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Abstract
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empirically document a term structure where short-term prices vary due to fluctuations
in expected variance, while long-term prices vary due to fluctuations in variance risk
premia. In contrast, prominent asset pricing models predict that this term structure is
flat. Finally, my findings highlight that intermediary constraints are crucial in explaining
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of intermediaries in variance markets.
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In this paper, I analyze time-series variation in risk premia from investing in instru-

ments with direct exposure to stock market variance. I document economically sizable

variation in these risk premia, and show that they explain a substantial fraction of the

overall price variation in S&P 500 variance swaps. Afterward, I test whether prominent

consumption-based asset pricing models that feature variance risk to capture time varia-

tion in the equity premium are also able to match the observed variation in variance risk

premia. Furthermore, I analyze the variation in variance risk premia in detail, and find

that intermediary constraints (Cheng, 2019) and variance beliefs of investors (Lochstoer

and Muir, 2022) drive a significant fraction of the variation.

In theory, variation in variance risk premia is driven either by variation in preferences

regarding variance risk or by variation in the quantity of variance risk. Analyzing variance

risk premia therefore o↵ers important insights into preferences regarding variance risk and

into how this risk varies over time. Many prominent asset pricing models feature variance

risk as the main mechanism to drive variation in the equity premium, and the variance

market allows for a direct test of the pricing of variance risk. In asset pricing models,

variance risk is driven by large and sudden movements (i.e., jumps) in cash flows, such

as in consumption or dividend growth, or by jumps in the investment opportunity set,

such as in the long-run mean or volatility of cash flows. However, the literature has

not settled on the appropriate way of incorporating variance risk into an asset pricing

model. Analyzing the variation of variance risk premia allows me to contrast the empirical

findings on variance risk premia with the predictions of asset pricing models. This analysis

therefore o↵ers important insights into how variance risk should be incorporated into asset

pricing models. In sum, my contribution to the literature is threefold.

First, I empirically document a term structure in how variance risk premia a↵ect S&P

500 variance swap prices: fluctuations in short-term variance swap prices are predomi-

nantly driven by fluctuations in expected variance, while fluctuations in long-term prices

are predominantly driven by fluctuations in variance risk premia. In the spirit of Camp-

bell and Shiller (1988) for equity, I derive a present value identity for the logarithm of the

variance swap price or the actual variance swap price. These identities show that price
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fluctuations of S&P 500 variance swaps are due to fluctuations in expected stock market

variance or fluctuations in variance risk premia. Using predictive regressions, I show that

110.1% of the fluctuations in the one-month variance swap price is attributable to fluctu-

ations in expected variance and this percentage decreases monotonically to 24.5% for the

18-month variance swap price. At the same time, price-fluctuations due to fluctuations

in variance risk premia increase monotonically from -10.1% for one-month variance swaps

to 72.8% for 18-month variance swaps.1 The results are robust to using the present value

identity for variance swap prices instead of the identity for the logarithm of variance swap

prices.

Second, I show that prominent asset pricing models predict that this term structure

documented in the data is flat. In the model of Gabaix (2012), variance swap prices

fluctuate only due to variance risk premia fluctuations, but there is no di↵erential e↵ect

for maturities (i.e., the term structure is flat). In the model of Wachter (2013), variance

swap prices fluctuate only due to fluctuations in expected variance; because variance is

highly persistent, there is again little di↵erential e↵ect across the term structure. The

di↵erential between these two consumption disaster models is due to the fact that, in the

absence of disasters, stock market variance is constant in the model of Gabaix (2012).

Finally, the model of Drechsler and Yaron (2011) matches the empirical decomposition

of long-term variance swap prices relatively well. It is also able to match the empirical

variation in variance risk premia, however the model predicts that the fluctuations in

short-term variance swaps are also largely due to variance risk premia fluctuations—a

prediction that is not supported by the data.

Third, I analyze the drivers of fluctuations in variance risk premia for di↵erent matu-

rities. In particular, I show that investor beliefs over stock market variance (Lochstoer

and Muir, 2022) explain fluctuations in short-term variance risk premia and intermedi-

ary constraints (Cheng, 2019) explain fluctuations in short- and long-term variance risk

premia. Interestingly, the exposure of variance risk premia to intermediary constraints

1Notice that this percentage can be negative, because the coe�cient is estimated using a regression and
the sign of the coe�cient depends on the correlation between realized variance risk premia and variance
swap prices.
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increase in the maturity of the risk premia, indicating that long-term variance risk pre-

mia are a↵ected more by intermediary constraints than short-term variance risk premia.

This result could explain the excess volatility documented in Giglio and Kelly (2018), a

result that is often attributed to an overreaction in expectations of investors (Stein, 1989;

Giglio and Kelly, 2018). Instead, my results show that also this form of excess volatility

could be attributable to intermediary constraints. Finally, these results also show why

the models analyzed in this paper struggle to the observed variation in variance risk pre-

mia in the data, because the models do not feature intermediary constraints or biased

variance expectations.

Besides an assessment of asset pricing models with respect to the decomposition of

variance swap prices, I also analyze their predictions with respect to the term structure

of expected returns and of return volatilities on variance swaps. I show that all of the

analyzed models severely overestimate the one-month return volatility on variance swaps,

an indication that in their current calibrations one-month variance swaps are more risky

than in the data. However, despite this large degree of risk of the one-month contract,

the models of Wachter (2013) and Drechsler and Yaron (2011) do not match the empirical

risk premium on one-month variance swaps. This indicates either that the short-term

risks that are hedged using these contracts are not su�ciently severe or that the model

needs more extreme preferences regarding these risks in order to match the empirical risk

premium. All three models are able to match the expected returns on long-term vari-

ance swaps, but the models fail to capture its return volatility, those of Gabaix (2012)

and Wachter (2013) understating the return volatility whereas that of Drechsler and

Yaron (2011) overstates this volatility. This discrepancy between the models’ predictions

and the data is, however, much smaller than the discrepancy for the return volatility on

short-term variance swaps. In sum, these models incorporate variance risk to capture em-

pirical features of the equity premium, but fail to directly match empirically documented

features with respect to the pricing of variance risk. The reason for this failure is likely

due to fact that the analyzed models do not incorporate e↵ects of constrained interme-

diaries or investor beliefs which I show are important to describe empirical features of
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variance risk premia.

The main results of the decomposition of variance swap prices are established using

predictive regressions, however I show that the results are robust to specifying a vector

autoregression (VAR) to obtain expectations. Using the VAR, I show that variance risk

premia expectations are obtained e↵ectively and drive economically sizable variation in

returns on variance swaps. Predictive regressions show that a one standard deviation

increase in expected variance risk premia predicts an increase of 12.3% in the average

realized monthly returns of a one-month variance swap, and that this monotonically

decreases to an increase of 4.1% in average realized monthly returns of an 18-month

variance swap. Results indicate that hedging variance risk was expensive in the period

prior to the crash in 2000, and in the period post the crash of 2008, whereas in the

period between these crashes it was relatively cheap to hedge variance risk. Finally, the

time-series properties of one-month variance risk premia di↵er from those of the other

maturities. In particular, one-month variance risk premia tend to decrease during periods

rapidly increasing stock market variance, a result in line with Cheng (2019) and Lochstoer

and Muir (2022).2 I show that this negative correlation is a unique feature of one-month

variance risk premia, and that it weakens for long-term variance risk premia.

This paper contributes to several strands of the literature. First, I contribute to the

recent literature that tests the implications of asset pricing models in variance markets.

Bollerslev et al. (2009) and Drechsler and Yaron (2011) show that long-run risk models

are able to explain the sizable variance risk premium in the data, Gabaix (2012) and Seo

and Wachter (2019) show that rare consumption disaster models are able to explain

the implied volatility slope on S&P 500 options, and Bekaert and Engstrom (2017) and

Bekaert et al. (2020) show that habit models are able to explain the relation between

variance premium and consumption growth uncertainty. A paper by Dew-Becker et al.

(2017) shows that the model of Gabaix (2012) is able to explain the term structure of

2Lochstoer and Muir (2022) provide additional evidence of the finding of Cheng (2019). They show,
moreover, that a model in which an agent has slow-moving beliefs regarding stock market volatility
can reconcile the evidence of the negative correlation of stock market variance and the risk premium.
Slow-moving volatility expectations lead the agent to initially underreact to volatility news, followed by
a delayed overreaction.
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variance premia, and is the closest to the present paper. Distinctly though, I focus on

variance price fluctuations, and test which models align with the data on the basis of a

Campbell–Shiller decomposition of the term structure of variance swap prices.

Second, I contribute to the empirical literature on risk premia in variance markets.

Bollerslev et al. (2009), Kozhan et al. (2013), Dew-Becker et al. (2017), Eraker and Wu

(2017), Aı̈t-Sahalia et al. (2020), and Eraker and Yang (2022) show that risk premia are,

on average, sizable in variance markets. Moreover, Bollerslev et al. (2009) find that the

variance premium predicts future stock market returns, Bollerslev and Todorov (2011)

show that a substantial fraction of the equity premium is compensation for variance

risk, and Martin (2017) shows that risk-neutral variance is a lower bound for the equity

premium. Johnson (2017), Cheng (2019), and Lochstoer and Muir (2022) analyze time-

series variation in variance risk premia. Distinct from these studies, I study the impact

of variance risk premia fluctuations on variance swap prices, and obtain variance risk

premia from a present value identity using a VAR.

