary constraints are crucial in explaining
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of intermediaries in variance markets.

Keywords: Asset pricing, derivatives, variance pricing, variance risk premia.

JEL codes: G12, G13.

*Department of Finance at Rotterdam School of Management, Erasmus University. Email:
koeter@rsm.nl. I thank Lieven Baele, Martijn Boons, Fabio Braggion, Nicole Branger, Adrian Buss,
Stefano Cassella, Ing-Haw Cheng, Julio Crego, Joost Driessen, Sebastian Ebert, Rik Frehen, Moham-
mad Ghaderi, Jasmin Gider, Stefano Giglio, Thomas Gruenthaler, Frank de Jong, Sicong (Allen) Li,
Friedrich Lorenz, Shane Miller, Peter van Tassel, Xuewu Wang, and Ole Wilms, and seminar/conference
participants at AFA 2023, MFA 2022, SFA 2021, the Trans-Atlantic Doctoral Conference 2021, Deriva-
tive Markets Conference 2021, Paris Dauphine University, Stockholm Business School and Rotterdam
School of Management, Erasmus University, for helpful comments and discussions on the topic.



In this paper, I analyze time-series variation in risk premia from investing in instru-
ments with direct exposure to stock market variance. I document economically sizable
variation in these risk premia, and show that they explain a substantial fraction of the
overall price variation in S&P 500 variance swaps. Afterward, I test whether prominent
consumption-based asset pricing models that feature variance risk to capture time varia-
tion in the equity premium are also able to match the observed variation in variance risk
premia. Furthermore, I analyze the variation in variance risk premia in detail, and find
that intermediary constraints (Cheng, 2019) and variance beliefs of investors (Lochstoer
and Muir, 2022) drive a significant fraction of the variation.

In theory, variation in variance risk premia is driven either by variation in preferences
regarding variance risk or by variation in the quantity of variance risk. Analyzing variance
risk premia therefore offers important insights into preferences regarding variance risk and
into how this risk varies over time. Many prominent asset pricing models feature variance
risk as the main mechanism to drive variation in the equity premium, and the variance
market allows for a direct test of the pricing of variance risk. In asset pricing models,
variance risk is driven by large and sudden movements (i.e., jumps) in cash flows, such
as in consumption or dividend growth, or by jumps in the investment opportunity set,
such as in the long-run mean or volatility of cash flows. However, the literature has
not settled on the appropriate way of incorporating variance risk into an asset pricing
model. Analyzing the variation of variance risk premia allows me to contrast the empirical
findings on variance risk premia with the predictions of asset pricing models. This analysis
therefore offers important insights into how variance risk should be incorporated into asset
pricing models. In sum, my contribution to the literature is threefold.

First, I empirically document a term structure in how variance risk premia affect S&P
500 variance swap prices: fluctuations in short-term variance swap prices are predomi-
nantly driven by fluctuations in expected variance, while fluctuations in long-term prices
are predominantly driven by fluctuations in variance risk premia. In the spirit of Camp-
bell and Shiller (1988) for equity, I derive a present value identity for the logarithm of the

variance swap price or the actual variance swap price. These identities show that price



fluctuations of S&P 500 variance swaps are due to fluctuations in expected stock market
variance or fluctuations in variance risk premia. Using predictive regressions, I show that
110.1% of the fluctuations in the one-month variance swap price is attributable to fluctu-
ations in expected variance and this percentage decreases monotonically to 24.5% for the
18-month variance swap price. At the same time, price-fluctuations due to fluctuations
in variance risk premia increase monotonically from -10.1% for one-month variance swaps
to 72.8% for 18-month variance swaps.! The results are robust to using the present value
identity for variance swap prices instead of the identity for the logarithm of variance swap
prices.

Second, I show that prominent asset pricing models predict that this term structure
documented in the data is flat. In the model of Gabaix (2012), variance swap prices
fluctuate only due to variance risk premia fluctuations, but there is no differential effect
for maturities (i.e., the term structure is flat). In the model of Wachter (2013), variance
swap prices fluctuate only due to fluctuations in expected variance; because variance is
highly persistent, there is again little differential effect across the term structure. The
differential between these two consumption disaster models is due to the fact that, in the
absence of disasters, stock market variance is constant in the model of Gabaix (2012).
Finally, the model of Drechsler and Yaron (2011) matches the empirical decomposition
of long-term variance swap prices relatively well. It is also able to match the empirical
variation in variance risk premia, however the model predicts that the fluctuations in
short-term variance swaps are also largely due to variance risk premia fluctuations—a
prediction that is not supported by the data.

Third, I analyze the drivers of fluctuations in variance risk premia for different matu-
rities. In particular, I show that investor beliefs over stock market variance (Lochstoer
and Muir, 2022) explain fluctuations in short-term variance risk premia and intermedi-
ary constraints (Cheng, 2019) explain fluctuations in short- and long-term variance risk

premia. Interestingly, the exposure of variance risk premia to intermediary constraints

INotice that this percentage can be negative, because the coefficient is estimated using a regression and
the sign of the coefficient depends on the correlation between realized variance risk premia and variance
swap prices.



increase in the maturity of the risk premia, indicating that long-term variance risk pre-
mia are affected more by intermediary constraints than short-term variance risk premia.
This result could explain the excess volatility documented in Giglio and Kelly (2018), a
result that is often attributed to an overreaction in expectations of investors (Stein, 1989;
Giglio and Kelly, 2018). Instead, my results show that also this form of excess volatility
could be attributable to intermediary constraints. Finally, these results also show why
the models analyzed in this paper struggle to the observed variation in variance risk pre-
mia in the data, because the models do not feature intermediary constraints or biased
variance expectations.

Besides an assessment of asset pricing models with respect to the decomposition of
variance swap prices, I also analyze their predictions with respect to the term structure
of expected returns and of return volatilities on variance swaps. I show that all of the
analyzed models severely overestimate the one-month return volatility on variance swaps,
an indication that in their current calibrations one-month variance swaps are more risky
than in the data. However, despite this large degree of risk of the one-month contract,
the models of Wachter (2013) and Drechsler and Yaron (2011) do not match the empirical
risk premium on one-month variance swaps. This indicates either that the short-term
risks that are hedged using these contracts are not sufficiently severe or that the model
needs more extreme preferences regarding these risks in order to match the empirical risk
premium. All three models are able to match the expected returns on long-term vari-
ance swaps, but the models fail to capture its return volatility, those of Gabaix (2012)
and Wachter (2013) understating the return volatility whereas that of Drechsler and
Yaron (2011) overstates this volatility. This discrepancy between the models’ predictions
and the data is, however, much smaller than the discrepancy for the return volatility on
short-term variance swaps. In sum, these models incorporate variance risk to capture em-
pirical features of the equity premium, but fail to directly match empirically documented
features with respect to the pricing of variance risk. The reason for this failure is likely
due to fact that the analyzed models do not incorporate effects of constrained interme-

diaries or investor beliefs which I show are important to describe empirical features of



variance risk premia.

The main results of the decomposition of variance swap prices are established using
predictive regressions, however I show that the results are robust to specifying a vector
autoregression (VAR) to obtain expectations. Using the VAR, I show that variance risk
premia expectations are obtained effectively and drive economically sizable variation in
returns on variance swaps. Predictive regressions show that a one standard deviation
increase in expected variance risk premia predicts an increase of 12.3% in the average
realized monthly returns of a one-month variance swap, and that this monotonically
decreases to an increase of 4.1% in average realized monthly returns of an 18-month
variance swap. Results indicate that hedging variance risk was expensive in the period
prior to the crash in 2000, and in the period post the crash of 2008, whereas in the
period between these crashes it was relatively cheap to hedge variance risk. Finally, the
time-series properties of one-month variance risk premia differ from those of the other
maturities. In particular, one-month variance risk premia tend to decrease during periods
rapidly increasing stock market variance, a result in line with Cheng (2019) and Lochstoer
and Muir (2022).% T show that this negative correlation is a unique feature of one-month
variance risk premia, and that it weakens for long-term variance risk premia.

This paper contributes to several strands of the literature. First, I contribute to the
recent literature that tests the implications of asset pricing models in variance markets.
Bollerslev et al. (2009) and Drechsler and Yaron (2011) show that long-run risk models
are able to explain the sizable variance risk premium in the data, Gabaix (2012) and Seo
and Wachter (2019) show that rare consumption disaster models are able to explain
the implied volatility slope on S&P 500 options, and Bekaert and Engstrom (2017) and
Bekaert et al. (2020) show that habit models are able to explain the relation between
variance premium and consumption growth uncertainty. A paper by Dew-Becker et al.

(2017) shows that the model of Gabaix (2012) is able to explain the term structure of

2Lochstoer and Muir (2022) provide additional evidence of the finding of Cheng (2019). They show,

moreover, that a model in which an agent has slow-moving beliefs regarding stock market volatility
can reconcile the evidence of the negative correlation of stock market variance and the risk premium.
Slow-moving volatility expectations lead the agent to initially underreact to volatility news, followed by
a delayed overreaction.



variance premia, and is the closest to the present paper. Distinctly though, I focus on
variance price fluctuations, and test which models align with the data on the basis of a
Campbell-Shiller decomposition of the term structure of variance swap prices.

Second, I contribute to the empirical literature on risk premia in variance markets.
Bollerslev et al. (2009), Kozhan et al. (2013), Dew-Becker et al. (2017), Eraker and Wu
(2017), Ait-Sahalia et al. (2020), and Eraker and Yang (2022) show that risk premia are,
on average, sizable in variance markets. Moreover, Bollerslev et al. (2009) find that the
variance premium predicts future stock market returns, Bollerslev and Todorov (2011)
show that a substantial fraction of the equity premium is compensation for variance
risk, and Martin (2017) shows that risk-neutral variance is a lower bound for the equity
premium. Johnson (2017), Cheng (2019), and Lochstoer and Muir (2022) analyze time-
series variation in variance risk premia. Distinct from these studies, I study the impact
of variance risk premia fluctuations on variance swap prices, and obtain variance risk
premia from a present value identity using a VAR.

Third, I contribute to the literature on the impact of intermediary constraints for
risk premia in various financial markets. Building on the work of He and Krishnamurthy
(2013), Adrian et al. (2014) show the effects of intermediaries in the cross-section of stocks,
Goldberg and Nozawa (2021) and He et al. (2022) show the effects in the cross-section
of corporate bonds, He et al. (2017) and Chen et al. (2019) show the effects in option
markets, and Cheng (2019) shows the effects in the market for VIX-futures. Distinct from
these studies, I focus on the impact of intermediaries on the term structure of variance
premia, and document that long-term variance premia are more exposed to intermediary
constraints than short-term variance premia. Furthermore, my findings suggest that
intermediary constraints play a role in the excess volatility puzzle documented in Giglio
and Kelly (2018).

The remainder of the present paper is organized as follows. In Section 1, I derive
the present value identity for variance swap prices. Section 2 describes the data on
variance swaps. The results of the decomposition are presented in Section 3, and afterward

compared to the predictions of asset pricing models. I show, in Section 4, that the results



are robust to specifying a VAR to obtain variance expectations, and Section 5 analyzes

the drivers of fluctuations in variance risk premia. Section 6 concludes.

1 Methodology

In this section, I present the methodology for decomposing S&P 500 variance swap prices
into expected S&P 500 return variance and variance risk premia. A variance swap is
a derivative security that pays the holder of the contract the realized variance of the
underlying up to maturity. Variance swaps are used to manage market variance risk, and
variance risk premia correspond to expected returns or expected payoffs from holding a
variance swap.

In the subsection that follows, I formalize the cash flows of a variance swap before

deriving several closely related pricing identities for variance swaps.

1.1 Variance swap contract

A variance swap pays its holder the realized variance of the underlying from the inception
of the contract up to maturity. At maturity, the realized variance and the agreed upon
variance swap price are exchanged. The payoff of a variance swap at maturity 7T-periods

from origination time ¢ is defined as follows:

T

payoff, 7 = Y RViy; — VST, (1)

i=1

where RV,,; is the realized variance over period ¢ + ¢ and VSt(T) is the variance swap
price at time ¢ for a variance swap with T-periods to maturity. A variance swap can last
for several periods, and the total realized variance at the end of the contract therefore
equals the sum of the realized variance over each period. The holder of the variance swap
receives the realized variance in exchange for a fixed rate at the end of the contract and
therefore hedges variance risk until the contract reaches maturity. Given a risk-neutral

pricing measure QQ, the variance swap price with T-periods to maturity at time ¢ is given



by the following:

T
VSt(T) = ZE;Q (thﬂ‘), (2)

i=1
where ]E;Q denotes the expectation under the risk-neutral measure conditional on infor-
mation available at time t. Therefore, VSéT) corresponds to the risk-neutral expectation
of the sum of realized variances from period ¢ 4 1 until period ¢ + 7. The main analyses
of this paper will focus on variance swap prices, however, in some cases I use variance

forward prices. These are defined as follows:
F" =E2(RV,y,), (3)

such that £7 = vSs® —vsTY and £V = vsW.
Next, I define the gross return or gross payoff over period t to t4 1 on a variance swap

with T-periods to maturity, as follows:

Py _ VS 4 RV
o Vs

VP = VSTV + RV — VST, (5)

: (4)

These definitions are the two main ways the literature has assessed risk premia on variance
swaps, the former is used by Dew-Becker et al. (2017) and the latter by Carr and Wu
(2009) and Bollerslev et al. (2009). The gross return of Equation (4) is defined as if
the variance swap is bought for the current variance swap rate VSt(T), and held for one
period after which the one period realized variance RV, ; and next period’s variance swap
price VSt(fl_ Y are received. In the following period, the variance swap has T' — 1-periods

remaining to maturity.> The realized variance risk premium of Equation (5) is defined

3The definition of the return in equation (4) corresponds to the return on a variance asset, which pays the
realized variance at the end of each period rather than at the end of the contract. Under the assumption
of no arbitrage, the price of such an asset equals the variance swap price discounted with the T-period
risk-free rate to time ¢, and the realized variance payment of such an asset is discounted in a similar
way. It is possible to show that the logarithm of the return defined in (4) equals the log-return on this



as the realized payoff on a variance swap which is held for one period, at the end of

this period the investor receives VSt(ff Y

and RV;,, and the difference is computed with
the initial investment VSt(T). It follows from the equations that the realized variance for
returns on variance swaps is equivalent to dividend payments for returns on the stock

market; that is, realized variance is the cash flow component of a variance swap.