Third, I contribute to the literature on the impact of intermediary constraints for

risk premia in various financial markets. Building on the work of He and Krishnamurthy

(2013), Adrian et al. (2014) show the e↵ects of intermediaries in the cross-section of stocks,

Goldberg and Nozawa (2021) and He et al. (2022) show the e↵ects in the cross-section

of corporate bonds, He et al. (2017) and Chen et al. (2019) show the e↵ects in option

markets, and Cheng (2019) shows the e↵ects in the market for VIX-futures. Distinct from

these studies, I focus on the impact of intermediaries on the term structure of variance

premia, and document that long-term variance premia are more exposed to intermediary

constraints than short-term variance premia. Furthermore, my findings suggest that

intermediary constraints play a role in the excess volatility puzzle documented in Giglio

and Kelly (2018).

The remainder of the present paper is organized as follows. In Section 1, I derive

the present value identity for variance swap prices. Section 2 describes the data on

variance swaps. The results of the decomposition are presented in Section 3, and afterward

compared to the predictions of asset pricing models. I show, in Section 4, that the results
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are robust to specifying a VAR to obtain variance expectations, and Section 5 analyzes

the drivers of fluctuations in variance risk premia. Section 6 concludes.

1 Methodology

In this section, I present the methodology for decomposing S&P 500 variance swap prices

into expected S&P 500 return variance and variance risk premia. A variance swap is

a derivative security that pays the holder of the contract the realized variance of the

underlying up to maturity. Variance swaps are used to manage market variance risk, and

variance risk premia correspond to expected returns or expected payo↵s from holding a

variance swap.

In the subsection that follows, I formalize the cash flows of a variance swap before

deriving several closely related pricing identities for variance swaps.

1.1 Variance swap contract

A variance swap pays its holder the realized variance of the underlying from the inception

of the contract up to maturity. At maturity, the realized variance and the agreed upon

variance swap price are exchanged. The payo↵ of a variance swap at maturity T -periods

from origination time t is defined as follows:

payo↵t+T =
TX

i=1

RVt+i � V S
(T )
t , (1)

where RVt+i is the realized variance over period t + i and V S
(T )
t is the variance swap

price at time t for a variance swap with T -periods to maturity. A variance swap can last

for several periods, and the total realized variance at the end of the contract therefore

equals the sum of the realized variance over each period. The holder of the variance swap

receives the realized variance in exchange for a fixed rate at the end of the contract and

therefore hedges variance risk until the contract reaches maturity. Given a risk-neutral

pricing measure Q, the variance swap price with T -periods to maturity at time t is given
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by the following:

V S
(T )
t =

TX

i=1

EQ
t

�
RVt+i

�
, (2)

where EQ
t denotes the expectation under the risk-neutral measure conditional on infor-

mation available at time t. Therefore, V S
(T )
t corresponds to the risk-neutral expectation

of the sum of realized variances from period t+ 1 until period t+ T . The main analyses

of this paper will focus on variance swap prices, however, in some cases I use variance

forward prices. These are defined as follows:

F
(T )
t = EQ

t

�
RVt+i

�
, (3)

such that F (T )
t = V S

(T )
t � V S

(T�1)
t and F

(1)
t = V S

(1)
t .

Next, I define the gross return or gross payo↵ over period t to t+1 on a variance swap

with T -periods to maturity, as follows:

R
(T )
t+1 =

V S
(T�1)
t+1 +RVt+1

V S
(T )
t

, (4)

V P
(T )
t+1 = V S

(T�1)
t+1 +RVt+1 � V S

(T )
t . (5)

These definitions are the two main ways the literature has assessed risk premia on variance

swaps, the former is used by Dew-Becker et al. (2017) and the latter by Carr and Wu

(2009) and Bollerslev et al. (2009). The gross return of Equation (4) is defined as if

the variance swap is bought for the current variance swap rate V S
(T )
t , and held for one

period after which the one period realized variance RVt+1 and next period’s variance swap

price V S
(T�1)
t+1 are received. In the following period, the variance swap has T � 1-periods

remaining to maturity.3 The realized variance risk premium of Equation (5) is defined

3The definition of the return in equation (4) corresponds to the return on a variance asset, which pays the
realized variance at the end of each period rather than at the end of the contract. Under the assumption
of no arbitrage, the price of such an asset equals the variance swap price discounted with the T -period
risk-free rate to time t, and the realized variance payment of such an asset is discounted in a similar
way. It is possible to show that the logarithm of the return defined in (4) equals the log-return on this
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as the realized payo↵ on a variance swap which is held for one period, at the end of

this period the investor receives V S
(T�1)
t+1 and RVt+1 and the di↵erence is computed with

the initial investment V S
(T )
t . It follows from the equations that the realized variance for

returns on variance swaps is equivalent to dividend payments for returns on the stock

market; that is, realized variance is the cash flow component of a variance swap.

1.2 Present value identities for variance swap (forward) prices

In this subsection, I discuss four closely related identities for variance swap (forward)

prices. Similar to Fama and Bliss (1987) and Campbell and Shiller (1988), the identities

have in common that the current price of the variance instrument is written as the di↵er-

ence between cashflows (stock market variance) and risk premia (variance risk premia). I

briefly discuss each of the identities used in this paper and refer to Appendix A.1 for the

details of the derivations. In the following, unless stated otherwise, variance risk premia

are referred to as risk premia.

log-VS. The first (approximate) present value identity for variance swap prices is

given in the following equation:

vs
(T )
t ⇡ E

(T )
rv,t � E

(T )
rp,t, (6)

where

E
(T )
rv,t = Et

TX

i=1

⇥
1� ⇢(T � i+ 1)

⇤⇣ i�1Y

j=1

⇢(T � j + 1)
⌘
· rvt+i and (7)

E
(T )
vdr,t = Et

TX

i=1

⇣ i�1Y

j=1

⇢(T � j + 1)
⌘
· r(T�i+1)

t+i . (8)

The present value identity of Equation (6) relates the current logarithm of the variance

swap price (vs(T )
t := log(V S

(T )
t )) to the logarithm of stock market variance (rvt+i :=

log(RVt+i)) and risk premia (r(T�i+1)t+i := log(R(T�i+1)
t+i ). The identity has the standard

variance asset in excess of the risk-free rate.
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intuition for a present value identity: Today’s price can be high due to high expected

stock market variance, low expected risk premia, or both. Equation (6) represents an

approximate identity, because it relies on the standard Taylor expansion of log-return of

Equation (4) and ⇢(T ) is the log-linearization constant for a variance swap with maturity

T . In Appendix A.1, I show how to estimate ⇢(T ) using an OLS regression, and show

that the approximation works really well for the linear approximation of logarithm of

variance swap returns.

log-F. The second present value identity relates the current logarithm of the price of

a variance forward to expected stock market variance and risk premia, as follows:

f
(T )
t = Etrvt+T � Etr

(T )
f,t+T , (9)

where r
(T )
f,t+T is the log-return for holding a variance forward to maturity. Equation (9)

is not an approximation as it directly follows from the definition of the gross-return on

a variance forward. This present value identity is used by Fama and Bliss (1987) for

treasury bonds and by van Binsbergen et al. (2013) for dividend strips.

level-VS. The third present value identity relates the current variance swap price to

stock market variance and risk premia, as follows:

V S
(T )
t = E

(T )
RV,t � E

(T )
RP,t, (10)

where

E
(T )
RV,t = Et

TX

i=1

RVt+i,

E
(T )
RP,t = Et

TX

i=1

V P
(T�i+1)
t+i .

In particular, Equation (10) relates the current variance swap price (in levels rather

than a log-transformation) to expected stock market variance over the lifetime of the

contract and risk premia. Notice that this present value identity also constitutes an
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exact relationship, because the definition of the variance risk premium (Equation 5) is a

linear function of the variance swap price, and therefore does not depend on any Taylor

approximations.

level-F. The fourth present value identity relates the current price of a variance

forward to stock market variance and risk premia, as follows:

F
(T )
t = EtRVt+T � EtV P

(T )
F,t+T , (11)

where V P
(T )
F,t+T is the realized variance risk premium for holding a T -period variance

forward to maturity. Furthermore, the identity is an exact relation, because it follows

directly from the definition of the realized variance risk premium definition for a variance

forward with maturity T .

In Section 3, I use Equations (6), (9)–(11) to decompose variance swap (forward)

prices into variance expectations and risk premia for several maturities. This allows me

to study the drivers of the variation in variance swap prices for various maturities.

2 Data

In this paper, I use data on S&P 500 options from January 1996 until June 2019 from

OptionMetrics. Using the methodology described in Kozhan et al. (2013) and discussed

in greater detail in Appendix A.2, I construct variance swaps with maturities ranging

from 1 to 18 months. The maturity of 18 months to maturity is the longest for which I

can calculate a variance swap price every month. I calculate variance swap prices at the

end of each month in the sample and interpolate the variance swap prices linearly, such

that the maturity equals T months. Note that interpolating variance swap prices linearly

is equivalent to taking long positions in two variance swaps with maturities T1 and T2,

such that the weighted average of the maturities equals T .

I use the methodology of Kozhan et al. (2013) because these variance swaps are

most closely related to the variance swaps that are traded over the counter (OTC). In
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Appendix A.3, I show that my data on variance swaps is highly similar to the data from

the OTC market that is analyzed in Dew-Becker et al. (2017). I show in Figure 6 of

Appendix A.3 that the synthetic variance swap prices are highly similar to the variance

swap prices in the OTC market, and simple regressions indicate R2s above 97%. Table 4

in Appendix A.3 shows that the returns on the synthetic variance swaps are also highly

similar to the returns on the OTC swaps as shown in Table 2 of Dew-Becker et al. (2017).

In addition to the pricing information on variance swaps, I obtain data that is used

in the VAR. From the panel of variance swap prices, the first two principal components,

pc
(1)
t and pc

(2)
t , are calculated. The first of these components, pc(1)t , captures the level

in the term structure of variance swap prices, while pc
(2)
t captures the slope of the term

structure of variance swap prices. Realized variance is defined as in Kozhan et al. (2013)

and approximately equals the sum of daily squared returns within a month. Finally, the

default spread is obtained from the Federal Reserve Bank of St. Louis and defined as the

di↵erence between the yields on BAA and on AAA credit-rated corporate bonds.

3 Results

In this section, I present the empirical term structure of the decomposition of variance

swap prices and relate these findings to the predictions of leading asset pricing models.

First, I present the results of a variance decomposition on the basis of predictive regres-

sions, and these serve as my benchmark results for the models. In Section 4, I show that

the results are robust to specifying a VAR, and decompose the variation in variance swap

prices. Second, I consider the asset pricing models of Gabaix (2012), Wachter (2013) and

Drechsler and Yaron (2011), and repeat the empirical exercise with each of these models

in order to analyze their predictions regarding the term structure of the decomposition.

3.1 Decomposition of variance swap prices in the data

In this subsection, I decompose the variation in variance swap prices using predictive

regressions. These regressions derive from the intuition of pricing identities presented in
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Section 1.2: the current variance swap (forward) price is high due to high future stock

market variance, due to low future returns on the variance swap (forward), or both.

Therefore, the current variance swap (forward) price should predict future stock market

variance, future risk premia, or both. This analysis is the equivalent of the analyses

employed by Fama and Bliss (1987) for treasury bonds, van Binsbergen et al. (2013) for

dividend strips and Cochrane (2008, 2011) for the stock market. Relative to the stock

market, my analysis has the advantage that variance swaps have a finite maturity, and

thus that future prices do not play a role.

In the following, I explain the intuition for the predictive regressions based on iden-

tity (6) for the logarithm of the variance swap price. However, the intuition carries

over to other present value identities derived in Section 1.2. Based on the identity for

the logarithm of variance swap prices, Equation (6), the following predictive regressions

decompose the price variation:

yrv,t+T = arv + brv · vs(T )
t + ✏

rv
t+T , (12)

yrp,t+T = arp + brp · vs(T )
t + ✏

rp
t+T , (13)

1 ⇡ brv � brp (14)

where

yrv,t+T =
TX

i=1

⇥
1� ⇢(T � i+ 1)

⇤⇣ i�1Y

j=1

⇢(T � j + 1)
⌘
· rvt+i,

yrp,t+T =
TX

i=1

⇣ i�1Y

j=1

⇢(T � j + 1)
⌘
· r(T�i+1)

t+i .

Equation (14) follows directly from the present value identity (6), and indicates whether

variation in variance swap prices is driven by future realized variance or by returns. The

regression coe�cients indicate whether a high current variance swap price predicts high

future stock market variance or low future returns. Therefore, economic intuition suggests

that brv > 0 and brp < 0. Moreover, if brv ⇡ 1, it indicates that variation in the variance
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swap price is exclusively driven by expected stock market variance, whereas if brp ⇡ �1,

it indicates that variation in the variance swap price is exclusively driven by risk premia.

Due to the fact that a variance swap is a finite cash flow, these regressions provide a

powerful test of whether the present value identity holds. This identity holds if the

di↵erences between the regression coe�cients are, indeed, close to one. The dependent

variables of predictive regressions (12) and (13) depend on realized stock market variance

(rvt), realized returns on variance swaps (r(T )
t ) and the log-linearization constants (⇢(T )).

I show in Appendix A.1 how to estimate these using OLS, and report the estimates in

Table 6 of that appendix.

The next step is to estimate the predictive regressions (12) and (13), which decompose

the variance swap price into expected variance and risk premia. I show the results for each

of the derived present value identities in Section 1.2, to do so I run the same regressions

only the dependent and independent variables are adjusted accordingly.4 The results of

these predictive regressions are presented in Table 1.

[Table 1 here]

Table 1 presents the primary finding of the paper, namely the existence of a strong

term structure in the decomposition of variance swap prices. In particular, variation

in prices attributable to expected stock market variance decreases strongly with the

maturity, whereas the variation in prices due to risk premia strongly increases with the

maturity. Focusing on the variation in the logarithm of variance swap (forward) prices,

Columns (1)–(4) indicate that one-month variance swaps (forwards) are explained by

110.1% (110.1%) due to expected variance, with this percentage declining monotonically

to 24.5% (-22.9%) for 18-month variance swap (forward) prices. At the same time, the

4To decompose the logarithm of the variance forward (Equation 9), yrv,t+T is replaced with rvt+T , yrp,t+T

is replaced with rf,t+T and the dependent variable is f (T )
t . To decompose the variance swap in levels

(Equation 10), yrv,t+T is replaced with yRV,t+T :=
PT

i=1 RVt+i, yrp,t+T is replaced with yRP,t+T :=
PT

i=1 V P (T�i+1)
t+i and the dependent variable is V S(T )

t . To decompose the variance forward in levels

(Equation 11), yrv,t+T is replaced with RVt+T , yrp,t+T is replaced with V P (T )
F,t+T and the dependent

variable is F (T )
t .
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variation in prices attributable to risk premia increases monotonically from -10.1% (-

10.1%) for one-month variance swaps (forwards) to 72.8% (122.9%) for swaps (forwards)

with 18 months to maturity.5 Furthermore, these conclusions are supported by the R
2

strongly decreasing (increasing) with the maturity when the logarithm of prices are used

to predict future stock market variance (future returns).

Next, I discuss the results based on the present value identities for actual variance swap

(forward) prices as shown in Columns (5)–(8) of Table 1. Importantly, the results of this

decomposition are highly similar to the results of the decomposition in logarithmic terms.

In particular, the variation in prices due to stock market variance decreases monotonically

from 92.2% (92.2%) for one-month variance swap (forward) prices to 19.6% (-19.7%) for

18-month variance swap (forward) prices. Similarly, the variation in prices attributable

to risk premia increases monotonically from 7.8% (7.8%) for one-month variance swaps

(forwards) to 80.4% (119.7%) for swaps (forwards) with 18 months to maturity. A notable

di↵erence between the specifications in logarithmic terms and in levels is seen for one-

month variance swaps (Panel A), the results indicate that a high variance swap price in

logarithmic terms predict future returns positively whereas the variance risk premium

is predicted negatively by a high variance swap price in levels. This di↵erence is likely

driven by how a logarithmic-transformation makes a right-skewed distribution (such as

the distribution of variance swap prices) more symmetric and thus makes this right tail

less important in an OLS regression.

In Table 1, the t-statistics based on standard errors adjusted for heteroskedastic-

ity and auto-correlation using Newey and West (1987) and Hansen and Hodrick (1980)

with T -lags are presented in parentheses and brackets below the estimated coe�cients.

Given the small di↵erences between the corresponding t-statistics, the conclusions re-

garding statistical significance are the same. The results of the predictive regressions

show that short-term variance swap (forward) prices significantly predict future stock

5Because the relation between the logarithm of variance swap prices, stock market variance and returns
constitutes an approximation, the di↵erence between the coe�cients in columns (1) and (2) does not
necessarily equals 100%. However, given that the di↵erence is relatively close to 100% it shows that
the approximation is a close one. In fact, the di↵erence between the coe�cients lies between 97.3% and
100.1%.
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market variance, whereas long-term variance swap (forward) prices significantly predict

future returns (variance risk premia). However, in Section 4 of the present paper, where

I show that the results are robust to specifying a VAR for the decomposition, I find that

short-term risk premia too vary significantly over time.

In sum, the results in Table 1 indicate a strong term structure in the decomposition

of variance swap (forward) prices: long-term variance swap (forward) prices are mostly

driven by risk premia whereas short-term variance swap prices are mostly driven by

expected stock market variance. In Internet Appendix C, I show that the results are

robust to repeating the analysis at a quarterly rather than a monthly frequency. In

Appendix A.4, I show that most of the variation in variance swap prices comes from

variation in downside variance swap prices rather than upside variance swap prices.6

The variance decomposition of Table 8 in Appendix A.4 shows that the variance swap

prices are driven by downside variance swap prices for 63.4% to 74.2%, depending on

the maturity of the contract. Finally, in Appendix A.5, I show that the results continue

to hold on the subsample from September 2005 to June 2019. Furthermore, over this

subsample it is possible to compute the price of a variance swap with 24 months to

maturity every month, and find that variation in the 24-month variance swap price is for

123.9% attributable to risk premia.7

In the following, I obtain the predictions of several prominent asset pricing models

regarding this decomposition of variation in variance swap prices. I focus for this exer-

cise on variance swap prices rather than variance forward prices, because the latter are

by its definition more subject to noise which could potentially overstate the variation

attributable to risk premia.

6My definition of up- and downside variance swap prices closely follows the definitions of Andersen and
Bondarenko (2009), Dew-Becker et al. (2017), Baele et al. (2019), and Kilic and Shaliastovich (2019)

such that V S(T )
t = V S(T )

u,t + V S(T )
d,t , where V S(T )

u,t and V S(T )
d,t are the up- and downside variance swap,

respectively. The formal definitions of these swaps are given in Appendix A.4.
7In September 2005, Cboe introduced Long-term Equity Anticipation Secturities (Leaps) for the S&P
500, and as a result options with three years to maturity were listed on an annual basis. For that reason,
it is possible to obtain a 24-month variance swap price every month using interpolation.
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3.2 Decomposition of variance swap prices in asset pricing mod-

els

In this subsection I discuss the predictions of several prominent asset pricing models with

respect to the pricing of variance risk. The ability of asset pricing models to match stylized

facts of variance markets has been an important topic in the literature.8 This is because

variance risk is a central component of many asset pricing models, and variance markets

allow researchers to study variation in variance risk in combination with the preferences

of investors regarding this risk. I discuss the implications of the following three models:

the variable rare disaster model of Gabaix (2012), the time-varying rare disaster model

of Wachter (2013), and the long-run risk model of Drechsler and Yaron (2011). These

models are able to match some empirical results on the pricing of variance risk. Dew-

Becker et al. (2017) show that the model of Gabaix (2012) matches the empirical results

on the term structure of the risk premia of variance risk, Seo and Wachter (2019) show

that the model of Wachter (2013) matches the implied volatility slope on S&P 500 options,

and the model by Drechsler and Yaron (2011) is designed to match the empirical results

on the variance risk premium of Bollerslev et al. (2009).