1.2 Present value identities for variance swap (forward) prices

In this subsection, I discuss four closely related identities for variance swap (forward)
prices. Similar to Fama and Bliss (1987) and Campbell and Shiller (1988), the identities
have in common that the current price of the variance instrument is written as the differ-
ence between cashflows (stock market variance) and risk premia (variance risk premia). I
briefly discuss each of the identities used in this paper and refer to Appendix A.1 for the
details of the derivations. In the following, unless stated otherwise, variance risk premia
are referred to as risk premia.

log-VS. The first (approximate) present value identity for variance swap prices is

given in the following equation:

v ~ B} — EG), (6)
where
T i—1
B =BY [1=p@ =i+ D] (T[T =5 +1) rvei and (7)
=1 j=1
T i—1
. T—i+1
B, = Z(HpT—ﬁl))-rﬁﬂ- . (8)

The present value identity of Equation (6) relates the current logarithm of the variance

swap price (vng) = log(V'S; (T))) to the logarithm of stock market variance (rvy; :=

log(RV;4;)) and risk premia (r(T= Ve = log(thl ") The identity has the standard

variance asset in excess of the risk-free rate.



intuition for a present value identity: Today’s price can be high due to high expected
stock market variance, low expected risk premia, or both. Equation (6) represents an
approximate identity, because it relies on the standard Taylor expansion of log-return of
Equation (4) and p(T) is the log-linearization constant for a variance swap with maturity
T. In Appendix A.1, I show how to estimate p(7T") using an OLS regression, and show
that the approximation works really well for the linear approximation of logarithm of
variance swap returns.

log-F. The second present value identity relates the current logarithm of the price of
a variance forward to expected stock market variance and risk premia, as follows:

t(T) = Eirvgr — Etﬂglp (9)

where Tg){p is the log-return for holding a variance forward to maturity. Equation (9)

is not an approximation as it directly follows from the definition of the gross-return on
a variance forward. This present value identity is used by Fama and Bliss (1987) for
treasury bonds and by van Binsbergen et al. (2013) for dividend strips.

level-VS. The third present value identity relates the current variance swap price to

stock market variance and risk premia, as follows:
T T T
VS = By — Exp (10)
where
T
By =E/Y_ RVis,
i=1

T
T) (T—i+1)
Eyp, =B,y vPITHY.
=1

In particular, Equation (10) relates the current variance swap price (in levels rather
than a log-transformation) to expected stock market variance over the lifetime of the

contract and risk premia. Notice that this present value identity also constitutes an



exact relationship, because the definition of the variance risk premium (Equation 5) is a
linear function of the variance swap price, and therefore does not depend on any Taylor
approximations.

level-F. The fourth present value identity relates the current price of a variance

forward to stock market variance and risk premia, as follows:
F" =ERV,ir —EVPL) 1, (11)

where VPIEE,[;ZFT is the realized variance risk premium for holding a T-period variance
forward to maturity. Furthermore, the identity is an exact relation, because it follows
directly from the definition of the realized variance risk premium definition for a variance
forward with maturity 7.

In Section 3, I use Equations (6), (9)—(11) to decompose variance swap (forward)
prices into variance expectations and risk premia for several maturities. This allows me

to study the drivers of the variation in variance swap prices for various maturities.

2 Data

In this paper, I use data on S&P 500 options from January 1996 until June 2019 from
OptionMetrics. Using the methodology described in Kozhan et al. (2013) and discussed
in greater detail in Appendix A.2, I construct variance swaps with maturities ranging
from 1 to 18 months. The maturity of 18 months to maturity is the longest for which I
can calculate a variance swap price every month. I calculate variance swap prices at the
end of each month in the sample and interpolate the variance swap prices linearly, such
that the maturity equals 7" months. Note that interpolating variance swap prices linearly
is equivalent to taking long positions in two variance swaps with maturities 77 and 75,
such that the weighted average of the maturities equals 7.

I use the methodology of Kozhan et al. (2013) because these variance swaps are

most closely related to the variance swaps that are traded over the counter (OTC). In
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Appendix A.3, I show that my data on variance swaps is highly similar to the data from
the OTC market that is analyzed in Dew-Becker et al. (2017). I show in Figure 6 of
Appendix A.3 that the synthetic variance swap prices are highly similar to the variance
swap prices in the OTC market, and simple regressions indicate R%s above 97%. Table 4
in Appendix A.3 shows that the returns on the synthetic variance swaps are also highly
similar to the returns on the OTC swaps as shown in Table 2 of Dew-Becker et al. (2017).

In addition to the pricing information on variance swaps, I obtain data that is used
in the VAR. From the panel of variance swap prices, the first two principal components,

pcgl) and pc§2), are calculated. The first of these components, pcgl), captures the level

in the term structure of variance swap prices, while chQ) captures the slope of the term
structure of variance swap prices. Realized variance is defined as in Kozhan et al. (2013)
and approximately equals the sum of daily squared returns within a month. Finally, the

default spread is obtained from the Federal Reserve Bank of St. Louis and defined as the
difference between the yields on BAA and on AAA credit-rated corporate bonds.

3 Results

In this section, I present the empirical term structure of the decomposition of variance
swap prices and relate these findings to the predictions of leading asset pricing models.
First, I present the results of a variance decomposition on the basis of predictive regres-
sions, and these serve as my benchmark results for the models. In Section 4, I show that
the results are robust to specifying a VAR, and decompose the variation in variance swap
prices. Second, I consider the asset pricing models of Gabaix (2012), Wachter (2013) and
Drechsler and Yaron (2011), and repeat the empirical exercise with each of these models

in order to analyze their predictions regarding the term structure of the decomposition.

3.1 Decomposition of variance swap prices in the data

In this subsection, I decompose the variation in variance swap prices using predictive

regressions. These regressions derive from the intuition of pricing identities presented in
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Section 1.2: the current variance swap (forward) price is high due to high future stock
market variance, due to low future returns on the variance swap (forward), or both.
Therefore, the current variance swap (forward) price should predict future stock market
variance, future risk premia, or both. This analysis is the equivalent of the analyses
employed by Fama and Bliss (1987) for treasury bonds, van Binsbergen et al. (2013) for
dividend strips and Cochrane (2008, 2011) for the stock market. Relative to the stock
market, my analysis has the advantage that variance swaps have a finite maturity, and
thus that future prices do not play a role.

In the following, I explain the intuition for the predictive regressions based on iden-
tity (6) for the logarithm of the variance swap price. However, the intuition carries
over to other present value identities derived in Section 1.2. Based on the identity for
the logarithm of variance swap prices, Equation (6), the following predictive regressions

decompose the price variation:

Yrvi+T = Qry + brv : USET) + egiTa (12)
Yrpa+T = Grp + brp - USET) + &, (13)
]- ~ brv - brp (]‘4)
where
T i—1
pvarr = > 1= p(T =i+ D] ([[oT =5+ 1)) - ruess,
i=1 j=1
T -1
. T—i+1
Yrpt+T = Z <HP(T —J+t 1)) ‘T§+i .
i=1  j=1

Equation (14) follows directly from the present value identity (6), and indicates whether
variation in variance swap prices is driven by future realized variance or by returns. The
regression coefficients indicate whether a high current variance swap price predicts high
future stock market variance or low future returns. Therefore, economic intuition suggests

that b, > 0 and b,, < 0. Moreover, if b, ~ 1, it indicates that variation in the variance

12



swap price is exclusively driven by expected stock market variance, whereas if b,, ~ —1,
it indicates that variation in the variance swap price is exclusively driven by risk premia.
Due to the fact that a variance swap is a finite cash flow, these regressions provide a
powerful test of whether the present value identity holds. This identity holds if the
differences between the regression coefficients are, indeed, close to one. The dependent
variables of predictive regressions (12) and (13) depend on realized stock market variance
(rvy), realized returns on variance swaps (rgT)) and the log-linearization constants (p(T)).
I show in Appendix A.1 how to estimate these using OLS, and report the estimates in
Table 6 of that appendix.

The next step is to estimate the predictive regressions (12) and (13), which decompose
the variance swap price into expected variance and risk premia. I show the results for each
of the derived present value identities in Section 1.2, to do so I run the same regressions

only the dependent and independent variables are adjusted accordingly.* The results of

these predictive regressions are presented in Table 1.

[Table 1 here]

Table 1 presents the primary finding of the paper, namely the existence of a strong
term structure in the decomposition of variance swap prices. In particular, variation
in prices attributable to expected stock market variance decreases strongly with the
maturity, whereas the variation in prices due to risk premia strongly increases with the
maturity. Focusing on the variation in the logarithm of variance swap (forward) prices,
Columns (1)—(4) indicate that one-month variance swaps (forwards) are explained by
110.1% (110.1%) due to expected variance, with this percentage declining monotonically
to 24.5% (-22.9%) for 18-month variance swap (forward) prices. At the same time, the

4To decompose the logarithm of the variance forward (Equation 9), yy ¢+ is replaced with rv;, 7, Yrp,t+T
is replaced with r¢:7 and the dependent variable is ft(T). To decompose the variance swap in levels
(Equation 10), yrv¢47 is replaced with yry 417 = Z;il RViti, Ypitr is replaced with yrp 17 =
Z?:l VPt(Ii_l'H) and the dependent variable is VSt(T). To decompose the variance forward in levels
(Equation 11), ypy 47 is replaced with RViir, yrp 1 is replaced with VPIS?;LT and the dependent

variable is Ft(T) .
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variation in prices attributable to risk premia increases monotonically from -10.1% (-
10.1%) for one-month variance swaps (forwards) to 72.8% (122.9%) for swaps (forwards)
with 18 months to maturity.”® Furthermore, these conclusions are supported by the R?
strongly decreasing (increasing) with the maturity when the logarithm of prices are used
to predict future stock market variance (future returns).

Next, I discuss the results based on the present value identities for actual variance swap
(forward) prices as shown in Columns (5)—(8) of Table 1. Importantly, the results of this
decomposition are highly similar to the results of the decomposition in logarithmic terms.
In particular, the variation in prices due to stock market variance decreases monotonically
from 92.2% (92.2%) for one-month variance swap (forward) prices to 19.6% (-19.7%) for
18-month variance swap (forward) prices. Similarly, the variation in prices attributable
to risk premia increases monotonically from 7.8% (7.8%) for one-month variance swaps
(forwards) to 80.4% (119.7%) for swaps (forwards) with 18 months to maturity. A notable
difference between the specifications in logarithmic terms and in levels is seen for one-
month variance swaps (Panel A), the results indicate that a high variance swap price in
logarithmic terms predict future returns positively whereas the variance risk premium
is predicted negatively by a high variance swap price in levels. This difference is likely
driven by how a logarithmic-transformation makes a right-skewed distribution (such as
the distribution of variance swap prices) more symmetric and thus makes this right tail
less important in an OLS regression.

In Table 1, the t-statistics based on standard errors adjusted for heteroskedastic-
ity and auto-correlation using Newey and West (1987) and Hansen and Hodrick (1980)
with T-lags are presented in parentheses and brackets below the estimated coefficients.
Given the small differences between the corresponding t-statistics, the conclusions re-
garding statistical significance are the same. The results of the predictive regressions

show that short-term variance swap (forward) prices significantly predict future stock

5Because the relation between the logarithm of variance swap prices, stock market variance and returns
constitutes an approximation, the difference between the coefficients in columns (1) and (2) does not
necessarily equals 100%. However, given that the difference is relatively close to 100% it shows that
the approximation is a close one. In fact, the difference between the coefficients lies between 97.3% and
100.1%.
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market variance, whereas long-term variance swap (forward) prices significantly predict
future returns (variance risk premia). However, in Section 4 of the present paper, where
I show that the results are robust to specifying a VAR for the decomposition, I find that
short-term risk premia too vary significantly over time.

In sum, the results in Table 1 indicate a strong term structure in the decomposition
of variance swap (forward) prices: long-term variance swap (forward) prices are mostly
driven by risk premia whereas short-term variance swap prices are mostly driven by
expected stock market variance. In Internet Appendix C, I show that the results are
robust to repeating the analysis at a quarterly rather than a monthly frequency. In
Appendix A4, T show that most of the variation in variance swap prices comes from
variation in downside variance swap prices rather than upside variance swap prices.’
The variance decomposition of Table 8 in Appendix A.4 shows that the variance swap
prices are driven by downside variance swap prices for 63.4% to 74.2%, depending on
the maturity of the contract. Finally, in Appendix A.5, I show that the results continue
to hold on the subsample from September 2005 to June 2019. Furthermore, over this
subsample it is possible to compute the price of a variance swap with 24 months to
maturity every month, and find that variation in the 24-month variance swap price is for
123.9% attributable to risk premia.”

In the following, I obtain the predictions of several prominent asset pricing models
regarding this decomposition of variation in variance swap prices. I focus for this exer-
cise on variance swap prices rather than variance forward prices, because the latter are
by its definition more subject to noise which could potentially overstate the variation

attributable to risk premia.

6My definition of up- and downside variance swap prices closely follows the definitions of Andersen and
Bondarenko (2009), Dew-Becker et al. (2017), Baele et al. (2019), and Kilic and Shaliastovich (2019)
such that VSt(T) = VS&? + VSg), where VSI(LTt) and VS((;;) are the up- and downside variance swap,
respectively. The formal definitions of these swaps are giveﬁ in Appendix A 4.

"In September 2005, Cboe introduced Long-term Equity Anticipation Secturities (Leaps) for the S&P
500, and as a result options with three years to maturity were listed on an annual basis. For that reason,
it is possible to obtain a 24-month variance swap price every month using interpolation.
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3.2 Decomposition of variance swap prices in asset pricing mod-

els

In this subsection I discuss the predictions of several prominent asset pricing models with
respect to the pricing of variance risk. The ability of asset pricing models to match stylized
facts of variance markets has been an important topic in the literature.® This is because
variance risk is a central component of many asset pricing models, and variance markets
allow researchers to study variation in variance risk in combination with the preferences
of investors regarding this risk. I discuss the implications of the following three models:
the variable rare disaster model of Gabaix (2012), the time-varying rare disaster model
of Wachter (2013), and the long-run risk model of Drechsler and Yaron (2011). These
models are able to match some empirical results on the pricing of variance risk. Dew-
Becker et al. (2017) show that the model of Gabaix (2012) matches the empirical results
on the term structure of the risk premia of variance risk, Seo and Wachter (2019) show
that the model of Wachter (2013) matches the implied volatility slope on S&P 500 options,
and the model by Drechsler and Yaron (2011) is designed to match the empirical results
on the variance risk premium of Bollerslev et al. (2009).

For each of the considered models, I decompose the variation in variance swap prices
using predictive regressions similar to the empirical exercise in Subsection 3.1 for the
logarithm of variance swap prices. Afterward, I calculate the following moments in each
model: the expected log-returns on variance swaps, the standard deviation of log-returns
on variance swaps, and the variance of the logarithm of variance swap prices. These
results from the models are obtained from a simulation study.” Finally, in Internet
Appendix D.1-Internet Appendix D.3 I discuss the models in more detail, and show that

the analyzed moments are relatively stable across the simulation sets.

8Bollerslev et al. (2009), Drechsler and Yaron (2011), Gabaix (2012), Bekaert and Engstrom (2017), and
Lochstoer and Muir (2022) present consumption-based asset pricing models that match various moments
of the variance premium. Seo and Wachter (2019) show that an asset pricing model that features time-
varying disaster risk matches the implied volatility slope on S&P 500 options. Dew-Becker et al. (2017)
analyze the ability of asset pricing models to match the term structure of variance risk premia.

9For each model, 1,000 independent simulation sets of a time series with 1,000 data points are obtained.
On the basis of these simulation sets, each of the considered statistics is calculated.
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[Figure 1 here]

In Figure 1, I plot the results for the decomposition of variance swap prices in each of
the considered models. Figure 1 plots how much of the variation in variance swap prices
is attributable to expected variance (risk premia) in the left (right) panel. I show the
results from the decomposition of the logarithm of variance swap prices in the data (solid
line) as well as the predictions of the models. Overall, the considered models struggle
to produce the steep term structure in the decomposition of variance swap prices that is
documented in the data. In the models of Wachter (2013) (dash-dotted line) and Drechsler
and Yaron (2011) (dotted line), expected stock market variance drives a too large fraction
of the variation in long-term variance swap prices. This is due to the strong persistence
of state variables in these models, which makes stock market variance more persistent
than in the data. A simple solution to this would be to decrease the persistence of the
variables that drive stock market variance, that is, the persistence of the disaster intensity
in Wachter (2013) and the persistence of consumption volatility in Drechsler and Yaron
(2011). However, the persistence of these state variables is the key mechanism of the
models to match the equity and the variance premium. Neither is the model of Gabaix
(2012) (dashed line) able to match the observed term structure of the variance swap
price decomposition. Instead, all of the variation in variance swap prices, both short-
and long-term, is driven by risk premia.

The main reason why the model of Gabaix (2012) does not match the term structure
of the variance price decomposition is that the time variation in the disaster size only
affects the realized variance, conditional on a disaster hitting the economy. Given that
the probability of this occurring is relatively low (1% per year), expected stock market
variance only increases marginally when the disaster size increases. However, given that
this consumption disaster is highly undesirable for the investor, risk premia adjust ac-
cordingly when the disaster size increases. As I will show in Figure 2, the model of Gabaix
(2012) is not able to match the observed variation in variance swap prices, and the overall

variation in risk premia is therefore still relatively small. In order to match the observed
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variation and empirical decomposition, the model has to incorporate an additional source
of stochastic volatility.

The model of Wachter (2013) (dash-dotted line) predicts a large variation in stock mar-
ket variance because of the heteroskedastic nature of the disaster intensity process; that
is, high levels of the disaster intensity scale the future variance of the disaster intensity
upward. Stock market variance therefore varies—even in the absence of disasters—over
time. At the same time, high levels of the disaster intensity correspond to low risk premia.
However, variation in risk premia drives a much smaller fraction of the total variation in
variance swap prices, as seen in the right panel of Figure 1. Even if realizations in which
the consumption disaster hits the economy are excluded, the variation in 18-month vari-
ance swap prices due to risk premia only increases to 6%. Therefore, even in the absence
of consumption disasters the model of Wachter (2013) is not able to match the data.

The model of Drechsler and Yaron (2011) (dotted line) matches the data most closely,
as short-term variance swap prices are mostly driven by expected stock market variance
and long-term variance swap prices are mostly driven by risk premia. The term structure
of the variance price decomposition is, however, considerably less steep than that of the
data. For example, in the data the variation due to risk premia of the one-month variance
swap price is close to zero (even negative), whereas in the model of Drechsler and Yaron
(2011) variance discount rate variation accounts for 36% of this variation. The variation
in short-term risk premia is considerably larger in the model of Drechsler and Yaron
(2011), because variation in variance risk is sizable. At the same time, the model is not
able to capture the empirical result that the variation in variance swap prices due to
expected stock market variance strongly decreases in maturity. Again, this result is an

indication that the state variables governing stock market variance are too persistent.

[Figure 2 here]

Figure 2 plots the term structure of the variance of variance swap prices in the data

(solid line) and in each of the asset pricing models. The models are not able to produce
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the strong downward slope in the term structure, in particular the slope up to six months
to maturity. However, in line with the data, the models of Wachter (2013) (dash-dotted
line) and Drechsler and Yaron (2011) (dotted line) do produce a downward sloping term
structure, whereas that of Gabaix (2012) (dashed line) predicts a flat term structure of
the variance of variance swap prices. The model of Drechsler and Yaron (2011) matches
the observed variation in variance swap prices well, and in particular the variation in long-
term variance swap prices. This is interesting, because the model was calibrated to match
the dynamics of the one-month variance risk premium. The models of Wachter (2013)
and Gabaix (2012) severely over- and understate, respectively, the observed variation in
variance swap prices. This variation is overstated in Wachter (2013) because the high
persistence of the disaster intensity makes variation in expected stock market variance
high. The variation is understated in Gabaix (2012) because the model produces relatively

little variation in expected stock market variance.

[Figure 3 here]

Figure 3 shows the term structure of expected returns (return volatility) on variance
swaps in the left (right) panel. I show the results from the data (solid line) as well as the
predictions of the models. As seen in the left panel, the model of Gabaix (2012) (dashed
line) is able to match the strongly upward sloping term structure of expected returns in
the data. However, it overstates the return volatility of the one-month variance swap and
understates the return volatility of the variance swap beyond three months to maturity.
The models of Wachter (2013) (dash-dotted line) and Drechsler and Yaron (2011) (dotted
line) are not able to match the strong upward sloping term structure of expected returns
on variance swaps. In particular the expected return on the one-month variance swap
is far off, and this indicates that this short-term risk is not sufficiently severe such that
the investor is willing to pay a risk premium that is similar in magnitude to that in the
data. The right panel of Figure 3 shows, however, that the one-month variance swap is

sufficiently more risky in the models of Wachter (2013) and Drechsler and Yaron (2011)
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than in the data, but that despite this large risk the models are not able to match the
one-month risk premium. Moreover, the model of Wachter (2013) slightly understates
the return volatility of long-term variance swaps, whereas that of Drechsler and Yaron
(2011) slightly overstates it.

In sum, I show in the Figure 1 that the models I considered struggle to match the
empirical term structure on the decomposition of variance swap prices. The data shows
a very strong term structure, whereas the models all predict a more or less flat term
structure on the decomposition of variance swap prices. Moreover, these results, in com-
bination with the pattern of Figure 2, show that only the model of Drechsler and Yaron
(2011) is able to match the empirical magnitude of the variation in risk premia. Finally,
the results presented in Figure 3 indicate that the model of Gabaix (2012) is best able to
match the empirical term structure of the expected returns and return volatility of vari-
ance swaps. The models of Wachter (2013) and Drechsler and Yaron (2011), meanwhile,
severely understate the risk premium on a one-month variance swap, despite the fact that
the one-month variance swap is substantially more risky in the models compared to in
the data.

In the following section, I show that the empirical results of Subsection 3.1 are robust
to specifying a VAR to obtain expected stock market variance and risk premia. Afterward,

I show that risk premia are related to many important macroeconomic variables.

4 Decomposition of variance swap prices using a VAR

In this section, I show that the variance decomposition of Subsection 3.1 is robust to
specifying a VAR to obtain expectations. Using the VAR it is possible to estimate variance
expectations and risk premia and analyze their time-series variation. Furthermore, I
provide evidence that my VAR specification estimates variance expectations and risk
premia effectively.

The VAR is used to model expected stock market variance and obtain risk premia

as a latent variable from the present value identity (6) for the logarithm of the variance
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swap price. It is convenient to model stock market variance with a VAR because this
allows one to obtain variance expectations for each period by iterating forward.
In the benchmark exercise, I focus on the following VAR with four state variables to

model the logarithm of market variance:'°

241 = Bz + €641 and (15)

/
Zt:(m}t pcil) pc?) DEFt>, (16)

where B € R*** is a matrix with regressor coefficients and ¢,,; € R**! is a vector with
errors. The vector z; consists of the following variables: rv; is the log of realized variance,
pcgl) is the first principal component of the panel of log variance swap prices, pc§2) is
the second principal component of the panel of log variance swap prices, and DEF; is
the default spread defined as the yield difference between BAA and AAA credits. For
simplicity, all the variables included in z; are demeaned such that the intercepts in the
VAR are zero.

The first row in the VAR of equation (15) represents the predictive model for stock
market variance. In order to decompose the variance swap prices, I calculate expected
variance, and the remaining variables in the VAR are therefore included based on their
ability to predict stock market variance. The first principal component pcgl) captures
the level of the term structure of variance swap prices, and predicts future stock market
variance well. The level of term structure of variance swap prices is highly correlated
(~ 0.93) with the VIX index, which Drechsler and Yaron (2011) show to be a good
predictor of stock market variance. The second principal component pcgz) relates to the
slope of the term structure of variance swap prices, which rises during episodes of low
stock market variance and falls when the converse is true. Finally, the default spread

DEF,;, which Campbell et al. (2018) show predicts variation in long-term variance, is

thus included in the VAR, also because it is a well-known business cycle indicator.

10Tn Appendix A.6, I discuss the VAR-specification to model stock market variance in levels rather than
in logarithmic terms, and I will show in Table 3 that the results are highly similar across the two
specifications.
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Based on the VAR model, monthly variance expectations for a variance swap with

T-months to maturity equals

Ey) = ¢ ((1 —p(T))B+ -+ (1= p(1)p(T) x -+ x p<2>BT> @ (17)

where e; € R**! is a unit vector with the first element equal to one and the remaining
elements equal to zero. By the pricing identity (6), risk premia are a function of variance
expectations from equation (17) and the current variance swap price, as follows:

ED) = BT — 45T, (18)

rpt v,

In this way, I obtain an ex ante estimate of expected variance over the lifetime of the
variance swap and an estimate of the risk premia that price the variance swap. I use
these estimates to decompose variation in the variance swap price into either the expected
variance of Equation (17) or the risk premia of Equation (18). Before I show the results

of this decomposition, I present the estimation results of the VAR, in Table 2.
[Table 2 here]

The first row in Panel A of Table 2 presents the model for log realized variance each
month. In line with expectation, the level of the term structure of variance swap prices
pcgl) predicts next month’s realized variance positively. Variance swap prices rise during
episodes of elevated stock market variance. The slope of the term structure of variance
swap prices, pc,@, predicts next month’s realized variance negatively—a result that is also
expected because the slope of the term structure rises (falls) during periods of low (high)
stock market variance. Finally, DEF; predicts future realized variance positively and is
in line with Campbell et al. (2018). The R? of 58.9% to predict next month’s variance
indicates that most variation is captured. Furthermore, the impulse response functions in

online Appendix Internet Appendix A show that pcgl) and pcl@ mainly capture variation

in short- to mid-term variance, whereas DEF; captures variation in long-term variance.
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The remaining rows in Panel A of Table 2 summarize the dynamics of the explanatory
variables in the VAR. The level of the term structure of variance swap prices, pcgl), is
approximately an AR(1) process, with an autoregressive coefficient of 0.86. The slope
of the term structure of variance swap prices, pcl(f), has a similar persistence, of 0.85,
but is also predicted with a positive coefficient by the level of the term structure of
variance swap prices. Finally, the default spread, DFEF;, is more persistent, with an
autoregressive coefficient of 0.96. The persistence of the variables indicates whether they
capture variation in short- or long-term variance and the implications are similar to the
results of the impulse response functions, as shown in Internet Appendix A.

The estimates in Panel A of Table 2 are used to calculate expected variance, using
Equation (17), and risk premia, using Equation (18). Variation in the variance swap
price with 7-months to maturity is attributable to variation in either Eg 7)5 or Eg % or to

correlation between Er(T) and E7)

Vi wpt- Lhis intuition follows from the following equation

and is obtained if I calculate the variance of the pricing identity (6) for the variance swap

price, as follows:

Var(vng)) ~ var(Er(ng) + Var(Er(g%) -2 COV(ET(VT}7 Egl) : (19)
—T)

Thus far, this section focused on the identity for the logarithm of variance swap prices
for which the logarithm of stock market variance has to be modeled. However, in Ap-
pendix A.6 I show how to decompose the actual variance swap price using a VAR, and
present the estimates when modeling stock market variance instead. In Table 3, I show
the results for the decomposition of the logarithm of variance swap prices and variance
swap prices in levels based on VAR of this section in the former case and the VAR of

Appendix A.6 in the latter case.

[Table 3 here]

Table 3 illustrates how the variation in variance swap prices is attributable to expected
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stock market variance, risk premia, or the correlation between these two factors. The
decomposition in Table 3 shows that the main result is robust to specifying a VAR:
Short-term variance swap prices mainly vary due to expected stock market variance,
whereas long-term variance swap prices mainly vary due to risk premia. This result holds
across both specifications, i.e. the results of the decomposition are very similar for the
logarithm of variance swap prices and variance swap prices in levels.

Focusing on the variation in the logarithm of variance swap prices, Columns BT ),
Er(g ) and ﬁf zp indicate that one-month variance swaps are driven by 123.5% by expected
variance and this number decreases monotonically to 28.5% for 18-month variance swap
prices. At the same time, the variation in prices attributable to risk premia increases
monotonically from 6.9% for one-month variance swaps to 76.0% for swaps with 18 months
to maturity. The results indicate that risk premia for variance swaps vary significantly
over time, because for all of the analyzed maturities is the variation attributable to risk
premia significantly different from zero. Interestingly, the price-variation attributable to
correlation between expected variance and risk premia are negative indicating a positive
correlation between these two variables. This means that during periods of increased
expected variance, risk premia increase which indicates that it becomes less expensive to
hedge variance risk and this result is not in line with economic intuition. The positive
correlation between expected variance and risk premia is in line with Cheng (2019) who
first documented a similar result for VIX-futures. My results indicate that this relation
is strongest at (relatively) short horizons, because at a maturity beyond one month the
correlation is not significantly different from zero.

Next, I discuss the results based on the present value identity for variance swap prices
in levels as shown in Columns Eg,), Egl;) and C’g/{RP of Table 3. The price-variation
attributable to expected stock market variance decreases monotonically from 105.2%
for one-month variance swaps to 43.5% for variance swaps with 18 months to maturity.
Similarly, the price-variation due to risk premia increases monotonically from 25.4% for
one-month variance swaps to 83.3% for 18-month variance swaps. Finally, also in this

specification are risk premia and expected variance generally positively correlated, and
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in particular at the one-month horizon.

Overall, the results from the decomposition using the VAR of Table 3 are remarkably
close to the results of the decomposition using predictive regressions of Table 1. The
results from the decomposition using predictive regressions are model-free and, therefore,
the similarity suggests that the VAR is correctly specified. In Table 11 of Appendix A.6,
I show that expected stock market variance and risk premia obtained using the VAR are
able to predict its realized counterparts well. Moreoever, I show in Internet Appendix
C that if I perform the decomposition using the VAR at a quarterly frequency, the
results are highly similar. Finally, in Internet Appendix B, I show that the results of
the decomposition are robust to different specifications of the current VAR, and to the
inclusion of additional variables such as: the S&P 500 price-earnings ratio and long-term
variance.

In the following section, I analyze the time-series variation in risk premia obtained
via the VAR in detail. In particular, I show that there is substantial common variation
in the term structure, and show that a significant fraction of the variation is explained by
variance beliefs of investors and capital constraints of intermediaries. These latter results
also explain why the models analyzed in Section 3.2 fail to match the data, because the

models do not model investor variance beliefs or constraints by intermediaries.

5 Time-series variation of risk premia

In this section, I analyze the time-series variation in risk premia in detail. Throughout
this section, risk premia obtained from the VAR are multiplied by minus one, such that an
increase in the variable implies that risk premia increase, or equivalently, investor have to
pay a higher premium to hold a variance swap. First, I show the decomposition of a short-
term (one month) and long-term (18 months) variance swap contract graphically. Second,
I show that variation in risk premia yields economically sizable variation in expected
returns for variance swaps. Third, I analyze the variation in the term structure of risk

premia, and show how it relates to measures of variance beliefs of investors (Lochstoer
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and Muir, 2022) and capital constraints of intermediaries (Cheng, 2019).
In Figure 4, I plot the decomposition of the one-month variance swap price and that

of the 18-month variance swap price.

[Figure 4 here]

Figure 4 plots the decomposition of the logarithm of the variance swap price (black
line) into expected variance (dotted line) and risk premia (dashed line). The left panel
shows the demeaned variance swap price with one month to maturity, and it is clearly vis-
ible that the monthly variance swap price closely follows expected stock market variance.
Moreover, in line with Cheng (2019), there is a negative correlation between expected
variance and (the negative of) risk premia, which indicates that risk premia decrease
when expected variance increases.

The right panel of Figure 4 plots the decomposition of the 18-month variance swap
price (black line) into variance expectations (dotted line) and risk premia (dashed line).
Risk premia are a more important determinant of the 18-month variance swap price than
they are of the one-month variance swap price. It follows from the graph that risk premia
were relatively high during the period following the financial crisis in 2008, whereas risk
premia were relatively low during the period leading up to that crisis. Moreover, the
variation in the short-term risk premia (left panel) and the variation in long-term risk
premia (right panel) are correlated. In order to analyze this correlation further, I plot,
in Figure 5, the risk premia obtained from the logarithm of variance swap prices for the

benchmark maturities.