For each of the considered models, I decompose the variation in variance swap prices

using predictive regressions similar to the empirical exercise in Subsection 3.1 for the

logarithm of variance swap prices. Afterward, I calculate the following moments in each

model: the expected log-returns on variance swaps, the standard deviation of log-returns

on variance swaps, and the variance of the logarithm of variance swap prices. These

results from the models are obtained from a simulation study.9 Finally, in Internet

Appendix D.1–Internet Appendix D.3 I discuss the models in more detail, and show that

the analyzed moments are relatively stable across the simulation sets.

8Bollerslev et al. (2009), Drechsler and Yaron (2011), Gabaix (2012), Bekaert and Engstrom (2017), and
Lochstoer and Muir (2022) present consumption-based asset pricing models that match various moments
of the variance premium. Seo and Wachter (2019) show that an asset pricing model that features time-
varying disaster risk matches the implied volatility slope on S&P 500 options. Dew-Becker et al. (2017)
analyze the ability of asset pricing models to match the term structure of variance risk premia.

9For each model, 1,000 independent simulation sets of a time series with 1,000 data points are obtained.
On the basis of these simulation sets, each of the considered statistics is calculated.
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[Figure 1 here]

In Figure 1, I plot the results for the decomposition of variance swap prices in each of

the considered models. Figure 1 plots how much of the variation in variance swap prices

is attributable to expected variance (risk premia) in the left (right) panel. I show the

results from the decomposition of the logarithm of variance swap prices in the data (solid

line) as well as the predictions of the models. Overall, the considered models struggle

to produce the steep term structure in the decomposition of variance swap prices that is

documented in the data. In the models of Wachter (2013) (dash-dotted line) and Drechsler

and Yaron (2011) (dotted line), expected stock market variance drives a too large fraction

of the variation in long-term variance swap prices. This is due to the strong persistence

of state variables in these models, which makes stock market variance more persistent

than in the data. A simple solution to this would be to decrease the persistence of the

variables that drive stock market variance, that is, the persistence of the disaster intensity

in Wachter (2013) and the persistence of consumption volatility in Drechsler and Yaron

(2011). However, the persistence of these state variables is the key mechanism of the

models to match the equity and the variance premium. Neither is the model of Gabaix

(2012) (dashed line) able to match the observed term structure of the variance swap

price decomposition. Instead, all of the variation in variance swap prices, both short-

and long-term, is driven by risk premia.

The main reason why the model of Gabaix (2012) does not match the term structure

of the variance price decomposition is that the time variation in the disaster size only

a↵ects the realized variance, conditional on a disaster hitting the economy. Given that

the probability of this occurring is relatively low (1% per year), expected stock market

variance only increases marginally when the disaster size increases. However, given that

this consumption disaster is highly undesirable for the investor, risk premia adjust ac-

cordingly when the disaster size increases. As I will show in Figure 2, the model of Gabaix

(2012) is not able to match the observed variation in variance swap prices, and the overall

variation in risk premia is therefore still relatively small. In order to match the observed
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variation and empirical decomposition, the model has to incorporate an additional source

of stochastic volatility.

The model of Wachter (2013) (dash-dotted line) predicts a large variation in stock mar-

ket variance because of the heteroskedastic nature of the disaster intensity process; that

is, high levels of the disaster intensity scale the future variance of the disaster intensity

upward. Stock market variance therefore varies—even in the absence of disasters—over

time. At the same time, high levels of the disaster intensity correspond to low risk premia.

However, variation in risk premia drives a much smaller fraction of the total variation in

variance swap prices, as seen in the right panel of Figure 1. Even if realizations in which

the consumption disaster hits the economy are excluded, the variation in 18-month vari-

ance swap prices due to risk premia only increases to 6%. Therefore, even in the absence

of consumption disasters the model of Wachter (2013) is not able to match the data.

The model of Drechsler and Yaron (2011) (dotted line) matches the data most closely,

as short-term variance swap prices are mostly driven by expected stock market variance

and long-term variance swap prices are mostly driven by risk premia. The term structure

of the variance price decomposition is, however, considerably less steep than that of the

data. For example, in the data the variation due to risk premia of the one-month variance

swap price is close to zero (even negative), whereas in the model of Drechsler and Yaron

(2011) variance discount rate variation accounts for 36% of this variation. The variation

in short-term risk premia is considerably larger in the model of Drechsler and Yaron

(2011), because variation in variance risk is sizable. At the same time, the model is not

able to capture the empirical result that the variation in variance swap prices due to

expected stock market variance strongly decreases in maturity. Again, this result is an

indication that the state variables governing stock market variance are too persistent.

[Figure 2 here]

Figure 2 plots the term structure of the variance of variance swap prices in the data

(solid line) and in each of the asset pricing models. The models are not able to produce
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the strong downward slope in the term structure, in particular the slope up to six months

to maturity. However, in line with the data, the models of Wachter (2013) (dash-dotted

line) and Drechsler and Yaron (2011) (dotted line) do produce a downward sloping term

structure, whereas that of Gabaix (2012) (dashed line) predicts a flat term structure of

the variance of variance swap prices. The model of Drechsler and Yaron (2011) matches

the observed variation in variance swap prices well, and in particular the variation in long-

term variance swap prices. This is interesting, because the model was calibrated to match

the dynamics of the one-month variance risk premium. The models of Wachter (2013)

and Gabaix (2012) severely over- and understate, respectively, the observed variation in

variance swap prices. This variation is overstated in Wachter (2013) because the high

persistence of the disaster intensity makes variation in expected stock market variance

high. The variation is understated in Gabaix (2012) because the model produces relatively

little variation in expected stock market variance.

[Figure 3 here]

Figure 3 shows the term structure of expected returns (return volatility) on variance

swaps in the left (right) panel. I show the results from the data (solid line) as well as the

predictions of the models. As seen in the left panel, the model of Gabaix (2012) (dashed

line) is able to match the strongly upward sloping term structure of expected returns in

the data. However, it overstates the return volatility of the one-month variance swap and

understates the return volatility of the variance swap beyond three months to maturity.

The models of Wachter (2013) (dash-dotted line) and Drechsler and Yaron (2011) (dotted

line) are not able to match the strong upward sloping term structure of expected returns

on variance swaps. In particular the expected return on the one-month variance swap

is far o↵, and this indicates that this short-term risk is not su�ciently severe such that

the investor is willing to pay a risk premium that is similar in magnitude to that in the

data. The right panel of Figure 3 shows, however, that the one-month variance swap is

su�ciently more risky in the models of Wachter (2013) and Drechsler and Yaron (2011)
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than in the data, but that despite this large risk the models are not able to match the

one-month risk premium. Moreover, the model of Wachter (2013) slightly understates

the return volatility of long-term variance swaps, whereas that of Drechsler and Yaron

(2011) slightly overstates it.

In sum, I show in the Figure 1 that the models I considered struggle to match the

empirical term structure on the decomposition of variance swap prices. The data shows

a very strong term structure, whereas the models all predict a more or less flat term

structure on the decomposition of variance swap prices. Moreover, these results, in com-

bination with the pattern of Figure 2, show that only the model of Drechsler and Yaron

(2011) is able to match the empirical magnitude of the variation in risk premia. Finally,

the results presented in Figure 3 indicate that the model of Gabaix (2012) is best able to

match the empirical term structure of the expected returns and return volatility of vari-

ance swaps. The models of Wachter (2013) and Drechsler and Yaron (2011), meanwhile,

severely understate the risk premium on a one-month variance swap, despite the fact that

the one-month variance swap is substantially more risky in the models compared to in

the data.

In the following section, I show that the empirical results of Subsection 3.1 are robust

to specifying a VAR to obtain expected stock market variance and risk premia. Afterward,

I show that risk premia are related to many important macroeconomic variables.

4 Decomposition of variance swap prices using a VAR

In this section, I show that the variance decomposition of Subsection 3.1 is robust to

specifying a VAR to obtain expectations. Using the VAR it is possible to estimate variance

expectations and risk premia and analyze their time-series variation. Furthermore, I

provide evidence that my VAR specification estimates variance expectations and risk

premia e↵ectively.

The VAR is used to model expected stock market variance and obtain risk premia

as a latent variable from the present value identity (6) for the logarithm of the variance
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swap price. It is convenient to model stock market variance with a VAR because this

allows one to obtain variance expectations for each period by iterating forward.

In the benchmark exercise, I focus on the following VAR with four state variables to

model the logarithm of market variance:10

zt+1 = Bzt + ✏t+1 and (15)

zt =
⇣
rvt pc

(1)
t pc

(2)
t DEFt

⌘0
, (16)

where B 2 R4⇥4 is a matrix with regressor coe�cients and ✏t+1 2 R4⇥1 is a vector with

errors. The vector zt consists of the following variables: rvt is the log of realized variance,

pc
(1)
t is the first principal component of the panel of log variance swap prices, pc(2)t is

the second principal component of the panel of log variance swap prices, and DEFt is

the default spread defined as the yield di↵erence between BAA and AAA credits. For

simplicity, all the variables included in zt are demeaned such that the intercepts in the

VAR are zero.