[Figure 5 here]

Figure 5 plots the risk premia obtained from the logarithm of variance swap prices
ranging from 1 to 18 months to maturity. The main result from Figure 5 is that the time

variation in the term structure of risk premia is strongly correlated, such that short-term
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risk premia move in the same direction as long-term risk premia—a finding that suggests
that short- and long-term risk premia are driven by similar state variables. Overall, the
variation in long-term risk premia is larger than the variation in short-term risk premia.
Interestingly, during the financial crisis of 2008 short-term variance risk premia decreased
whereas long-term risk premia increased. Therefore, only the price of hedging short-term
variance risk decreased during the financial crisis.

Before analyzing the relation of risk premia with other macroeconomic variables, I
want to establish that time variation in risk premia implies economically sizable differ-
ences in the average returns from investing in variance swaps. To establish this result, I

run the following regressions:
Rg)l — 1=+ ps- ( - Eg%) + €41, (20)

where RE_TF)l —1 corresponds to a monthly simple return on a variance swap with 7-months

to maturity and gD

rp.t are the risk premia obtained from the VAR discussed in the previous

section. Because —F ()

ip.t 1as a mean of zero, y; equals the average return on a variance

swap, and o equals by how much the average return increases in —Eg 35 Table 4 shows

the results of regression (20).
[Table 5 here]

The first result from Table 4 is that the average simple return on variance swaps
strongly increases in the maturity. The second result, and the main takeaway of Table 4,
is that the variation in risk premia is economically sizable. A one standard deviation
increase in —Eg 1 results in a decrease in the average return of 4.1% for the 18-month
variance decreasing to 12.3% for the one-month variance swap. These results suggest
that the average simple returns of a variance swap with maturities beyond one month
are positive rather than negative during periods in which —Efi i is below its standard

deviation. This puzzling result has already been noted by Johnson (2017), and indicates
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that during some periods investors want to receive a risk premium for holding a variance
swap. Furthermore, it is interesting to note that long-term variance swaps do not have an
average risk premium significantly different from zero, while at the same time exhibiting
sizable time-series variation.

In the following, I analyze how the estimates of risk premia relate to several variables
brought forward by the literature. In particular, Cheng (2019) shows how positions of
intermediaries in VIX-futures affect risk premia on these futures. I will use the measure
by He et al. (2017) that relates to average intermediary leverage to proxy for constraints of
intermediaries. Lochstoer and Muir (2022) document using surveys that investor beliefs
regarding stock market variance are slow moving, and they find that their proxy for
slow-moving variance beliefs affect risk premia on variance instruments. The focus of the
following analyses will be on the explanatory power of these variables for the full term
structure of risk premia.

To analyze the impact of these variables for risk premia, I run the following regression:
~EG) = Bo+ 8167 + BV By + ILS, + 0/ X, + €, (21)

where 62 and VB, := 3.0, ¢762 ., are expected next month variance and slow-moving
variance beliefs taken directly from Lochstoer and Muir (2022)." In Lochstoer and Muir
(2022) these two variables are used to predict variance risk premia, and they find that
risk premia initially underreact to increases in expected variance and there is a delayed
overreaction due to slow-moving variance beliefs. These findings support the empirical
results documented in Cheng (2019), only Lochstoer and Muir (2022) attribute it to
slow-moving variance beliefs, whereas Cheng (2019) attributes it to demand and supply
effects in the market. Furthermore, ILS; is intermediary leverage (squared) by He et al.
(2017) which should capture these intermediary pricing effects, and X specifies a vector
of control variables to illustrate the robustness of the relationship. Finally, the estimates

from regression Equation (21) establish how both channels affect the term structure of

HEollowing Lochstoer and Muir (2022), I use ¢ = 0.5, which is the estimate for slow-moving variance
beliefs that is estimated in their paper.
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risk premia.

The estimates of regression (21) are presented in Table 5. All variables in the regres-
sions are scaled to have a mean of zero and standard deviation of one. In this way, the
estimated coefficients can be compared along the term structure because the variation
in long-term risk premia is larger than variation in short-term risk premia, as shown in

Section 4.

[Table 5 here]

The main result of Table 5 is that a sizable fraction of the variation in risk premia is
explained by variance beliefs and intermediary constraints, and that the exposure differs
along the term structure. Overall, the results suggest that short-term risk premia are
driven to a larger extent by variance beliefs, whereas a more important driver of long-
term risk premia are intermediary constraints.

The results for risk premia obtained via the logarithm of variance swap prices are
presented in Panel A, and I find that, in general, higher variance beliefs relate to lower risk
premia. Focusing on the results without controls, Columns (1)—(5) show that short-term
risk premia are driven to a larger extent by variance beliefs than long-term risk premia
and the coefficients are insignificant for maturities beyond three months. On the other
hand, the exposure of risk premia to intermediary constraints increases monotonically
with the maturity and the coefficients indicate, as expected, that when intermediaries are
more constraint risk premia increase. In case the regression includes additional controls,
Columns (6)-(10), these patterns in the exposure of risk premia to these variables are
robust. Furthermore, these regressions show that a sizable fraction of the risk premia is
driven by these macroeconomic variables as indicated by the high R?’s.

Next, I repeat the same analysis but for risk premia obtained via variance swap prices
in levels and the results are presented in Panel B of Table 5. Different form the results

in Panel A, variance beliefs now relate positively to risk premia which is in line with
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the results in Lochstoer and Muir (2022).'? Similar to the results in Panel A, however,
Columns (1)—(5) show that variance beliefs mostly matter for short-term maturities as
the statistical significance disappears beyond a maturity of six months. Intermediary
constraints relate positively to risk premia, and the coefficient increases monotonically
with the maturity indicating that risk premia on long-term contracts are affected more by
intermediary constraints than risk premia on short-term contracts. This monotonic in-
crease in the coefficients for intermediary constraints is robust to the inclusion of controls,
in fact Columns (6)—(10) show that the explanatory power and statistical significance in-
crease in these specifications. Finally, the statistical significance for the relation between
variance beliefs and risk premia is not robust to the inclusion of controls and this is likely
driven by the relation between variance beliefs and other macroeconomic variables.

The results in Table 5 support the findings in the literature that variance beliefs
and intermediary constraints drive a significant fraction of the variation in risk premia.
Furthermore, it can explain why the models analyzed in Section 3.2 fail to capture the
variation in risk premia in the variance market, because the models analyzed in this
paper do not contain investors with biased variance expectations or a constrained inter-
mediary sector. The results show that in order to describe dynamics of risk premia in
variance markets, the models should include biased variance beliefs and/or intermediary
constraints.

One of the main takeaways of Table 5 is that intermediary constraints have a differen-
tial effect on the term structure of risk premia. In particular, short-term risk premia are
to a lesser extent driven by intermediary constraints than long-term risk premia. Because
long-term risk premia are more affected by intermediary constraints, it could explain the
excess volatility documented in Giglio and Kelly (2018) for variance swaps, a result that
is often attributed to an overreaction in expectations of investors (Stein, 1989; Giglio and

Kelly, 2018). Instead, my results show that also this form of excess volatility could be

12The result that the sign of variance beliefs depends on whether risk premia are obtained from the
logarithm of variance swap prices or the actual variance swap prices is probably due to the logarithmic
transformation. In principle, both are acceptable ways to analyze risk premia, however given that variance
swap prices are right-skewed the logarithmic transformation makes the distribution more symmetric, and
thus the right tail less extreme.
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attributable to intermediary constraints.

In sum, I show that the ex ante obtained risk premia relate to macroeconomic vari-
ables and, in particular, to variance beliefs (Lochstoer and Muir, 2022) and intermediary
constraints (Cheng, 2019). Furthermore, my findings suggest that variance beliefs are
mostly important for short-term risk premia, whereas intermediary constraints are im-
portant for short- and long-term risk premia and the magnitude of the effect increases in
the maturity. Finally, these results explain why the models analyzed in this paper fail to
capture the variation in risk premia of the data, and provide intermediary constraints as

a novel channel to explain the excess volatility documented in Giglio and Kelly (2018).

6 Conclusion

I show that variance risk premia vary over time, and that it drives a significant fraction
of variance in S&P 500 variance swap prices. I document a strong term structure in
the decomposition of variance swap price variation. Short-term variance swap prices are
driven by variation in variance expectations, whereas long-term variance swap prices are
mostly driven by variation in variance risk premia. This newly documented stylized fact
provides a new challenge to existing asset pricing models, because the models considered
in this paper predict a flat term structure. In particular, the disaster model of Gabaix
(2012) predicts that all variation in variance swap prices is attributable to variation in
variance risk premia. The disaster model of Wachter (2013), meanwhile, predicts that
all variation is attributable to variance expectations. This is driven by the fact that this
model incorporates a strong persistence in stock market variance, a feature that is not
present in the model of Gabaix (2012). The long-run risk model of Drechsler and Yaron
(2011) matches the decomposition of long-term variance swaps relatively well, and is able
to match the overall variation in variance risk premia. However, due to the large variation
in short-term disaster risk, short-term variance risk premia move more of the variation
in short-term variance swap prices than empirically observed.

The documented variation in variance risk premia is attributable to several vari-
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ables. In particular, intermediary constraints (Cheng, 2019) and variance beliefs of in-
vestors (Lochstoer and Muir, 2022) play an important role for describing time-series vari-
ation in the term structure of variance risk premia. I show that variance beliefs mostly
matter for short-term variance risk premia, whereas intermediary constraints matter for
short- and long-term variance risk premia. The exposure of risk premia to intermediary
constraints increases in the maturity, and therefore intermediary constraints are likely to
play a role in the excess volatility documented by Giglio and Kelly (2018) for variance
swaps.

In sum, the present paper presents new key stylized facts about the market for variance
risk. I show that these stylized facts pose a challenge for state-of-the-art asset pricing
models, and augmenting asset pricing models to better describe the pricing of variance

risk is thus an interesting avenue for future research.
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Table 1: The results of the decomposition using predictive regressions of Equations (12)
and (13). The results are shown for the different present value identities, and for a
maturity of 1 month (Panel A) up to a maturity of 18 months (Panel E). The coefficients in
columns (1), (3), (5) and (7) indicate how much of the variation in prices is attributable to
stock market variance, whereas the coefficients in columns (2), (4), (6) and (8) indicate the
variation due to risk premia. All coefficients are presented in percentages. Standard errors
are adjusted for auto-correlation using Newey and West (1987) (Hansen and Hodrick
1980) with T-lags, and the corresponding t-statistics are presented below in parentheses
(brackets).

log-VS log-F level-VS level-F
[ (3) “4) (OO n B
Panel A: T = 1.
Coef. 110.07 10.07 110.07  10.07 92.16 -7.84 92.16 -7.84
(tow) (18.89) (1.73) (18.89) (1.73) (5.15) (-0.44) (5.15)  (-0.44)
[thh] [17.99] [1.65] [17.99] [1.65] [4.68]  [-0.40] [4.68] [-0.40]
R? 57.74 1.13 57.74 1.13 42.42 0.53 42.42 0.53
Panel B: T = 3.
Coef. 95.73 -4.02 86.36 -13.64 66.71 -33.29 43.79  -56.21
(taw) (10.88) (-0.44) (7.41)  (-1.17) (5.66) (-2.83) (4.08) (-5.23)
[thn) 9.42]  [-0.38] 6.48] [-1.02] [5.05] [-2.52] [3.73] -4.78]
R? 43.20 0.13 22.45 0.72 22.96 6.91 5.99 9.51
Panel C: T = 6.

Coef. 8334 -16.77 60.49 -39.51  49.29 -50.71 19.83  -80.17
(tnw) (6.82) (-1.35)  (3.69) (-241)  (4.16) (-4.28)  (1.98) (-8.00)
[tw]  [5.88]  [-1.17] 3.27] [-2.13]  [4.37] [-4.49] [1.79]  [-7.23]
R? 3153  1.72 888  3.99 13.73 1441 1.00  14.15

Panel D: T' = 12.

Coef. 5583 -41.85 12.81 -87.19  33.83 -66.17 16.29  -83.71
(tw) (3.69) (-2.65)  (0.75) (-5.08)  (3.45) (-6.75)  (1.49) (-7.66)

[thn)] 3.44] [-2.48] [0.69] [-4.68] [3.25]  [-6.36] [1.63] -8.39]
R? 14.21 8.04 0.48 18.15 7.59 23.91 0.76 16.83
Panel E: T = 18.

Coef. 24.52 -T72.80 -22.93 -122.93 19.56 -80.44 -19.65 -119.65
(taw) (1.33)  (-3.89) (-1.58) (-8.47) (2.11) (-8.69) (-0.99) (-6.03)
[thn)] [1.34] [-3.92] [-1.49]  [-7.98] [2.62] [-10.78] [-0.97]  [-5.90]
R? 3.03 20.54 2.24 39.66 3.14 35.42 1.03 27.77
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Table 2: The estimated coefficients of the VAR of equation (15) with ¢-values in paren-
theses in Panel A. All variables are normalized to have a mean equal to zero, and pcgl)
and pcgl) are additionally standardized to have a standard deviation equal to one. Panel
B shows the correlation matrix of the residual vector ¢, with the standard deviations on
the diagonal. The sample period for the dependent variables is January 1996 to June

2019, with 282 monthly data points.

Panel A: Coefficients, VAR model
TV pcgl) pc,@ DEF, R?

Vit 0.056 0514 -0.344 0514  0.589
(tstat)  (0.73)  (7.43)  (-7.13)  (3.38)

pet) 0.049 0856  0.003  0.105  0.847
(tstat)  (1.02)  (20.00) (0.09)  (1.11)

pe 0022 0151 0.845  -0.022  0.745
(t-stat.)  (-0.35)  (2.70) (21.77) (-0.18)

DEF,.; 0.013 -0.010  -0.004 0.964 0.936
(t-stat.)  (1.34)  (-1.11) (-0.66) (48.81)

Panel B: Correlation/Std matrix of residuals

corr/std TV 1 pc&)1 pcgr)l DEF, 4
U 0.627 0.627 -0.484 0.354
pe) 0.627 0.388 -0.598 0.372
pe), -0.484 -0.598 0.505 -0.154
DEF, 0.354 0.372 -0.154 0.082
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Table 3: The results of the variance decomposition of variance swap prices using the VAR.
The columns indicated by log-VS rely on identity (6) for log prices, and the columns indi-
cated by level-VS rely on identity (10) for prices in levels. Note that reported coefficient
represent the percentage of variance that is attributable to each component such that the
sum equals one. Standard errors are computed using the Delta method and presented in
parentheses.

log-VS level-VS
T T T T T T
EY Er(p : Cr(v,l)fp El(w),t EIE{P),t Cl(w),RP

123.51 6.87  -30.38 105.18  25.35  -30.53

P=1oo4) @71) (1396)  (11.91) (4.44) (14.20)
p_ o 11280 1466 -27.47 92.12  30.16  -22.28
(18.74)  (6.96) (21.89)  (17.57) (8.86) (21.34)
7_ 8700 3124 -18.24 7711 AT6T  -24.78
(24.05) (15.39) (29.76)  (21.93) (16.38) (29.99)
Ty 4856 6059  -9.15 5858 7210  -30.68
(24.35) (27.18) (35.15)  (25.21) (25.32) (38.92)
T g 2850 7599 -4.49 4354 8325  -26.79

(20.35) (29.39) (32.95)  (23.62) (27.18) (38.13)

Table 4: The estimates of regression equation (20). The first row corresponds to the av-
erage simple return on a variance swap with maturity 7', and the second row corresponds
to the coefficient for —Eg‘: 1 Note that Eg % is scaled to have a standard deviation of one.
t-statistics are represented in parentheses.