The first row in the VAR of equation (15) represents the predictive model for stock

market variance. In order to decompose the variance swap prices, I calculate expected

variance, and the remaining variables in the VAR are therefore included based on their

ability to predict stock market variance. The first principal component pc
(1)
t captures

the level of the term structure of variance swap prices, and predicts future stock market

variance well. The level of term structure of variance swap prices is highly correlated

(⇡ 0.93) with the VIX index, which Drechsler and Yaron (2011) show to be a good

predictor of stock market variance. The second principal component pc(2)t relates to the

slope of the term structure of variance swap prices, which rises during episodes of low

stock market variance and falls when the converse is true. Finally, the default spread

DEFt, which Campbell et al. (2018) show predicts variation in long-term variance, is

thus included in the VAR, also because it is a well-known business cycle indicator.

10In Appendix A.6, I discuss the VAR-specification to model stock market variance in levels rather than
in logarithmic terms, and I will show in Table 3 that the results are highly similar across the two
specifications.

21



Based on the VAR model, monthly variance expectations for a variance swap with

T -months to maturity equals

E
(T )
rv,t = e

0
1

 
�
1� ⇢(T )

�
B + · · ·+

�
1� ⇢(1)

�
⇢(T )⇥ · · ·⇥ ⇢(2)BT

!
zt, (17)

where e1 2 R4⇥1 is a unit vector with the first element equal to one and the remaining

elements equal to zero. By the pricing identity (6), risk premia are a function of variance

expectations from equation (17) and the current variance swap price, as follows:

E
(T )
rp,t = E

(T )
rv,t � vs

(T )
t . (18)

In this way, I obtain an ex ante estimate of expected variance over the lifetime of the

variance swap and an estimate of the risk premia that price the variance swap. I use

these estimates to decompose variation in the variance swap price into either the expected

variance of Equation (17) or the risk premia of Equation (18). Before I show the results

of this decomposition, I present the estimation results of the VAR, in Table 2.

[Table 2 here]

The first row in Panel A of Table 2 presents the model for log realized variance each

month. In line with expectation, the level of the term structure of variance swap prices

pc
(1)
t predicts next month’s realized variance positively. Variance swap prices rise during

episodes of elevated stock market variance. The slope of the term structure of variance

swap prices, pc(2)t , predicts next month’s realized variance negatively—a result that is also

expected because the slope of the term structure rises (falls) during periods of low (high)

stock market variance. Finally, DEFt predicts future realized variance positively and is

in line with Campbell et al. (2018). The R
2 of 58.9% to predict next month’s variance

indicates that most variation is captured. Furthermore, the impulse response functions in

online Appendix Internet Appendix A show that pc(1)t and pc
(2)
t mainly capture variation

in short- to mid-term variance, whereas DEFt captures variation in long-term variance.
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The remaining rows in Panel A of Table 2 summarize the dynamics of the explanatory

variables in the VAR. The level of the term structure of variance swap prices, pc(1)t , is

approximately an AR(1) process, with an autoregressive coe�cient of 0.86. The slope

of the term structure of variance swap prices, pc(2)t , has a similar persistence, of 0.85,

but is also predicted with a positive coe�cient by the level of the term structure of

variance swap prices. Finally, the default spread, DEFt, is more persistent, with an

autoregressive coe�cient of 0.96. The persistence of the variables indicates whether they

capture variation in short- or long-term variance and the implications are similar to the

results of the impulse response functions, as shown in Internet Appendix A.

The estimates in Panel A of Table 2 are used to calculate expected variance, using

Equation (17), and risk premia, using Equation (18). Variation in the variance swap

price with T -months to maturity is attributable to variation in either E(T )
rv,t or E

(T )
rp,t or to

correlation between E
(T )
rv,t and E

(T )
rp,t. This intuition follows from the following equation

and is obtained if I calculate the variance of the pricing identity (6) for the variance swap

price, as follows:

var
�
vs

(T )
t

�
⇡ var

�
E

(T )
rv,t

�
+ var

�
E

(T )
rp,t

�
�2 · cov

�
E

(T )
rv,t, E

(T )
rp,t

�
| {z }

=:C
(T )
rv,rp

. (19)

Thus far, this section focused on the identity for the logarithm of variance swap prices

for which the logarithm of stock market variance has to be modeled. However, in Ap-

pendix A.6 I show how to decompose the actual variance swap price using a VAR, and

present the estimates when modeling stock market variance instead. In Table 3, I show

the results for the decomposition of the logarithm of variance swap prices and variance

swap prices in levels based on VAR of this section in the former case and the VAR of

Appendix A.6 in the latter case.

[Table 3 here]

Table 3 illustrates how the variation in variance swap prices is attributable to expected
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stock market variance, risk premia, or the correlation between these two factors. The

decomposition in Table 3 shows that the main result is robust to specifying a VAR:

Short-term variance swap prices mainly vary due to expected stock market variance,

whereas long-term variance swap prices mainly vary due to risk premia. This result holds

across both specifications, i.e. the results of the decomposition are very similar for the

logarithm of variance swap prices and variance swap prices in levels.

Focusing on the variation in the logarithm of variance swap prices, Columns E
(T )
rv ,

E
(T )
rp and C

(T )
rv,rp indicate that one-month variance swaps are driven by 123.5% by expected

variance and this number decreases monotonically to 28.5% for 18-month variance swap

prices. At the same time, the variation in prices attributable to risk premia increases

monotonically from 6.9% for one-month variance swaps to 76.0% for swaps with 18 months

to maturity. The results indicate that risk premia for variance swaps vary significantly

over time, because for all of the analyzed maturities is the variation attributable to risk

premia significantly di↵erent from zero. Interestingly, the price-variation attributable to

correlation between expected variance and risk premia are negative indicating a positive

correlation between these two variables. This means that during periods of increased

expected variance, risk premia increase which indicates that it becomes less expensive to

hedge variance risk and this result is not in line with economic intuition. The positive

correlation between expected variance and risk premia is in line with Cheng (2019) who

first documented a similar result for VIX-futures. My results indicate that this relation

is strongest at (relatively) short horizons, because at a maturity beyond one month the

correlation is not significantly di↵erent from zero.

Next, I discuss the results based on the present value identity for variance swap prices

in levels as shown in Columns E
(T )
RV , E(T )

RP and C
(T )
RV,RP of Table 3. The price-variation

attributable to expected stock market variance decreases monotonically from 105.2%

for one-month variance swaps to 43.5% for variance swaps with 18 months to maturity.

Similarly, the price-variation due to risk premia increases monotonically from 25.4% for

one-month variance swaps to 83.3% for 18-month variance swaps. Finally, also in this

specification are risk premia and expected variance generally positively correlated, and
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in particular at the one-month horizon.

Overall, the results from the decomposition using the VAR of Table 3 are remarkably

close to the results of the decomposition using predictive regressions of Table 1. The

results from the decomposition using predictive regressions are model-free and, therefore,

the similarity suggests that the VAR is correctly specified. In Table 11 of Appendix A.6,

I show that expected stock market variance and risk premia obtained using the VAR are

able to predict its realized counterparts well. Moreoever, I show in Internet Appendix

C that if I perform the decomposition using the VAR at a quarterly frequency, the

results are highly similar. Finally, in Internet Appendix B, I show that the results of

the decomposition are robust to di↵erent specifications of the current VAR, and to the

inclusion of additional variables such as: the S&P 500 price-earnings ratio and long-term

variance.

In the following section, I analyze the time-series variation in risk premia obtained

via the VAR in detail. In particular, I show that there is substantial common variation

in the term structure, and show that a significant fraction of the variation is explained by

variance beliefs of investors and capital constraints of intermediaries. These latter results

also explain why the models analyzed in Section 3.2 fail to match the data, because the

models do not model investor variance beliefs or constraints by intermediaries.

5 Time-series variation of risk premia

In this section, I analyze the time-series variation in risk premia in detail. Throughout

this section, risk premia obtained from the VAR are multiplied by minus one, such that an

increase in the variable implies that risk premia increase, or equivalently, investor have to

pay a higher premium to hold a variance swap. First, I show the decomposition of a short-

term (one month) and long-term (18 months) variance swap contract graphically. Second,

I show that variation in risk premia yields economically sizable variation in expected

returns for variance swaps. Third, I analyze the variation in the term structure of risk

premia, and show how it relates to measures of variance beliefs of investors (Lochstoer
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and Muir, 2022) and capital constraints of intermediaries (Cheng, 2019).

In Figure 4, I plot the decomposition of the one-month variance swap price and that

of the 18-month variance swap price.

[Figure 4 here]

Figure 4 plots the decomposition of the logarithm of the variance swap price (black

line) into expected variance (dotted line) and risk premia (dashed line). The left panel

shows the demeaned variance swap price with one month to maturity, and it is clearly vis-

ible that the monthly variance swap price closely follows expected stock market variance.

Moreover, in line with Cheng (2019), there is a negative correlation between expected

variance and (the negative of) risk premia, which indicates that risk premia decrease

when expected variance increases.

The right panel of Figure 4 plots the decomposition of the 18-month variance swap

price (black line) into variance expectations (dotted line) and risk premia (dashed line).

Risk premia are a more important determinant of the 18-month variance swap price than

they are of the one-month variance swap price. It follows from the graph that risk premia

were relatively high during the period following the financial crisis in 2008, whereas risk

premia were relatively low during the period leading up to that crisis. Moreover, the

variation in the short-term risk premia (left panel) and the variation in long-term risk

premia (right panel) are correlated. In order to analyze this correlation further, I plot,

in Figure 5, the risk premia obtained from the logarithm of variance swap prices for the

benchmark maturities.

[Figure 5 here]

Figure 5 plots the risk premia obtained from the logarithm of variance swap prices

ranging from 1 to 18 months to maturity. The main result from Figure 5 is that the time

variation in the term structure of risk premia is strongly correlated, such that short-term
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risk premia move in the same direction as long-term risk premia—a finding that suggests

that short- and long-term risk premia are driven by similar state variables. Overall, the

variation in long-term risk premia is larger than the variation in short-term risk premia.

Interestingly, during the financial crisis of 2008 short-term variance risk premia decreased

whereas long-term risk premia increased. Therefore, only the price of hedging short-term

variance risk decreased during the financial crisis.

Before analyzing the relation of risk premia with other macroeconomic variables, I

want to establish that time variation in risk premia implies economically sizable di↵er-

ences in the average returns from investing in variance swaps. To establish this result, I

run the following regressions:

R
(T )
t+1 � 1 = µ1 + µ2 ·

⇣
� E

(T )
rp,t

⌘
+ ✏t+1, (20)

where R(T )
t+1�1 corresponds to a monthly simple return on a variance swap with T -months

to maturity and E
(T )
rp,t are the risk premia obtained from the VAR discussed in the previous

section. Because �E
(T )
rp,t has a mean of zero, µ1 equals the average return on a variance

swap, and µ2 equals by how much the average return increases in �E
(T )
rp,t. Table 4 shows

the results of regression (20).

[Table 5 here]

The first result from Table 4 is that the average simple return on variance swaps

strongly increases in the maturity. The second result, and the main takeaway of Table 4,

is that the variation in risk premia is economically sizable. A one standard deviation

increase in �E
(T )
rp,t results in a decrease in the average return of 4.1% for the 18-month

variance decreasing to 12.3% for the one-month variance swap. These results suggest

that the average simple returns of a variance swap with maturities beyond one month

are positive rather than negative during periods in which �E
(T )
rp,t is below its standard

deviation. This puzzling result has already been noted by Johnson (2017), and indicates
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that during some periods investors want to receive a risk premium for holding a variance

swap. Furthermore, it is interesting to note that long-term variance swaps do not have an

average risk premium significantly di↵erent from zero, while at the same time exhibiting

sizable time-series variation.

In the following, I analyze how the estimates of risk premia relate to several variables

brought forward by the literature. In particular, Cheng (2019) shows how positions of

intermediaries in VIX-futures a↵ect risk premia on these futures. I will use the measure

by He et al. (2017) that relates to average intermediary leverage to proxy for constraints of

intermediaries. Lochstoer and Muir (2022) document using surveys that investor beliefs

regarding stock market variance are slow moving, and they find that their proxy for

slow-moving variance beliefs a↵ect risk premia on variance instruments. The focus of the

following analyses will be on the explanatory power of these variables for the full term

structure of risk premia.

To analyze the impact of these variables for risk premia, I run the following regression:

�E
(T )
rp,t = �0 + �1�̂

2
t + �2V Bt + �3ILSt + ✓

0
Xt + ✏t, (21)

where �̂2
t and V Bt :=

P6
i=1 �

j
�̂
2
t�i+1 are expected next month variance and slow-moving

variance beliefs taken directly from Lochstoer and Muir (2022).11 In Lochstoer and Muir

(2022) these two variables are used to predict variance risk premia, and they find that

risk premia initially underreact to increases in expected variance and there is a delayed

overreaction due to slow-moving variance beliefs. These findings support the empirical

results documented in Cheng (2019), only Lochstoer and Muir (2022) attribute it to

slow-moving variance beliefs, whereas Cheng (2019) attributes it to demand and supply

e↵ects in the market. Furthermore, ILSt is intermediary leverage (squared) by He et al.

(2017) which should capture these intermediary pricing e↵ects, and Xt specifies a vector

of control variables to illustrate the robustness of the relationship. Finally, the estimates

from regression Equation (21) establish how both channels a↵ect the term structure of

11Following Lochstoer and Muir (2022), I use � = 0.5, which is the estimate for slow-moving variance
beliefs that is estimated in their paper.
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risk premia.

The estimates of regression (21) are presented in Table 5. All variables in the regres-

sions are scaled to have a mean of zero and standard deviation of one. In this way, the

estimated coe�cients can be compared along the term structure because the variation

in long-term risk premia is larger than variation in short-term risk premia, as shown in

Section 4.

[Table 5 here]

The main result of Table 5 is that a sizable fraction of the variation in risk premia is

explained by variance beliefs and intermediary constraints, and that the exposure di↵ers

along the term structure. Overall, the results suggest that short-term risk premia are

driven to a larger extent by variance beliefs, whereas a more important driver of long-

term risk premia are intermediary constraints.

The results for risk premia obtained via the logarithm of variance swap prices are

presented in Panel A, and I find that, in general, higher variance beliefs relate to lower risk

premia. Focusing on the results without controls, Columns (1)–(5) show that short-term

risk premia are driven to a larger extent by variance beliefs than long-term risk premia

and the coe�cients are insignificant for maturities beyond three months. On the other

hand, the exposure of risk premia to intermediary constraints increases monotonically

with the maturity and the coe�cients indicate, as expected, that when intermediaries are

more constraint risk premia increase. In case the regression includes additional controls,

Columns (6)–(10), these patterns in the exposure of risk premia to these variables are

robust. Furthermore, these regressions show that a sizable fraction of the risk premia is

driven by these macroeconomic variables as indicated by the high R
2’s.

Next, I repeat the same analysis but for risk premia obtained via variance swap prices

in levels and the results are presented in Panel B of Table 5. Di↵erent form the results

in Panel A, variance beliefs now relate positively to risk premia which is in line with
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the results in Lochstoer and Muir (2022).12 Similar to the results in Panel A, however,

Columns (1)–(5) show that variance beliefs mostly matter for short-term maturities as

the statistical significance disappears beyond a maturity of six months. Intermediary

constraints relate positively to risk premia, and the coe�cient increases monotonically

with the maturity indicating that risk premia on long-term contracts are a↵ected more by

intermediary constraints than risk premia on short-term contracts. This monotonic in-

crease in the coe�cients for intermediary constraints is robust to the inclusion of controls,

in fact Columns (6)–(10) show that the explanatory power and statistical significance in-

crease in these specifications. Finally, the statistical significance for the relation between

variance beliefs and risk premia is not robust to the inclusion of controls and this is likely

driven by the relation between variance beliefs and other macroeconomic variables.

The results in Table 5 support the findings in the literature that variance beliefs

and intermediary constraints drive a significant fraction of the variation in risk premia.

Furthermore, it can explain why the models analyzed in Section 3.2 fail to capture the

variation in risk premia in the variance market, because the models analyzed in this

paper do not contain investors with biased variance expectations or a constrained inter-

mediary sector. The results show that in order to describe dynamics of risk premia in

variance markets, the models should include biased variance beliefs and/or intermediary

constraints.

One of the main takeaways of Table 5 is that intermediary constraints have a di↵eren-

tial e↵ect on the term structure of risk premia. In particular, short-term risk premia are

to a lesser extent driven by intermediary constraints than long-term risk premia. Because

long-term risk premia are more a↵ected by intermediary constraints, it could explain the

excess volatility documented in Giglio and Kelly (2018) for variance swaps, a result that

is often attributed to an overreaction in expectations of investors (Stein, 1989; Giglio and

Kelly, 2018). Instead, my results show that also this form of excess volatility could be

12The result that the sign of variance beliefs depends on whether risk premia are obtained from the
logarithm of variance swap prices or the actual variance swap prices is probably due to the logarithmic
transformation. In principle, both are acceptable ways to analyze risk premia, however given that variance
swap prices are right-skewed the logarithmic transformation makes the distribution more symmetric, and
thus the right tail less extreme.
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attributable to intermediary constraints.

In sum, I show that the ex ante obtained risk premia relate to macroeconomic vari-

ables and, in particular, to variance beliefs (Lochstoer and Muir, 2022) and intermediary

constraints (Cheng, 2019). Furthermore, my findings suggest that variance beliefs are

mostly important for short-term risk premia, whereas intermediary constraints are im-

portant for short- and long-term risk premia and the magnitude of the e↵ect increases in

the maturity. Finally, these results explain why the models analyzed in this paper fail to

capture the variation in risk premia of the data, and provide intermediary constraints as

a novel channel to explain the excess volatility documented in Giglio and Kelly (2018).

6 Conclusion

I show that variance risk premia vary over time, and that it drives a significant fraction

of variance in S&P 500 variance swap prices. I document a strong term structure in

the decomposition of variance swap price variation. Short-term variance swap prices are

driven by variation in variance expectations, whereas long-term variance swap prices are

mostly driven by variation in variance risk premia. This newly documented stylized fact

provides a new challenge to existing asset pricing models, because the models considered

in this paper predict a flat term structure. In particular, the disaster model of Gabaix

(2012) predicts that all variation in variance swap prices is attributable to variation in

variance risk premia. The disaster model of Wachter (2013), meanwhile, predicts that

all variation is attributable to variance expectations. This is driven by the fact that this

model incorporates a strong persistence in stock market variance, a feature that is not

present in the model of Gabaix (2012). The long-run risk model of Drechsler and Yaron

(2011) matches the decomposition of long-term variance swaps relatively well, and is able

to match the overall variation in variance risk premia. However, due to the large variation

in short-term disaster risk, short-term variance risk premia move more of the variation

in short-term variance swap prices than empirically observed.

The documented variation in variance risk premia is attributable to several vari-
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ables. In particular, intermediary constraints (Cheng, 2019) and variance beliefs of in-

vestors (Lochstoer and Muir, 2022) play an important role for describing time-series vari-

ation in the term structure of variance risk premia. I show that variance beliefs mostly

matter for short-term variance risk premia, whereas intermediary constraints matter for

short- and long-term variance risk premia. The exposure of risk premia to intermediary

constraints increases in the maturity, and therefore intermediary constraints are likely to

play a role in the excess volatility documented by Giglio and Kelly (2018) for variance

swaps.