Maturity 1 3 6 12 18

Mean return  -0.285 -0.098 -0.050 -0.013  -0.006
(-7.16) (-3.77) (-2.72) (-1.01) (-0.52)

~EI) -0123 -0110 -0.082 -0.056 -0.041
(3.09) (4.24) (4.46) (4.24) (3.77)
R’ 0.033  0.061  0.067 0.061  0.049
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6¢

Table 5: This table reports the estimation results of regression Equation (21). In Panel A the risk premia derived from
the log-VS identity are the dependent variable, and in Panel B the risk premia derived from the level-VS identity are the
dependent variable. All variables in the regression are standardized to facilitate interpretation, and to make the coefficients
comparable along the term structure. The coefficients reported in columns (1)—(5) are obtained from regressions without
additional control variables, whereas the coefficients reported in column (6)-(10) include control variables. The included
control variables: Risk-neutral skewness from CBOE, macroeconomic risk perceptions (PVS) from Pflueger et al. (2020),
term spread, TED spread and market earnings yield. Standard errors are adjusted for auto-correlation using Newey and
West (1987) with six lags, and the corresponding t-statistics are presented below in parentheses.

Panel A: log-VS

“Ew By By, Ba Bal Eh B bw By B

1 (2) (3) “4) (5) (6) (1) (®) ) (10)

?7,52 0.21 -0.03 -0.06 -0.04 0.01 0.28 0.13 0.18 0.25 0.29
(1.71) (—0.27) (—0.45) (—0.28) (0.05) (3.09) (1.21) (1.62) (2.13) (2.46)

V B, -0.82 -0.38 -0.17 -0.05 -0.03 -0.70 -0.46 -0.41 -0.37 -0.37
(—3.20) (—1.88) (—0.78) (—0.23) (—0.13) (—3.30) (-2.46) (-2.16) (—1.94) (—2.07)

ILS; 0.24 0.30 0.32 0.39 0.44 0.52 0.60 0.68 0.71 0.68
(1.44) (1.72) (1.81) (2.26) (2.58) (2.62) (2.38) (2.42) (2.42) (2.37)

Controls N N N N N Y Y Y Y Y
R? 0.24 0.10 0.06 0.12 0.18 0.40 0.28 0.24 0.28 0.34

Panel B: level-VS

1 3 6 12 18 1 3 6 12 18
_EI(KF)’,t _El(%lg,t _El(ﬂl,t _EI(RP,)t - F({P,)t - F({F)’,t _EIE{P)’,t _EétP)’,t _EI(KP,t _EI(KP,)t

1) (2) (3) ) (5) (6) (1) (®) 9) (10)

63 -0.75 -0.68 -0.46 -0.30 -0.18 -0.45 -0.38 -0.18 -0.03 0.07
(—3.08) (—3.43) (—2.60) (—1.96) (—1.22) (—1.98) (—2.30) (—1.31) (—0.31) (0.61)

V B; 0.52 0.60 0.46 0.32 0.22 0.22 0.34 0.20 0.08 -0.02
(1.73) (2.15) (1.73) (1.36) (0.93) (0.74) (1.45) (0.99) (0‘45) (—0.14)

ILS, 0.06 0.13 0.20 0.32 0.40 0.42 0.57 0.68 0.75 0.75
(0.32) (0.73) (1.15) (1.96) (2.43) (2.58) (4.20) (4.18) (3.64) (3.34)

Controls N N N N N Y Y Y Y Y

R? 0.12 0.11 0.11 0.16 0.21 0.22 0.25 0.27 0.31 0.34




Figure 1: The left (right) panel plots how much of the variation in log variance swap
prices is driven by expected variance (risk premia) in the data (solid line), the model of
Gabaix (2012) (dashed line), the model of Wachter (2013) (dash-dotted line), and the
model of Drechsler and Yaron (2011) (dotted line). The grey area corresponds to a 95%
confidence interval. The results are plotted for variance swap prices with 1, 3, 6, 12,
and 18 months to maturity. The y-axis corresponds to how much of the variation is
attributable to expected variance or risk, respectively, in percentage terms.

14+ —=—Data 1.4+ —=—Data
— — Gabaix (2012) — — Gabaix (2012)
12k —-—-Wachter (2013) 12} —-—-Wachter (2013)
: Drechsler and Yaron (2011) : Drechsler and Yaron (2011)
1r 1r
2 E
w w
2 08r > 08F
el o
£ : 2
s 06 5 06
X 04 R 04r
021 021
o ———————="— ==~~~ —————— === === == 0
0.2 . . . . . . . . ) 02 | . . . . . .
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Maturity Maturity

40



Figure 2: The term structure of the variance of variance swap prices in the data (solid
line), the model by Gabaix (2012) (dashed line), the model by Wachter (2013) (dash-
dotted line), and the model by Drechsler and Yaron (2011) (dotted line). The grey area
corresponds to a 95% confidence interval. The results are plotted for variance swap prices
with 1, 3, 6, 12, and 18 months to maturity. The y-axis corresponds to monthly volatility.

—=— Data
09r — — Gabaix (2012)
—-—-Wachter (2013)
o8r e Drechsler and Yaron (2011)
0.7

©
(e}
T

Variance of vs(T)
o o
EN (6)]
T T

©
w
T

o
N
T

o
—_
T

o

0 2 4 6 8 10 12 14 16 18
Maturity

41



Figure 3: The left (right) panel plots the term structure of expected returns (return
volatility) on variance swaps in the data (solid line), the model of Gabaix (2012) (dashed
line), the model of Wachter (2013) (dash-dotted line), and the model of Drechsler and
Yaron (2011) (dotted line). The grey area corresponds to a 95% confidence interval. The
results are shown for variance swaps with 1, 3, 6, 12, and 18 months to maturity. The
y-axis corresponds to monthly returns.
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Figure 4: The decomposition of the variance swap price (black line) into variance ex-
pectations (dotted line) and risk premia (dashed line) over the sample period. The left
panel shows the decomposition of the one-month variance swap price, and the right panel
the decomposition of the 18-month variance swap price. The variables are represented as
six-month moving averages. The shaded area corresponds to the NBER recessions.
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Figure 5: Six-month moving averages of the risk obtained from the log variance swap price
with one month to maturity (solid grey line), three months to maturity (dotted black line),
six months to maturity (dash-dotted black line), 12 months to maturity (dashed black
line), and 18 months to maturity (solid black line). The grey area corresponds to NBER
recessions
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A Appendix: Additional empirical results

A.1 Derivation of the present value identities.

In this section, I discuss the derivation of each of the identities discussed in Section 1.2.
log-VS. The first step in deriving this identity is to Taylor-expand the log-return on

the variance swap:

riad 2 () + p(T) sty + (1= p(T)]rvgs — s, (22)
where rﬁﬂ = log (Rg)l),vsgl_l) = log (ngl_l)),rvtﬂ = log (RVtH), and vng) =

log (VSt(T)). In equation (22), k(7)) represents the approximation constant and p(7T)
governs the relative importance of the next period’s price and the next period’s realized

variance in the calculation of the return of the variance swap. These constants depend on
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the maturity, 7', of the variance swap because the one-period return on a short-term vari-
ance swap is mostly driven by the next period’s realized variance whereas the one-period
return on a long-term variance swap is mostly driven by the next period’s price. Intu-
itively, p(T) increases in the maturity of the variance swap, and thus gets closer to one.
Below, I show that p(7T') can be estimated using a simple regression and, importantly,
that equation (22) approximates the return on a variance swap really well.

The next step is to substitute the next period’s variance swap price with the following

approximation:
T—i ; . T—i—1 ) T—;
Usg—i-i ) k(T =) + p(T"— 1) - US§+1'+1 '+ [1 —p(T' = Z)}Tvt+z‘+1 - ng-&-i—i-)l’

where k(T — i) and p(T — i) are the log-linearization coefficients of a variance swap with
T — i-periods to maturity. This equation allows me to substitute future variance swap
prices up to the point that the current variance swap price depends on the one-month
variance swap price, USEET_I. The following holds regarding the one-month variance swap

price: USE?T_l = U1 — TSF)T, that is, k(1) = p(1) = 0. After this substitution, I obtain

the following:

T i—1 T -1
s ~ K+ [1-p(T—i+1)] (Hp(T—j—|—1)> TN (Hp(T—j—|—1)> T,
=1 j=1 =1 j=1

(23)
where K is a constant and a function of the constants k(T —i) and p(T —1) from the indi-
vidual log-linearizations. I discard the constant K from the pricing identity because the
focus of the paper is on time-series variation in variance swap prices. Equation (23) is an
accounting identity; therefore it also holds in expectation conditional on the information
at time ¢, and equations (6)—(8) of Section 1.2 follow.

Campbell and Shiller (1988) show that the current price-dividend ratio increases in
dividend growth expectations and decreases in stock market discount rates. Therefore,
identity (6) for the variance swap price is similar to the pricing identity of the price—

dividend ratio, where variance expectations take the role of expected cash flows and
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variance risk premia replace stock market discount rates. There are two main differences
between the identity of equation (6) and the identity in Campbell and Shiller (1988),
and these are due to the fact that a variance swap is a finite cash flow, whereas equity
is a perpetual cash flow. First, the variance risk premia in equation (8) depend on the
maturity of the variance swap, which is important because Dew-Becker et al. (2017) show
that there is a strong term structure in risk premia on variance swaps. Second, in the
derivation of the pricing identity for equity, Campbell and Shiller (1988) assume the
so-called no-bubble condition. This assumption is not needed in the case of a variance
swap.

In order run the predictive regressions of Section 3.1, I need the log-linear approx-
imation coefficients p(T'). T estimate p(T') using a simple regression, and the results of

this exercise are presented in Table 6. As expected, the log-linearization coefficient p(7")

Table 6: The regression results of rt(?l — v + stT) =k(T) + p(T) - (stJTrl_l) — rvpy) + eg)l, for

different maturities 7. For each maturity, the log-linearization coefficient p(T) is given as is the R? of
the regression.

Maturity 1 2 3 4 5t 6 7 8 9
p(T) 0 0.634  0.777  0.841 0.876 0.898 0.914 0.925 0.933
R? 100%  98.24% 99.28% 99.57% 99.70% 99.78% 99.82% 99.85% 99.88%
Maturity 10 11 12 13 14 15 16 17 18
o(T) 0.940  0.945 0.950 0.954 0.958 0961 0963 0.965 0.967
R? 99.90% 99.91% 99.92% 99.94% 99.94% 99.95% 99.96% 99.96% 99.96%

depends on the maturity of the variance swap, and increases in the maturity, which in-
dicates that the next period’s variance swap price is relatively more important than the
one-period realized variance for long-term variance swaps. The second row in Table 6
shows that the log-linear approximation of the variance swap returns is in fact very good,
as indicated by the large R?s, which range from 98.24% to 99.96%, with an average of
99.7%.

log-F. In the following, I derive the identity for the logarithm of the variance forward

price. To derive the identity, I first have to define the gross return on a variance forward
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for holding it to maturity, as follows:

In case the investor holds the variance forward with T-periods to maturity until maturity,
the investor receives only the realized variance in period t+7. Taking the logarithm of the
gross return on the forward and rearranging yields the pricing identity for the logarithm
of the variance forward:
f t(T) = TVT — T;‘Z:-T'

It constitutes an exact relation between the logarithm of the variance forward, realized
variance and risk premia because it follows directly from the defintion of the variance
forward return to maturity. Again, because it is an accounting identity, the relation also
holds in expectation, and Equation (9) follows.

level-VS. In the following, I derive the present value identity for the variance swap

price. First, I rearrange the definition of the realized variance premium of Equation (5),

as follows:
Vs =vsTY 4+ R,y — VP

The second step is to iterate this equation forward by substituting an equivalent equation

for VSg; g up to maturity, as follows:
T (T) ,
VS =3 RV, - > vpLTY.
i=1 i=1
Again computing the expectation on both sides, yields Equation (10).

level-F. Finally, I derive the present value identity for the variance forward price. To

derive the identity, I first define the payoff for holing a variance forward to maturity, as
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follows:
VP = RVyr — B

In case the investor holds the variance forward to maturity, the investor is entitled to the
realized variance in period ¢t 4 7'. Rearranging and computing the expectation, yields the

pricing identity of Equation (11).

A.2 Variance swaps as in Kozhan et al. (2013)

The realized variance of a variance swap entered at time ¢ with maturity 7" is calculated

in the following way:
T
RV =37 [2(em =1 =) . (24)
j=1

where 7, ; is daily log return realized on day ¢ + j. Note that equation (24) is similar
to the sum of squared daily returns as r? ~ 2(6’" —-1- 7’). The variance swap rate is
defined as the risk-neutral expectation of the realized variance specified in equation (24).
Kozhan et al. (2013) show how to calculate the variance swap rate with maturity 7" at

time t from option prices, as follows:

FT 5(T) o ~(T)
(T) _ 2 ¢ P (K) Oh (K)
VS = _B(T) [ /0 % dK + s ez dK |, (25)

t

where B,fT) is the risk-free bond price at time ¢ with maturity 7', Ft(T) is the forward price
at time ¢ with maturity 7" and Pt(T)(K ) and C’t(T)(K ) are prices of European put and call
options at time ¢ with maturity 7" and strike price K.

Kozhan et al. (2013) show how to approximate equation (25) using a finite number
of available put and call options. Given the set of available option prices Pt(T)(KZ-) and

Ct(T)(K,-) for 0 < ¢ < N where prices are mid points from bid and ask quotes, Kozhan
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et al. (2013) compute variance swap rates as follows. Define the following function:

%, fOI'OSZSN (Wlth K_l = QKO—Kl, KN+1 = QKN—KN_l)

0, otherwise.

Then the variance swap rate is computed as follows:

P(K;) " (K;)

(1) t i ) t i .

vsi~2 Y s M) +2 Sy — s M), (26)
KiSFt(T) t ‘ Ki>Ft<T) ¢ @

Options on the S&P 500 expire every month on the third Friday. Using linear interpola-
tion, I calculate variance swap rates that expire on the last trading day of each month.
The linear interpolation works in the following way: Variance swap rates with maturity
Ty < T and Ty > T are calculated by equation (26); then the variance swap rate with

maturity 7" is constructed as follows:
VS =avs™ 4+ (1 —a)vsi™,

where 7' = aT; + (1 — a)T5. With the data from OptionMetrics I calculate a panel of

variance swap rates with one month up to 18 months to maturity.

A.3 Compare synthetic variance swaps to OTC variance swaps

In this section, I compare the data on synthetic variance swaps that are obtained from
option pricing to the data on variance swaps from the OTC market. The data on variance
swaps from the OTC market is from Dew-Becker et al. (2017). Their sample covers the
period from December 1995 to September 2013 and variance swap rates up to a maturity
of 12 months. During the period from January 1996 to September 2013, I observe a
synthetic variance swap rate obtained using my methodology and a variance swap rate
from the actual OTC data. I plot these rates in following graphs for one, three, six, and

12 months to maturity, which are the maturities of my benchmark analysis.
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Figure 6: This figure plots the synthetic variance swap rate and OTC swap rate from Dew-Becker et al.
(2017) for four maturities. The top-left graph plots the one-month swap rate, the top-right graph plots
the three-month swap rate, the bottom-left graph plots the six-month swap rate, and the bottom-right
graph plots the 12-month swap rate.
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Overall, Figure 6 provides strong evidence that the synthetic variance swap rate is
very similar to the swap rate in the OTC market. This indicates that the option market
and the variance swap market are integrated markets and contain the same information
regarding the pricing of variance risk. Notable differences include the difference in the
one-month swap rate during the financial crisis and the difference in the 12-month swap
rates during the first years of my sample. Furthermore, the average correlations between
synthetic and OTC swap rate of the four maturities equals 0.991.