In sum, the present paper presents new key stylized facts about the market for variance

risk. I show that these stylized facts pose a challenge for state-of-the-art asset pricing

models, and augmenting asset pricing models to better describe the pricing of variance

risk is thus an interesting avenue for future research.
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Table 1: The results of the decomposition using predictive regressions of Equations (12)
and (13). The results are shown for the di↵erent present value identities, and for a
maturity of 1 month (Panel A) up to a maturity of 18 months (Panel E). The coe�cients in
columns (1), (3), (5) and (7) indicate how much of the variation in prices is attributable to
stock market variance, whereas the coe�cients in columns (2), (4), (6) and (8) indicate the
variation due to risk premia. All coe�cients are presented in percentages. Standard errors
are adjusted for auto-correlation using Newey and West (1987) (Hansen and Hodrick
1980) with T -lags, and the corresponding t-statistics are presented below in parentheses
(brackets).

log-VS log-F level-VS level-F

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: T = 1.

Coef. 110.07 10.07 110.07 10.07 92.16 -7.84 92.16 -7.84
(tnw) (18.89) (1.73) (18.89) (1.73) (5.15) (-0.44) (5.15) (-0.44)
[thh] [17.99] [1.65] [17.99] [1.65] [4.68] [-0.40] [4.68] [-0.40]
R

2 57.74 1.13 57.74 1.13 42.42 0.53 42.42 0.53

Panel B: T = 3.

Coef. 95.73 -4.02 86.36 -13.64 66.71 -33.29 43.79 -56.21
(tnw) (10.88) (-0.44) (7.41) (-1.17) (5.66) (-2.83) (4.08) (-5.23)
[thh] [9.42] [-0.38] [6.48] [-1.02] [5.05] [-2.52] [3.73] [-4.78]
R

2 43.20 0.13 22.45 0.72 22.96 6.91 5.99 9.51

Panel C: T = 6.

Coef. 83.34 -16.77 60.49 -39.51 49.29 -50.71 19.83 -80.17
(tnw) (6.82) (-1.35) (3.69) (-2.41) (4.16) (-4.28) (1.98) (-8.00)
[thh] [5.88] [-1.17] [3.27] [-2.13] [4.37] [-4.49] [1.79] [-7.23]
R

2 31.53 1.72 8.88 3.99 13.73 14.41 1.00 14.15

Panel D: T = 12.

Coef. 55.83 -41.85 12.81 -87.19 33.83 -66.17 16.29 -83.71
(tnw) (3.69) (-2.65) (0.75) (-5.08) (3.45) (-6.75) (1.49) (-7.66)
[thh] [3.44] [-2.48] [0.69] [-4.68] [3.25] [-6.36] [1.63] [-8.39]
R

2 14.21 8.04 0.48 18.15 7.59 23.91 0.76 16.83

Panel E: T = 18.

Coef. 24.52 -72.80 -22.93 -122.93 19.56 -80.44 -19.65 -119.65
(tnw) (1.33) (-3.89) (-1.58) (-8.47) (2.11) (-8.69) (-0.99) (-6.03)
[thh] [1.34] [-3.92] [-1.49] [-7.98] [2.62] [-10.78] [-0.97] [-5.90]
R

2 3.03 20.54 2.24 39.66 3.14 35.42 1.03 27.77
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Table 2: The estimated coe�cients of the VAR of equation (15) with t-values in paren-

theses in Panel A. All variables are normalized to have a mean equal to zero, and pc
(1)
t

and pc
(1)
t are additionally standardized to have a standard deviation equal to one. Panel

B shows the correlation matrix of the residual vector ✏t with the standard deviations on
the diagonal. The sample period for the dependent variables is January 1996 to June
2019, with 282 monthly data points.

Panel A: Coe�cients, VAR model

rvt pc
(1)
t pc

(2)
t DEFt R

2

rvt+1 0.056 0.514 -0.344 0.514 0.589
(t-stat.) (0.73) (7.43) (-7.13) (3.38)

pc
(1)
t+1 0.049 0.856 0.003 0.105 0.847

(t-stat.) (1.02) (20.00) (0.09) (1.11)

pc
(2)
t+1 -0.022 0.151 0.845 -0.022 0.745

(t-stat.) (-0.35) (2.70) (21.77) (-0.18)

DEFt+1 0.013 -0.010 -0.004 0.964 0.936
(t-stat.) (1.34) (-1.11) (-0.66) (48.81)

Panel B: Correlation/Std matrix of residuals

corr/std rvt+1 pc
(1)
t+1 pc

(2)
t+1 DEFt+1

rvt+1 0.627 0.627 -0.484 0.354

pc
(1)
t+1 0.627 0.388 -0.598 0.372

pc
(2)
t+1 -0.484 -0.598 0.505 -0.154

DEFt+1 0.354 0.372 -0.154 0.082
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Table 3: The results of the variance decomposition of variance swap prices using the VAR.
The columns indicated by log-VS rely on identity (6) for log prices, and the columns indi-
cated by level-VS rely on identity (10) for prices in levels. Note that reported coe�cient
represent the percentage of variance that is attributable to each component such that the
sum equals one. Standard errors are computed using the Delta method and presented in
parentheses.

log-VS level-VS

E
(T )
rv E

(T )
rp C

(T )
rv,rp E

(T )
RV,t E

(T )
RP,t C

(T )
RV,RP

T = 1
123.51 6.87 -30.38 105.18 25.35 -30.53
(12.24) (2.71) (13.96) (11.91) (4.44) (14.20)

T = 3
112.80 14.66 -27.47 92.12 30.16 -22.28
(18.74) (6.96) (21.89) (17.57) (8.86) (21.34)

T = 6
87.00 31.24 -18.24 77.11 47.67 -24.78
(24.05) (15.39) (29.76) (21.93) (16.38) (29.99)

T = 12
48.56 60.59 -9.15 58.58 72.10 -30.68
(24.35) (27.18) (35.15) (25.21) (25.32) (38.92)

T = 18
28.50 75.99 -4.49 43.54 83.25 -26.79
(20.35) (29.39) (32.95) (23.62) (27.18) (38.13)

Table 4: The estimates of regression equation (20). The first row corresponds to the av-
erage simple return on a variance swap with maturity T , and the second row corresponds
to the coe�cient for �E

(T )
rp,t. Note that E

(T )
rp,t is scaled to have a standard deviation of one.

t-statistics are represented in parentheses.

Maturity 1 3 6 12 18

Mean return -0.285 -0.098 -0.050 -0.013 -0.006
(-7.16) (-3.77) (-2.72) (-1.01) (-0.52)

�E
(T )
rp,t -0.123 -0.110 -0.082 -0.056 -0.041

(3.09) (4.24) (4.46) (4.24) (3.77)

R
2 0.033 0.061 0.067 0.061 0.049
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Table 5: This table reports the estimation results of regression Equation (21). In Panel A the risk premia derived from
the log-VS identity are the dependent variable, and in Panel B the risk premia derived from the level-VS identity are the
dependent variable. All variables in the regression are standardized to facilitate interpretation, and to make the coe�cients
comparable along the term structure. The coe�cients reported in columns (1)–(5) are obtained from regressions without
additional control variables, whereas the coe�cients reported in column (6)-(10) include control variables. The included
control variables: Risk-neutral skewness from CBOE, macroeconomic risk perceptions (PVS) from Pflueger et al. (2020),
term spread, TED spread and market earnings yield. Standard errors are adjusted for auto-correlation using Newey and
West (1987) with six lags, and the corresponding t-statistics are presented below in parentheses.

Panel A: log-VS

�E
(1)
rp,t �E

(3)
rp,t �E

(6)
rp,t �E

(12)
rp,t �E

(18)
rp,t �E

(1)
rp,t �E

(3)
rp,t �E

(6)
rp,t �E

(12)
rp,t �E

(18)
rp,t

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

�̂
2
t 0.21 -0.03 -0.06 -0.04 0.01 0.28 0.13 0.18 0.25 0.29

(1.71) (-0.27) (-0.45) (-0.28) (0.05) (3.09) (1.21) (1.62) (2.13) (2.46)
V Bt -0.82 -0.38 -0.17 -0.05 -0.03 -0.70 -0.46 -0.41 -0.37 -0.37

(-3.20) (-1.88) (-0.78) (-0.23) (-0.13) (-3.30) (-2.46) (-2.16) (-1.94) (-2.07)
ILSt 0.24 0.30 0.32 0.39 0.44 0.52 0.60 0.68 0.71 0.68

(1.44) (1.72) (1.81) (2.26) (2.58) (2.62) (2.38) (2.42) (2.42) (2.37)

Controls N N N N N Y Y Y Y Y
R

2 0.24 0.10 0.06 0.12 0.18 0.40 0.28 0.24 0.28 0.34

Panel B: level-VS

�E
(1)
RP,t �E

(3)
RP,t �E

(6)
RP,t �E

(12)
RP,t �E

(18)
RP,t �E

(1)
RP,t �E

(3)
RP,t �E

(6)
RP,t �E

(12)
RP,t �E

(18)
RP,t

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

�̂
2
t -0.75 -0.68 -0.46 -0.30 -0.18 -0.45 -0.38 -0.18 -0.03 0.07

(-3.08) (-3.43) (-2.60) (-1.96) (-1.22) (-1.98) (-2.30) (-1.31) (-0.31) (0.61)
V Bt 0.52 0.60 0.46 0.32 0.22 0.22 0.34 0.20 0.08 -0.02

(1.73) (2.15) (1.73) (1.36) (0.93) (0.74) (1.45) (0.99) (0.45) (-0.14)
ILSt 0.06 0.13 0.20 0.32 0.40 0.42 0.57 0.68 0.75 0.75

(0.32) (0.73) (1.15) (1.96) (2.43) (2.58) (4.20) (4.18) (3.64) (3.34)

Controls N N N N N Y Y Y Y Y
R

2 0.12 0.11 0.11 0.16 0.21 0.22 0.25 0.27 0.31 0.34
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Figure 1: The left (right) panel plots how much of the variation in log variance swap
prices is driven by expected variance (risk premia) in the data (solid line), the model of
Gabaix (2012) (dashed line), the model of Wachter (2013) (dash-dotted line), and the
model of Drechsler and Yaron (2011) (dotted line). The grey area corresponds to a 95%
confidence interval. The results are plotted for variance swap prices with 1, 3, 6, 12,
and 18 months to maturity. The y-axis corresponds to how much of the variation is
attributable to expected variance or risk, respectively, in percentage terms.
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Figure 2: The term structure of the variance of variance swap prices in the data (solid
line), the model by Gabaix (2012) (dashed line), the model by Wachter (2013) (dash-
dotted line), and the model by Drechsler and Yaron (2011) (dotted line). The grey area
corresponds to a 95% confidence interval. The results are plotted for variance swap prices
with 1, 3, 6, 12, and 18 months to maturity. The y-axis corresponds to monthly volatility.
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Figure 3: The left (right) panel plots the term structure of expected returns (return
volatility) on variance swaps in the data (solid line), the model of Gabaix (2012) (dashed
line), the model of Wachter (2013) (dash-dotted line), and the model of Drechsler and
Yaron (2011) (dotted line). The grey area corresponds to a 95% confidence interval. The
results are shown for variance swaps with 1, 3, 6, 12, and 18 months to maturity. The
y-axis corresponds to monthly returns.