In Table 7, I present sample statistics from the panel of variance swap returns. Note

that I also present sample statistics on the realized variance of the S&P 500, because

49



realized variance plays the role of the dividend payment in the calculation of the return.
Moreover, I calculate simple returns and log-returns in order to quantify its differences
in the case of variance swaps. The sample statistics of the realized variance and variance

swap returns are shown in Table 7. In Table 7, sample statistics of monthly realized

Table 7: The table shows sample statistics of realized variance in Panel A, simple variance swap returns
in Panel B and log variance swap returns in Panel C. The sample statistics of monthly realized variance
in Panel A are scaled to represent the yearly standard deviation. The mean, standard deviation, yearly
Sharpe ratio and the 5%, 25%, 50%, 75% and 95% quantiles are presented.

Panel A: Realized variance
Maturity Mean SD SR 5% 25%  Median  75% 95%
- 0.162 0.095 - 0.068 0.101 0.142 0.188 0.323

Panel B: Simple returns on variance swaps

8 -0.006  0.187 -0.106 -0.231 -0.123 -0.037 0.071  0.317
2 -0.013  0.227  -0.202 -0.269 -0.151 -0.056 0.081  0.346

6 -0.050  0.316  -0.544 -0.363 -0.232 -0.110 0.058  0.480
3 -0.098  0.447 -0.756 -0.477 -0.353 -0.204 0.002  0.581
1 -0.285  0.676 -1.458 -0.779 -0.630 -0.456 -0.193  0.838

Panel C: Log-returns on variance swaps

18 -0.021  0.167 - -0.262  -0.131  -0.037  0.069  0.275
12 -0.034  0.195 - -0.313  -0.164 -0.057 0.078  0.297
6 -0.090  0.264 - -0.451  -0.265 -0.117  0.057  0.392
3 -0.181  0.365 - -0.649 -0.435 -0.228 0.002  0.458
1 -0.572  0.640 - -1.508  -0.995 -0.608 -0.214  0.609

variance on the S&P 500 and returns on variance swaps with different maturities ranging
from one to 18 months are presented. Panel A presents sample statistics of realized
variance scaled to yearly standard deviation, Panel B presents simple returns on variance
swaps, and Panel C presents log-returns on variance swaps. The mean monthly realized
variance over the sample is equal to 16.2% p.a., with a standard deviation of 9.5%.
Furthermore, the distribution of monthly realized variance is right-skewed, indicated by
the quantiles of the distribution.

The first observation from Panel B of Table 7 is that, on average, returns on variance

swap returns are negative. This result is in line with a positive variance risk premium
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for the market portfolio as in Bollerslev et al. (2009) and Drechsler and Yaron (2011).
Economically, a negative expected return on a variance swap indicates that if an investor
wants to hedge variance risk, she pays a risk premium. The premium the investor pays
for holding a variance swap is decreasing in the maturity of the variance swap. A variance
swap with maturity longer than one month has exposure toward realized variance in the
next month and toward expected variance for the remainder of the contract. Dew-Becker
et al. (2017) show that the premium for hedging realized variance the next month is
much larger than for hedging expected variance, and, therefore, the premium for holding
a variance swap is decreasing in the maturity. Moreover, returns on variance swaps are
volatile, as seen in the third column of Panel B in Table 7 and the volatility is decreasing in
the maturity of the variance swap. However, the yearly Sharpe ratio is strongly increasing
in maturity, and the yearly Sharpe ratio for investing in variance swaps with one month
to maturity is very low (=~ —1.46), and similar to what Dew-Becker et al. (2017) find.
Furthermore, the distributions of variance swap returns are right-skewed, indicated by
the quantiles of the return distribution.

The sample average of the log-returns on variance swaps in Panel C of Table 7 are
lower than the sample average for simple returns in Panel B of Table 7. This is driven
by the fact that log-return distributions are less right-skewed than the simple return
distributions and, therefore, is the sample average lower. The distribution of one-month
returns is affected the most by the log-transformation. This result derives from the fact
that the approximation of log-returns is equal to simple returns is close if the volatility

of the return is low.

A.4 Variation in upside and downside variance swap prices

In this section, I show how the price of a variance swap can be decomposed as the sum
of an upside and downside variance swap. In addition, I show that most of the variation
in variance swap prices is attributable to variation in downside variance swap prices.

I start by showing how to decompose the variance swap as in Kozhan et al. (2013),

into the sum of an upside and downside variance swap. As shown in Kozhan et al. (2013),
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the payoff of the variance swap is given by:

Q(Tt,T) = 2(€”’T —-1- Tt,T)7

where 7, 7 is the log-return on a forward contract from time ¢ to maturity 7". The payoft

of the upside and downside variance swap are defined as follows:

Gu(rer) =2(e™" —1—ryp) - L(ryr > 0) and (27)

ga(rer) =2(e"T — 1 —ryp) - L(rr < 0), (28)

where 1(+) is an indicator function. Using the formula from Bakshi and Madan (2000), I
show that the prices of the payoff functions (27) and (28) are given by:

[ oo (D)
2 K
’ By | JEm K
C R p@
v = 2 / TR
d,t BIST) | Jo K2 )

such that VSt(T) = VSQS? + VSc(z,j;)- Note, by Proposition 1 of Kozhan et al. (2013)
there exists a unique trading strategy that perfectly hedges the payoff functions (28)
and (27). However, the inclusion of the indicator function in the payoff functions makes
this trading strategy infeasible to implement without strong assumptions on the process
of the underlying. Therefore, I will only focus in this analysis on the prices of the upside
and downside variance swap which is a combination of the cash flow and the discount
rate.

My definition of the upside and downside variance swap is similar to Andersen and
Bondarenko (2009) and Baele et al. (2019). While these papers focused on the average
upside and downside variance premium for a maturity of one month, my analysis fo-
cuses on time-series variation in upside and downside variance swap prices and I include

maturities from one-month up to 18 months. Moreover, in some other studies, the condi-
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tioning is different in the pricing equation than in the calculation of the realized payoff.
For instance, Kilic and Shaliastovich (2019) and Dew-Becker et al. (2017) use a similar
specification for the upside and downside variance swap price, but in order to calculate
realized payoff they condition on intraday or daily returns. Hence, their realized payoff
conditions on a different set of events compared to the pricing equation, for which the
condition is whether the stock price at maturity is above or below the current forward
price. This blurs the comparison of the realized payoff and price of the upside and down-
side variance swap, and, therefore, does not identify the upside and downside variance
discount rate well.

I derive an identity to decompose variation in the variance swap price into variation
due to the upside and downside variance swap price, in the following way (I suppressed

the constants):

vng) = log (VSI(E) + VSé?) R p1(T)vsl(3;) + (1 - p1(T))vsgt),

cov(vng), pl(T>USI(3;)) N COV(US,ST), (1—p (T))'Usé?)

(T)

1 (T)
var(vs; ') var(vs; ')

Q

== bu + bd.

The coefficients b, and b, are estimated in two stages, in the first stage I estimate p;(7)
using a simple regression and in the second stage b, and b; are estimated with a simple
regression using p;(7T') from the first stage. Similar to before, the sum of the coefficients
should be close to one, and if this is the case it indicates that this log-linear approximation
is, in fact, a good approximation. The results these second-stage regressions are presented
in Table 8. The main result from Table 8 is that the main driver of variation in the
variance swap price is the downside variance swap price. This result makes sense, because
an important determinant of the variance swap price is crash risk. Overall, the importance
of the downside variance swap price increases in the maturity of the variance swap (except
for the one-month variance swap). Finally, the sum of the coefficients b, and b, is very

close to one, which indicates that the log-linear approximation is a good approximation
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Table 8: In this table the results of the decomposition of the variance swap price into the upside and
downside variance swap price are presented. The definition of the coefficients b, and by are given in
equation (29). The t-statistics of the coefficients are given in parentheses and are calculated using
Newey-West standard errors with 50 lags.

Dependent variable: pl(T)vsl(g;) (1—p (T))vsg?
Maturity b R? ba R?

(t-stat.) (t-stat.)

18 0.256  0.859 0.742 0.980
(19.18) (57.96)

12 0.275  0.865 0.722 0.978
(16.58) (45.13)

6 0.368  0.886 0.634 0.956
(20.74) (50.42)

5 0.371  0.923 0.635 0.970
(22.96) (56.47)

1 0.314  0.957 0.687 0.991
(27.06) (64.09)

for the log-price of the variance swap.

A.5 Decomposition of variance swap prices in a subsample

In this section, I show that the results of Subsection 3.1 are robust to running the pre-
dictive regressions on a subsample. The analysis is done on the sample period starting in
September 2005, and the reason is that Cboe introduced Long-Term Equity Anticipation
Securities (Leaps) for the S&P 500 in this month. Leaps are option contracts with the
same specifications as before, only with a maturity up to three years. Cboe lists these
options once every year, and the option expire on the third Friday in January. For this
reason, I can obtain a balanced panel of variance swap prices up to a maturity of 24
months using interpolation on the sample period from September 2005 up to June 2019.
To decompose the variance swap prices on this subsample, I run the predictive regressions
of equations (12) and (13).

Table 9 has two main takeaways. First, the results on this subsample are highly similar
to the results over the total sample presented in 3.1. Second, the pattern documented

in the term structure of the variance price decomposition continues to hold for longer
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Table 9: This table shows the results of the predictive regressions of equations (12) and (13), in which the
variance swap price is the independent variable. t-statistics are represented in brackets and are computed
using Newey-West standard errors with number of lags equal to T

Dependent variable: Yrv 44T Yrp t+T

Maturity bry R? brp R?
(t-stat.) (t-stat.)

94 -0.205 0.023 -1.239 0.454
(-0.61) (-3.88)

13 0.161 0.014 -0.844 0.263
(0.65) (-3.68)

12 0.502  0.120 -0.495 0.109
(2.81) (-2.81)

6 0.772 0.274 -0.231  0.030
(4.93) (-1.42)

3 0.951 0.414 -0.048 0.002
(9.18) (-0.44)

1 1.130  0.565 0.130 0.017
(14.55) (1.67)

maturities. That is, the variance swap price for contract with 24 months to maturity is
solely driven by risk premia. Notably, the coefficient b,,, is less than -1 which indicates the
variation in the variance swap price is larger than the variation in risk premia. However,

the coefficient is not significantly different from -1.

A.6 VAR specification to obtain expected variance in levels.

In this section, I explain how to decompose the price variation in variance swap prices
in levels (identity 10) rather than in logs (identity 6) using a VAR. I focus on the same

VAR, only model stock market variance in levels RV; rather than in logs rv;, as follows:

Zt_|_1 = LZt + €t+1 and (30)

/
ZtI(RVt pc,gl) pc,@ DEFt>-
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Equivalent to the definition of Er(VT ,)5 and Er(pT % for log variance swap prices, expected

variance and risk premia for variance swap prices in levels are defined as follows:

T
By, =E> RV, and

i=1

T
T T—i+1
By, =By vPLTY,

+1
i=1
These expectations are obtained using the VAR of this section by:

B = (L4024 L7)z and

T T T
Eép),t = El(%v),t - VSt( )7

where the second equality follows by the identity of variance swap prices in levels.

Table 10: This table presents the estimated coefficients of the VAR of Equation (30).
t-statistics are presented below the estimates in parentheses. The sample period for the
dependent variables is January 1996 to June 2019, with 282 monthly data points.

Coefficients VAR model
RV, p?  pd?  DEF, R?

RViyy 056 002  -006 028 053
(9.58)  (0.62) (-2.85) (3.21)

pest), 0.14  0.86 0.00 0.05 0.85
(2.19)  (27.50)  (0.16)  (0.49)
pe), 0.01 013 085  -0.04  0.75

(0.11)  (3.28) (25.96) (-0.30)

DEF,; 003  -001  -001 096 094
(1.93)  (-0.93) (-1.05) (46.44)

In the following, I show that the current specifications of the VAR are able to estimate
variance expectations and risk premia effectively. I test this by estimating the same
predictive regressions of the future variance and future returns on the variance swap as

before, only in this case variance expectations and risk premia obtained from the VAR
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are used as the predictive variables. The regressions are specified as follows:

Yrvit+T = Y0,rv + Vv © Eﬁzjl)t + Yorv - ( - Eﬁgj&) + ux_T and (31)

T T r
~Yrpt+T = Yo,rp T Viap Efvl + Y2,rp ( - Elgp,%) + UthrT- (32)

If the VAR is correctly specified, I should find the following: <;,, = 1 in the case
of regression equation (31) and v;,, = 1 in the case of regression equation (32). In
case expectations are obtained using the identity for variance swap prices in levels, the
variables in regressions (31) and (32) have to be adjusted accordingly. Table 11 presents

the results of both specifications.

Table 11: The results of the predictive regressions of equations (31) and (32) in which the
expected realized variance and expected risk premia are the independent variables. The
columns indicated by yyy 147 and —yup 47 (Yrv+7 and —yrp +7) use the VAR estimates
of Table 2 (10) to obtain expected variance and risk premia. ¢-statistics are represented
in parentheses and are computed using Newey—West standard errors with number of lags
equal to T

Yrvi+T —Yrpt+T YRV t+T —YRPt+T
(T) (T) (T) (T) (T) (T) (T) (T)
Erv,t _Erp,t Erv,t _Erp,t ERV,t _ERP,t ERV,t _ERP,t

1.04 0.35 -0.04 0.65 1.01 0.10 -0.01 0.90

r=1 (18.11)  (1.20) (-0.74) (2.27) (6.69) (0.36) (-0.09) (3.36)
r_5 096 014 003 084 08 012 015 112
(13.24) (0.52) (0.44) (2.97) (7.55) (-0.38) (1.33) (3.53)
7_g 102018 000 079 078 -0.05 022 105
(7.72)  (0.73) (-0.03) (3.08) (4.74) (-0.20) (1.33) (4.44)
1y 110 012 -009 082 071 004 029 096
(4.54)  (0.58) (-0.34) (3.64) (3.43) (0.23) (1.40) (5.04)
7_1g 094 001 009 096 059 002 041 098

(3.67) (-0.03) (0.35) (4.06) (3.06) (0.10) (2.10)  (6.20)

The main result from Table 11 is that, indeed, expected stock market variance and
risk premia are effectively estimated using the VAR. First, focusing on the regressions

to predict future variance, Columns ¥y y7 and yry.+7, the results show that future
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variance is solely predicted significantly by expected variance and not by risk premia.
Moreover, the regression coefficient of variance expectations, Columns Eg ) and Eg,{t,
show that the estimated coefficient is relatively close to one for each maturity, and this
shows that the VAR is able to capture stock market variance beyond one month. Finally,
the estimated coefficient EP({:I\;),t decreases in the maturity which suggests that the VAR
for log stock market variance is better able to recover long-term variance than the VAR
for stock market variance in levels.

Second, focusing on the regressions to predict realized risk premia, Columns —,p, ++7
and yrp 47, the results show that future realized premia are predicted significantly by
expected risk premia. Furthermore, the regression coefficient of risk premia, Columns
—Er(;‘: 35 and Eg;)’t, show that the coeflicient is not significantly distinct from one. In sum,

Table 11 shows that the utilized VARs are able to effectively recover short- and long-term

expected variance and risk premia effectively.
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Internet Appendix A

Impulse response functions of the VAR

In this section, I show the impulse response function of stock market variance in response
to a change of each of the other variables in the VAR of equation (15) in the main paper.
The impulse responses are presented in Figure TA1.

Figure IA1: This figure plots the monthly impulse response functions of stock market variance in response
to a change of the variables in the VAR. The scale of the y-axis is in standard deviation of stock market
variance, where each of the variables increases by one standard deviation at time 0. The top-left graph
plots the responses to a change in rv, the top-right graph plots the responses to a change in pc"), the
bottom-left graph plots the responses to a change in pc(®), and the bottom-right graph plots the responses
to a change in DEF.
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Figure IA1 plots the impulse response functions of stock market variance for a horizon
up to 36 months. The top-left graph shows that there is very little persistence in stock
market variance, if the current level increases. The top-right graph shows that an increase
in pcM) increases future stock market variance up to 10 months forward. The bottom-left
graph shows that an increase in pc® decreases future stock market variance and the
shock is more persistent than a shock in pc™™. Finally, the bottom-right graph shows
that shocks towards DEF' are the most persistent and, therefore, affect long-term stock

market variance.

Internet Appendix B

Different specifications of the VAR

In this section, I show that the results of the decomposition of variance swap prices are
robust to a variety of different specifications of the VAR. Many of the variables included
have been shown by prior studies to be important state variables that predict stock market
returns or stock market variance. In Table IA1, I show the results of the decomposition

of variance swap prices for the following specifications:

/
1. 2z, = (mt pcgl) pc@) . In this specification the default spread is excluded in

order to alleviate any concerns induced by the persistence of the default spread.

!/
2.z = (mt pcgl) pcgz) Tvt—ls,t—l) . In this specification lagged long-term stock

market variance is included. rv;_;3,—; is defined as the log of realized variance in
the past year, and lagged one month additionally such that the variable does not

overlap with rv;.

/
3.z = (Wt pcgl) pcf) p6t> . In this specification the log of smoothed price-

earnings ratio is included, because Campbell et al. (2018) show that it predicts
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future stock market variance.

/
4. 2z = <7“Ut pcgl) chZ) def, pe, T0t13,t1> . In this specification all state vari-

ables used in the previous analyses are included.

Table TA1: This table shows the results of the variance decomposition of variance swap prices using
equation (19). Note that the (co)variances of the third, fourth, and fifth columns are scaled with the
variance of the second column such that the sum of the three (co)variances equals one. Standard errors
are computed using the Delta method.

a7, Toay  20wvvds o2 Otar  ~20wv.var
T o3 o3 o3 o3 o3 o3
(s-e.) (s-e.) (s-e.) (s-e.) (s-e.) (s-e.)
Specification 1 Specification 2
0.148  0.678 0.174 0.423  0.604  -0.027
. (0.102) (0.297) (0.229) (0.291) (0.233) (0.335)
0.750  0.201 0.049 0.855  0.223  -0.078
° (0.217) (0.126) (0.213) (0.258) (0.126) (0.286)
1.200  0.035  -0.235 1.200  0.035  -0.236
: (0.124) (0.018) (0.136) (0.124) (0.018) (0.136)
Specification 3 Specification 4
0.227  0.800  -0.028 0.564  1.016  -0.580
. (0.176) (0.360) (0.429) (0.306) (0.353) (0.540)
0.774  0.219 0.007 1.040  0.443  -0.482
° (0.223) (0.135) (0.239) (0.272) (0.175) (0.369)
' 1.200  0.036  -0.236 1.200  0.035  -0.236

(0.124) (0.019) (0.136)  (0.124) (0.018) (0.136)

The results in Table IA2 show that the main result of the paper holds in each of the speci-

fications; that is, short-term variance swap prices mainly driven by variance expectations,
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whereas long-term variance swap prices are mainly driven by risk premia. Moreover, the
decomposition of the one-month variance swap price shows that the variables other than
pcgl) and pc§2) add little in terms of predicting the one-month variance. The variables
mostly add something for long-term stock market variance, due to the persistence of each
of the variables. To test how well each of the specifications estimates variance expecta-

tions and risk premia, I run the following regressions(the same as equations (31) and (32)

in the main paper):

T T rv
Yrvt+T = V0,rv + My - Er(v,z + Y2,rv ( - E\(fdit) + Upgr and

vdr

—Yvdrt+T = Yo,vdr T V1,vdr * EEVTi + Y2.vdr ( - Eggt) + Upyp-

In case variance expectations and risk premia are estimated effectively, I should find

Yirv = V2,vdr = 1 and Y2rv = Vivdr = 0.



Table TA2: This table presents the results of the predictive regressions of equations (31) and (32) in
which the expected realized variance and expected risk premia are the independent variables. t-statistics
are represented in parentheses and are computed using Newey-West standard errors with number of lags

equal to T'.

Vv Y2,rv Y1,vdr Y2,vdr Yiev V2,rv Y1,vdr Y2,vdr

(t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.)
Specification 1 Specification 2

2.184  -0.341 -1.163  1.299 1.026  -0.284 -0.004 1.223

. (5.94)  (-1.86) (-3.07) (7.11) (3.92) (-1.39) (-0.01) (5.81)

1.072  0.014  -0.057  0.939 1.024  -0.025 -0.011 0.973

° (8.23) (0.06) (-0.43) (3.80) (8.27)  (-0.10) (-0.08) (4.12)

1.075  0.765 -0.075  0.234 1.075  0.760 -0.075  0.239

: (16.23) (1.91) (-1.14) (0.58)  (16.17) (1.90) (-1.12) (0.60)
Specification 3 Specification 4

1.723  -0.161 -0.780  1.143 0.985 -0.058 -0.015 1.032

. (6.77) (-0.81) (-3.18) (6.06) (5.55)  (-0.32) (-0.08) (5.64)

1.076 ~ -0.016  -0.067  0.988 1.013  0.075 -0.009 0.915

° (8.72) (-0.07) (-0.53) (4.32) (9.98) (0.42) (-0.13) (4.87)

1.072  0.754  -0.075  0.245 1.037  0.257  -0.038  0.743

: (16.36) (1.91) (-1.13) (0.62)  (18.51) (1.17) (-0.67) (3.39)

Table IA2 shows that many VAR specifications are not able to obtain the one-month
variance discount rate, and long-term variance expectations. In particular, specifications
1 through 3 fail in obtaining the one-month variance discount rate effectively. It follows
that the default spread is an important variable in order to obtain this discount rate.
Furthermore, specification 1 and 3 predict long-term variance expectations which exceed

the realized variance. Finally, specification 4 does a good job in obtaining short-term risk
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premia as well as long-term variance expectations, and the results are very similar to the

results of the benchmark specification of the VAR.

Internet Appendix C

VAR using quarterly data

In this section, I show that the results continue to hold if the analyses are done at the
quarterly rather than monthly frequency. This is done to alleviate concerns that the
estimates based on monthly frequency overstate the persistence of the variables and,
therefore, create a bias in the variance expectations. The VAR is used to calculate quar-
terly stock market variance expectations and for this reason the variance swap rate with
three months to maturity is the shortest maturity considered in this exercise. Table A3

presents the estimation results.



Table TA3: This table shows the estimated coefficients of the VAR of equation (15) with t-values in
parentheses. All variables are normalized to have mean equal to zero, and pcgl) and pcgl) are additionally
standardized to have standard deviation equal to one. The sample period for the dependent variables is

March 1996 to June 2019, with 94 quarterly data points.

Coefficients VAR model

TV pct! pct? DEF, R?

ron <0031 0468 -0.267  0.448  0.459
(tstat)  (-0.17)  (3.07)  (-3.28)  (1.66)
pal 0013 0750 0.003  0.104  0.585
(tstat)  (-0.07)  (5.02)  (0.04)  (0.40)

pe® 0108 0294 0.696  0.140  0.619
(tstat.)  (-0.60)  (1.99)  (8.82)  (0.54)

DEF,,; 0.024 -0.025 -0.007 0847  0.709
(tstat.)  (0.46)  (-0.59) (-0.33)  (11.50)

Overall, the estimation results based on quarterly frequency are very similar to the
results based on monthly frequency. Variance expectations and risk premia are calculated
using these estimates and by adjusting equations (17) and (18) accordingly. Table IA4

presents the results.



Table IA4: This table shows the results of the variance decomposition of variance swap rates using
equation (19), based on the VAR estimated on quarterly data. Note that the (co)variances of the third,
fourth, and fifth columns are scaled with the variance of the second column such that the sum of the
three (co)variances equals one.

T var (US) % % _2.CO:;£;;’)EW)
18 0.220 0.218 0.665 0.117
12 0.227 0.434 0.505 0.060
6 0.274 0.824 0.206 -0.030
3 0.348 1.021 0.085 -0.107

The results of the decomposition of variance swap rates in Table IA3 are remarkably
close to the results of Table 3. Therefore, my results are robust whether the frequency of
the VAR is monthly or quarterly. Finally, I also decompose the variance swap rate using

the predictive regressions of equations (12) and (13). Table IA5 presents the results.



Table TA5: This table shows the results of the predictive regressions of equations (12) and (13) in which
the variance swap price is the independent variable. The frequency of the data is quarterly. t-statistics
are represented in parentheses and are computed using Newey-West standard errors with number of lags
equal to % -T.

Dependent variable: Yry 44T Yydr t+T
Maturity by R? byar R?
(t-stat.) (t-stat.)

0.240 0.029 -0.741 0.218

18
(1.21) (-3.76)
0540 0.120  -0.452 0.092

. (3.32) (-2.71)
0.836 0.303  -0.162 0.016

’ (5.48) (-1.04)

; 0.964 0417  -0.036 0.001

(8.05) (-0.30)

The similarity between the results of Table 1 and Table IA5 indicate that the results

of predictive regressions are robust to decreasing the frequency to the quarterly level.

Internet Appendix D

Appendix asset pricing models

In the following subsections, I discuss more the models considered in this paper in detail.
Section Internet Appendix D.1 discusses the model by Gabaix (2012), Section Inter-
net Appendix D.2 discusses Wachter (2013), and Section Internet Appendix D.3 dis-

cusses Drechsler and Yaron (2011).



Internet Appendix D.1

Variable disaster risk and CRRA preferences

In this subsection, I discuss the variable rare disaster model of Gabaix (2012). I use the

following specification from Dew-Becker et al. (2017):

ACt-‘,—l = e+ Oc€et+1 + Jc,t+17
Liyi = (1—pr)L+prLLi+ opepssn and

AdtJrl = N0cEct+1 — Ly - ]lJc,t;éo,

where €.441, €041 ~ N(0,1) and J.;4q is the jump process (rare disaster). The state
variable L; captures the exposure of the dividend process toward the rare disaster, and
this exposure varies over time. During times when L, is large, the stock market is affected
more by consumption disasters than when L, is low. The rare disaster process is modeled

as a compound Poisson process and is defined as follows:

N¢
Jp = Z &1, where Ny ~ Poisson()\;) and &; ¢ ~ N(ud, ad). (33)
i=1
Note that in the model by Gabaix (2012) A\; = \; that is the jump intensity does not vary

over time. The representative agent in the model has power utility preferences with risk

aversion parameter v, which yields the following stochastic discount factor:

Ct+1>7’

Min = 5( C,

where ¢ is the utility discount rate. I use the calibration from Dew-Becker et al. (2017),
which is calibrated to match the risk premium on one-month variance swaps, and is given

in Table TA9 of Appendix Internet Appendix D.1.
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In order to obtain an equation for the realized stock market variance, I use the fol-

lowing log-linear stock market return approximation:
Tmi+1 R Ko + K1pdip1 — pdy + Adyyq, (34)

where kg, k1 are log-linearization constants and I use the follow approximation: pd; =
zo + z1L;. The stock market return is then driven by two Gaussian shocks (thH and
€L7t+1) and a jump shock (Lt . ]l(]c’t7£0). I follow Dew-Becker et al. (2017), who assume
that, in the absence of a disaster, the shocks to consumption and the variable disaster
have a deterministic variance. In the case of a disaster occurring, Dew-Becker et al. (2017)
assume that the largest daily decline in the value of the stock market is F'%. Under these

assumptions, realized variance over the next period equals the following:
RVisy = riziop + 0ol + F - Lil s, 0, (35)

where the first two summands correspond to the variance from the consumption process
and variable rare disaster process, and the last summand is the realized variance from
the jump process.

Equation (35) offers a first insight into the drivers of variance risk in the model by
Gabaix (2012). Realized variance depends on whether the consumption disaster hits the
economy. Given that the consumption disaster is a (very) undersirable outcome of the
agent, she is willing to pay a large price to hedge this risk. Furthermore, it follows from
equation (35) that the disaster size L; drives variation in expected stock market variance.

The variance swap rate at time ¢ with 7" months to maturity is computed as the sum

of risk-neutral realized variances of equation (35), as follows:

T T
VST = B (RViss) =T o o1 D Bi(Livia), (%)
t=1

=1

11



where vy = k22202 + n?0? is the diffusive variance and v; = F - EQ (]l Jc;éo). These

equations show that the size of the disaster L; also drives the risk premium embedded in
the variance swap rate.

The calibration of the model by Gabaix (2012) is from Dew-Becker et al. (2017) and
given in the following table.

Table IA6: Calibration of the model by Gabaix (2012).

Parameter Value Parameter Value
Lhe 0.01/12 0. 0.02/4/12
L -0.3 o 0.15
L —1log(0.5) oL 0.04
0oL 0.871/12 n 5
s 0.96/12 v 7

0.01

12

Note that in the calibration of Dew-Becker et al. (2017) the risk-aversion is raised to
7 in order to match the Sharpe ratio on one-month variance swaps.

In the following, I present more details of the results from the simulation study for
the model by Gabaix (2012). First, I present sample statistics of realized variance and
risk premia in the model. The results of this simulation study are represented in the

following table.
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Table IAT: This table presents sample statistics of the realized variance and risk premia in the model
by Gabaix (2012). The mean, standard deviation and Sharpe Ratio of the 18-, 12-; 6-, 3-, and 1-month
simple risk premia are presented. The second column consists of the empirical result, and the third,
fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study, respectively.

Statistic Data Model

Est. 5% 50%  95%

Realized variance

E(RV) 0.162 0.115 0.116  0.117
o(RV) 0.095 0.000 0.021  0.043

risk premia

E(r™®)  -0.006 -0.024 -0.021 -0.017
o(r®)  0.187 0.021  0.056  0.109
SR(r1®)  -0.106 -4.091 -1.278 -0.572
E(r)  -0.013 -0.037 -0.032 -0.025
o(rt®)  0.227 0.021  0.080 0.161
SR(r*»)  -0.202 -5.976 -1.326 -0.578
E(r®)  -0.050 -0.075  -0.063 -0.050
o (r®) 0.316 0.023  0.155 0.319
SR(r®)  -0.544 -11.028 -1.362 -0.584
E(r®)  -0.098 -0.150 -0.127 -0.099
o(r®) 0.447 0.028 0.308 0.636
SR(r®)  -0.756 -17.644  -1.370 -0.585
E(r®)  -0.285 -0.451 -0.380 -0.296
o(rt) 0.676 0.068 0.926  1.905
SR(r®)  -1.458 -22.305 -1.366 -0.585
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Table IA7 confirms the finding of Figure 3 that the model by Gabaix (2012) is able
to capture the strongly increasing term structure of expected variance swap returns doc-
umented in the data. Moreover, Table IA7 shows that the volatility of variance swap
returns varies a lot across simulation sets, and this results from the fact that the prob-
ability of a disaster is small (1% p.a.). If no disasters occur in a simulation set, the
volatility of variance swap returns is very low. Finally, I conclude from Table TA7 that
the model by Gabaix (2012) is not able to capture the dynamics of empirical stock market
volatility.

In the following, I decompose variance swap rates in the model by Gabaix (2012) for

each simulation set seperately. Table TA8 presents the results.
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Table TA8: This table presents the results of the simple variance decomposition of variance swap rates
in the data and in the model by Gabaix (2012). The results of the data are from Table 1, with standard
errors in parentheses. The regression coeflicients of the model are estimated for each simulation set, and
the mean and standard deviation of the regression coefficients are represented in the table.

Maturity Data Model
brv bvdr brV del“

0.245 -0.728 0.002 -0.985
18

(0.185) (0.188) (0.028) (0.125)

0.558 -0.419 0.002 -0.989
12

(0.151) (0.158) (0.028) (0.101)

0.833 -0.168 0.002 -0.994
6

(0.119) (0.122) (0.028) (0.069)

0.957 -0.040 0.002 -0.997
3

(0.083) (0.086) (0.027) (0.047)

1.101 0.101 0.002 -0.998
1

(0.056) (0.056) (0.027) (0.027)

Table TA8 shows that the result of Figure 1 is stable across the simulation sets. In
particular, short-term variance swap rates are solely driven by risk premia, and this
number is very similar across simulations, and, therefore, it is strong evidence that the

model is not in line with the data.
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Internet Appendix D.2

Time-varying disaster risk and Epstein-Zin preferences

In this subsection, I discuss a discrete version of the model by Wachter (2013). Similar
to Gabaix (2012), the consumption disaster risk varies over time. However, in the model
by Wachter (2013), the disaster intensity, rather than the disaster size, varies over time.
Furthermore, the agent in the model has preferences as in Epstein and Zin (1989), rather
than CRRA preferences.

Consumption and dividend growth in the model are given by

Acit1 = pte + 0c€ery1 + S and

Adt+1 = nAct+17

where €. ~ N(0,1) and J; is a compound-Poisson as in equation (33) of the model
by Gabaix (2012). However, in this model the intensity of the consumption disaster is

time-varying and follows the following square-root process:

Air1 =N+ (1 — @)ux + UA\/)\_tEA,tHa

where €y, ~ N(0,1). The investor has Epstein-Zin utility with elasticity of intertemporal

substitution (EIS) equal to one and, therefore, is the log-utility given by

vt:(l—ﬂ)cﬁ—lﬂ

. 10gEt exp (Ut+1(]- - Oé)),

where [ is the utility discount rate and v = 1 — « is the risk aversion parameter. The
calibration of the model is from Dew-Becker et al. (2017) and is given in Table TA9 of

Appendix Internet Appendix D.2.
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An equation for the realized variance in the model by Wachter (2013) follows from

the log-linear market return which is given by

Tmi+1 R Ko + K1pdip1 — pdy + Adyyq,

where kg, k1 are log-linearization constants for the log-market return and pd; is the log
price-dividend ratio and is approximately linear in the state variable: pd; ~ zy + z1\;.

Under these assumptions, realized variance in this model given by

RV = 007 + k12103 — Fds, (37)

where the first two summands correspond the variances of the diffusive shocks €. ;11 and
€xt+1 and the last summand corresponds to the realized variance from the consumption
disaster.

Equation 37 offers a first insight into the pricing of variance risk in the model by Wachter
(2013). The first summand of equation (35) is constant over time; however, the second
summand scales with the level of the intensity of the consumption disaster. This results
from the fact that the disaster intensity follows a square-root process, which indicates
that future variance of the disaster intensity scales with the current level of the disaster
intensity. Therefore, even in the absence of consumption disasters, stock market variance
is time-varying in this model. This result is different from the model by Gabaix (2012)
in which the variance of the stock market only varies if a disaster hits the economy. The
third summand of equation (37) corresponds to the stock market variance that follows
from the disaster process.

Variance swap rates are computed as the risk-neutral expectation of the sum of realized

17



variances of equation (37) of period t + 1 until ¢ + T, as follows:

T T
VS =S EX(RViss) =T - wo+ o1 Y E%(Asic), (38)
t=1 i=1

where vy = n?0? and v; = kizfo} — Fnexp ( — apg + 3a03)(1g — aol). Due to the
Epstein-Zin preferences of the agent, the risk-neutral dynamics of the disaster intensity
are different from the real-world dynamics in the sense that states with low lifetime
utility, which correspond to states with high disaster intensity, receive a larger risk-neutral
probability. This yields the agent a premium for instruments that offer protection against
states in which disaster intensity is high, and this feature is not present in a model with
CRRA preferences.

The calibration of the model is given in Table IA9.

Table TA9: This table shows the calibration of the model by Wachter (2013).

Parameter Value Parameter Value

[he 0.0252/12 0. 0.02/+/12
L —0.15 04 0.10

X 0.0355/12 o5 0.067/12

o) exp(—0.08/12) &} exp(—0.012/12)
Ui 2.6 v 49=1—-«

Note that in the calibration of Dew-Becker et al. (2017) the risk-aversion is raised to
4.9 in order to match the Sharpe ratio on one-month variance swaps as closely as possible.
In the following, I present more details of the results from the simulation study for
the model by Wachter (2013). First, I present sample statistics of realized variance and
risk premia in the model. The results of this simulation study are represented in the

following table.
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Table TA10: This table presents sample statistics of the realized variance and risk premia in the model
by Wachter (2013). The mean, standard deviation, and Sharpe ratio of the 18-, 12-; 6-, 3-, and 1-month
simple risk premia are presented. The second column consists of the empirical result, and the third,
fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study, respectively.

Statistic Data Model

Est. 5% 50%  95%

Realized variance

E(RV) 0.162 0.094 0.123  0.168
o(RV) 0.095 0.028 0.048 0.073

risk premia

E(r™®)  -0.006 -0.015 -0.010 -0.005
o(r®)  0.187 0.080  0.101  0.179
SR(r1®)  -0.106 -0.556 -0.357 -0.097
E(r)  -0.013 -0.019 -0.014 -0.005
o(rt®)  0.227 0.084 0.118  0.256
SR(r?) -0.202 -0.721 -0.412 -0.075
E(r®)  -0.050 -0.032  -0.024 -0.007
o (r®) 0.316 0.086 0.183  0.502
SR(r®)  -0.544 -1.284  -0.464 -0.048
E(r®)  -0.098 -0.060 -0.045 -0.009
o(r®) 0.447 0.074  0.338  1.008
SR(r®)  -0.756 -2.674 -0.459 -0.031
E(r®)  -0.285 -0.173 -0.127 -0.018
o(rt) 0.676 0.045 0.993  3.058
SR(r®V)  -1.458 -12.294  -0.442 -0.019
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Table IA10 confirms the finding of Figure 3 that the model by Wachter (2013) is not
able to capture the strongly increasing term structure of expected variance swap returns
documented in the data. Moreover, Table IA10 shows that also in the model by Wachter
(2013) the volatility of variance swap returns varies a lot across simulation sets, and this
results from the fact that the probability of a disaster is, on average, small (3.55% p.a.).
If no disasters occur in a simulation set, the volatility of variance swap returns is very low.
Finally, I conclude from Table TA7 that the model by Wachter (2013) does a better job
than the model by Gabaix (2012) of capturing the empirical dynamics of stock market
volatility.

In the following, I decompose variance swap rates in the model by Wachter (2013) for

each simulation set separately. Table IA11 presents the results.
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Table IA11: This table presents the results of the simple variance decomposition of variance swap rates
in the data and in the model by Wachter (2013). The results of the data are from Table 1, with standard
errors in parentheses. The regression coefficients of the model are estimated for each simulation set,
and the mean of the regression coefficients is represented in the table with the standard deviation in
parentheses.

Maturity Data Model
brv bvdr brv bvdr

0.245 -0.728 0.973 -0.037

18
(0.185) (0.188) (0.040) (0.040)
0.558 -0.419 0.963 -0.033

12
(0.151) (0.158) (0.029) (0.032)
0.833 -0.168 0.954 -0.033

6
(0.119) (0.122) (0.021) (0.024)
0.957 -0.040 0.950 -0.039

3
(0.083) (0.086) (0.019) (0.020)
1.101 0.101 0.948 -0.052

1
(0.056) (0.056) (0.018) (0.018)

Table IA11 confirms the finding of Figure 1 that variance swap rates are driven by
variance expectations in the model by Wachter (2013). Moreover, this result is very stable
across the simulation sets, as indicated by the low standard deviation of b,,. Therefore,
this is strong evidence that the model is not in line with the data because my analysis
shows that long-term variance swaps are mostly driven by risk premia.

In the following subsection, I discuss long-run risk model by Drechsler and Yaron

(2011).
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Internet Appendix D.3

Long-run risk

In this subsection, I discuss the long-run risk model by Drechsler and Yaron (2011). This
model is a generalization of the long-run risk model by Bansal and Yaron (2004) in order to
incorporate stylized facts regarding the variance risk premium. The model is generalized
in the sense that the long-run mean consumption growth and the stochastic volatility
incorporate jump shocks. Moreover, the long-run mean of the stochastic volatility process
varies over time. The agent in the model has Epstein-Zin preferences, as is standard in
long-run risk models. An important difference between the long-run risk model and
the previously discussed consumption disaster models is that there are no consumption
disasters in the long-run risk model. However, the state variables, which govern the future
consumption growth rate and future consumption volatility, are exposed to jump risk.
Drechsler and Yaron (2011) specify the state vector of the economy as a VAR with

Gaussian and jump shocks, as follows:

Actyy

Ti41

Yip = = p+ FYi + Gizipr + Jiya, (39)

)
Ot41
2
O¢+1

Adyi4
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where, p is a vector with the means of each state variable, F' is specified as follows:

(@)
(@)
—~
—_
|
™
q
S—
he)
q
(@)

GG}, is the variance-covariance matrix, z;11 ~ N(0,I) is a vector of Gaussian shocks,
and J;,1 is a vector of jump shocks. Jumps are compound-Poisson as in equation (33)
with intensity A;, which can vary over time, similar to the model by Wachter (2013).
Drechsler and Yaron (2011) consider a specification with jumps in z, and o7, where J, ,
is compound normal distributed and J,; is compound gamma distributed.

The first and last element of Y; are the consumption and dividend growth, respectively.
These processes have a time-varying mean, which is driven by the persistent process x,
the second element of Y;. The third element of Y; is the long-run mean 2 of the stochastic
volatility process o7, the fourth element of V;.

The variance-covariance matrix, G;G}, which governs the stochastic volatility of the

model, and the jump intensity, );, are affine in the state variable o

GG, =h+ Hyo} and

)\t = lo + llO' 152 y
and, therefore, all variation in either the jump intensity or stochastic volatility is driven

by o2

The representative agent in the model has Epstein-Zin utility for which the stochastic
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discount factor is given by

0
mip1 = 010g5 — EACt_A'_l + (0 — 1)Tc,t+17

1—v

where 0 = 1

0 is the utility discount rate, v is the risk aversion, 1 is the EIS, and
Tett1, the return on wealth. Drechsler and Yaron (2011) solve a log-linear version of the
model and use pdi11 ~ Ao, + A}, Y41, which says that the log price-dividend ratio is
linear in the state variables. Under these conditions is the log-linearized market return,

written as follows:

Pmas1 =To + (BLF — A} + BlGyz41 + BlJyia, (41)

where Ay, Al

m?

ro and B are given in equations (8) and (9) of Drechsler and Yaron

(2011). Realized variance during period ¢ + 1 is equal to

RViy1 = BLhB, + B.H,0; B, + B, J;41J;.1B;. (42)

The assumption underlying this realized variance equation is that the Gaussian shocks
241 occur diffusively during period ¢ + 1, while jumps happen on a single day.
Equation (42) offers a first insight into the pricing of variance risk in the model by
Drechsler and Yaron (2011). The first summand corresponds to the constant variance
coming from the Gaussian shocks in the model. The second summand corresponds to the
stochastic variance coming from the Gaussian shocks for which the variance is governed
by the state variable o?. Finally, the third summand corresponds to the realized variance
coming from the jump realizations in the state variables x; and ¢2. Similar to the model by
Wachter (2013) is time-variation in the realized variance coming from stochastic variance

of Gaussian shocks and from the jump shocks.
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The variance swap rate at time ¢t with maturity 7' is computed as the risk-neutral

expectation of the realized variance of equation (42), as follows:

T

T
VS = SRRV = T B )

t=1 t=1

where,
vg = B'hB, and v, = B.H,B, +1, - B.V°B,.

In the last equation, € is a matrix that has the risk-neutral variance of the disaster real-
ization on the diagonal and corresponds to equation (21) of Drechsler and Yaron (2011).
In order to derive these equations, I used ly, = lp, = 0 and l; , = [; , from the calibration
of Drechsler and Yaron (2011). The full calibration of the model is from Drechsler and
Yaron (2011) and presented in Table 5 of their paper, and I use the calibration in which
jump shocks in the x; process follow a compound-Poisson in combination with a normal
distribution.

In the following, I present more details of the results from the simulation study for
the model by Drechsler and Yaron (2011)."4! First, I present sample statistics of realized
variance and risk premia in the model. The results of this simulation study are represented

in the following table.

TAIT thank Friedrich Lorenz for sharing the codes to solve the model.
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Table IA12: This table presents sample statistics of the realized variance and risk premia in the model by
Drechsler and Yaron (2011). The mean, standard deviation, and Sharpe ratio of the 18-, 12-; 6-, 3-, and
1-month simple variance swap returns are presented. The second column consists of the empirical result,
and the third, fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation
study, respectively.

Statistic Data Model

Est. 5% 50%  95%

Realized variance

E(RV) 0.162 0.157  0.169  0.187
o(RV) 0.095 0.051 0.087 0.134

risk premia

E(r1®)  -0.006 -0.036 -0.026 -0.014
o(rt®)  0.187 0.191 0.276  0.387
SR(r(18)  -0.106 -0.654 -0.333 -0.128
E(r)  -0.013 -0.045 -0.032 -0.015
o(rt®)  0.227 0.232  0.343  0.488
SR(r(») -0.202 -0.659 -0.326 -0.109
E(r©®)  -0.050 -0.063 -0.043 -0.017
o (r®) 0.316 0.304 0.477 0.734
SR(r®)  -0.544 -0.686 -0.314 -0.084
E(r®)  -0.098 -0.089 -0.060 -0.020
o(r®) 0.447 0.394 0.671 1.144
SR(r®)  -0.756 -0.736  -0.309 -0.064
E(r®)  -0.285 -0.176  -0.116 -0.027
o(rt) 0.676 0.708 1.352  2.697
SR(rV)  -1.458 -0.820 -0.292 -0.036
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Table TA12 confirms the finding of Figure 3 that the model by Drechsler and Yaron
(2011) is not able to capture the strongly increasing term structure of expected variance
swap returns documented in the data. Moreover, it shows that the model predicts,
for each maturity, a volatility of variance swap returns, which is larger than observed
empirically. Finally, I conclude from Table IA7 that the model by Drechsler and Yaron
(2011) does a good job of capturing the empirical dynamics of stock market volatility.

In the following, I decompose variance swap rates in the model by Drechsler and Yaron

(2011) for each simulation set separately. Table IA13 presents the results.

Table TA13: This table presents the results of the simple variance decomposition of variance swap rates
in the data and in the model by Drechsler and Yaron (2011). The results of the data are from Table 1,
with standard errors in parentheses. The regression coefficients of the model are estimated for each
simulation set and the mean of the regression coefficients are represented in the table with the standard
deviation in parentheses.

Maturity Data Model
brv bvdr brv bvdr

0.245 -0.728 0.349 -0.560
18

(0.185) (0.188) (0.105) (0.108)

0.558 -0.419 0.412 -0.502
12

(0.151) (0.158) (0.105) (0.107)

0.833 -0.168 0.506 -0.418
6

(0.119) (0.122) (0.097) (0.098)

0.957 -0.040 0.567 -0.379
3

(0.083) (0.086) (0.087) (0.086)

1.101 0.101 0.615 -0.385
1

(0.056) (0.056) (0.075) (0.075)
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Table TA13 confirms the finding of Figure 1 that short-term variance swap rates are
driven by variance expectations and long-term variance swap rates by risk premia. More-
over, this result is stable across the simulation sets, as indicated by the low standard
deviations of b,, and byq,. Therefore, this is strong evidence that the model predicts a
variation in short-term risk premia, which is substantially larger than observed empiri-

cally.
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