0 2 4 6 8 10 12 14 16 18
Maturity

-0.4

-0.2

0

0.2

M
on

th
ly

 re
tu

rn

Data
Gabaix (2012)
Wachter (2013)
Drechsler and Yaron (2011)

0 2 4 6 8 10 12 14 16 18
Maturity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
on

th
ly

 v
ol

at
ilit

y

Data
Gabaix (2012)
Wachter (2013)
Drechsler and Yaron (2011)

Figure 4: The decomposition of the variance swap price (black line) into variance ex-
pectations (dotted line) and risk premia (dashed line) over the sample period. The left
panel shows the decomposition of the one-month variance swap price, and the right panel
the decomposition of the 18-month variance swap price. The variables are represented as
six-month moving averages. The shaded area corresponds to the NBER recessions.
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Figure 5: Six-month moving averages of the risk obtained from the log variance swap price
with one month to maturity (solid grey line), three months to maturity (dotted black line),
six months to maturity (dash-dotted black line), 12 months to maturity (dashed black
line), and 18 months to maturity (solid black line). The grey area corresponds to NBER
recessions.

2000 2005 2010 2015
Date

-1

-0.5

0

0.5

1

1.5

R
is

k 
pr

em
ia

-Erp
(18)

-Erp
(12)

-Erp
(6)

-Erp
(3)

-Erp
(1)

A Appendix: Additional empirical results

A.1 Derivation of the present value identities.

In this section, I discuss the derivation of each of the identities discussed in Section 1.2.

log-VS. The first step in deriving this identity is to Taylor-expand the log-return on

the variance swap:

r
(T )
t+1 ⇡ k(T ) + ⇢(T ) · vs(T�1)

t+1 +
⇥
1� ⇢(T )

⇤
rvt+1 � vs

(T )
t , (22)

where r
(T )
t+1 = log

�
R

(T )
t+1

�
, vs

(T�1)
t+1 = log

�
V S

(T�1)
t+1

�
, rvt+1 = log

�
RVt+1

�
, and vs

(T )
t =

log
�
V S

(T )
t

�
. In equation (22), k(T ) represents the approximation constant and ⇢(T )

governs the relative importance of the next period’s price and the next period’s realized

variance in the calculation of the return of the variance swap. These constants depend on
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the maturity, T , of the variance swap because the one-period return on a short-term vari-

ance swap is mostly driven by the next period’s realized variance whereas the one-period

return on a long-term variance swap is mostly driven by the next period’s price. Intu-

itively, ⇢(T ) increases in the maturity of the variance swap, and thus gets closer to one.

Below, I show that ⇢(T ) can be estimated using a simple regression and, importantly,

that equation (22) approximates the return on a variance swap really well.

The next step is to substitute the next period’s variance swap price with the following

approximation:

vs
(T�i)
t+i ⇡ k(T � i) + ⇢(T � i) · vs(T�i�1)

t+i+1 +
⇥
1� ⇢(T � i)

⇤
rvt+i+1 � r

(T�i)
t+i+1,

where k(T � i) and ⇢(T � i) are the log-linearization coe�cients of a variance swap with

T � i-periods to maturity. This equation allows me to substitute future variance swap

prices up to the point that the current variance swap price depends on the one-month

variance swap price, vs(1)t+T�1. The following holds regarding the one-month variance swap

price: vs(1)t+T�1 = rvt+T � r
(1)
t+T , that is, k(1) = ⇢(1) = 0. After this substitution, I obtain

the following:

vs
(T )
t ⇡ K+

TX

i=1

⇥
1�⇢(T�i+1)

⇤⇣ i�1Y

j=1

⇢(T�j+1)
⌘
·rvt+i�

TX

i=1

⇣ i�1Y

j=1

⇢(T�j+1)
⌘
·r(T�i+1)

t+i ,

(23)

where K is a constant and a function of the constants k(T � i) and ⇢(T � i) from the indi-

vidual log-linearizations. I discard the constant K from the pricing identity because the

focus of the paper is on time-series variation in variance swap prices. Equation (23) is an

accounting identity; therefore it also holds in expectation conditional on the information

at time t, and equations (6)–(8) of Section 1.2 follow.

Campbell and Shiller (1988) show that the current price–dividend ratio increases in

dividend growth expectations and decreases in stock market discount rates. Therefore,

identity (6) for the variance swap price is similar to the pricing identity of the price–

dividend ratio, where variance expectations take the role of expected cash flows and
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variance risk premia replace stock market discount rates. There are two main di↵erences

between the identity of equation (6) and the identity in Campbell and Shiller (1988),

and these are due to the fact that a variance swap is a finite cash flow, whereas equity

is a perpetual cash flow. First, the variance risk premia in equation (8) depend on the

maturity of the variance swap, which is important because Dew-Becker et al. (2017) show

that there is a strong term structure in risk premia on variance swaps. Second, in the

derivation of the pricing identity for equity, Campbell and Shiller (1988) assume the

so-called no-bubble condition. This assumption is not needed in the case of a variance

swap.

In order run the predictive regressions of Section 3.1, I need the log-linear approx-

imation coe�cients ⇢(T ). I estimate ⇢(T ) using a simple regression, and the results of

this exercise are presented in Table 6. As expected, the log-linearization coe�cient ⇢(T )

Table 6: The regression results of r(T )
t+1 � rvt+1 + vs(T )

t = k(T ) + ⇢(T ) ·
�
vs(T�1)

t+1 � rvt+1

�
+ ✏(T )

t+1, for
di↵erent maturities T . For each maturity, the log-linearization coe�cient ⇢(T ) is given as is the R2 of
the regression.

Maturity 1 2 3 4 5 6 7 8 9

⇢(T ) 0 0.634 0.777 0.841 0.876 0.898 0.914 0.925 0.933
R

2 100% 98.24% 99.28% 99.57% 99.70% 99.78% 99.82% 99.85% 99.88%

Maturity 10 11 12 13 14 15 16 17 18

⇢(T ) 0.940 0.945 0.950 0.954 0.958 0.961 0.963 0.965 0.967
R

2 99.90% 99.91% 99.92% 99.94% 99.94% 99.95% 99.96% 99.96% 99.96%

depends on the maturity of the variance swap, and increases in the maturity, which in-

dicates that the next period’s variance swap price is relatively more important than the

one-period realized variance for long-term variance swaps. The second row in Table 6

shows that the log-linear approximation of the variance swap returns is in fact very good,

as indicated by the large R
2s, which range from 98.24% to 99.96%, with an average of

99.7%.

log-F. In the following, I derive the identity for the logarithm of the variance forward

price. To derive the identity, I first have to define the gross return on a variance forward
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for holding it to maturity, as follows:

R
(T )
F,t+T =

RVt+T

F
(T )
t

.

In case the investor holds the variance forward with T -periods to maturity until maturity,

the investor receives only the realized variance in period t+T . Taking the logarithm of the

gross return on the forward and rearranging yields the pricing identity for the logarithm

of the variance forward:

f
(T )
t = rvt+T � r

(T )
f,t+T .

It constitutes an exact relation between the logarithm of the variance forward, realized

variance and risk premia because it follows directly from the defintion of the variance

forward return to maturity. Again, because it is an accounting identity, the relation also

holds in expectation, and Equation (9) follows.

level-VS. In the following, I derive the present value identity for the variance swap

price. First, I rearrange the definition of the realized variance premium of Equation (5),

as follows:

V S
(T )
t = V S

(T�1)
t+1 +RVt+1 � V P

(T )
t+1.

The second step is to iterate this equation forward by substituting an equivalent equation

for V S
(T�i)
t+i up to maturity, as follows:

V S
(T )
t =

TX

i=1

RVt+i �
(T )X

i=1

V P
(T�i+1)
t+i .

Again computing the expectation on both sides, yields Equation (10).

level-F. Finally, I derive the present value identity for the variance forward price. To

derive the identity, I first define the payo↵ for holing a variance forward to maturity, as
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follows:

V P
(T )
F,t+T = RVt+T � F

(T )
t .

In case the investor holds the variance forward to maturity, the investor is entitled to the

realized variance in period t+T . Rearranging and computing the expectation, yields the

pricing identity of Equation (11).

A.2 Variance swaps as in Kozhan et al. (2013)

The realized variance of a variance swap entered at time t with maturity T is calculated

in the following way:

RV
(T )
t =

TX

j=1

h
2
�
e
rt+j � 1� rt+j

�i
, (24)

where rt+j is daily log return realized on day t + j. Note that equation (24) is similar

to the sum of squared daily returns as r
2 ⇡ 2

�
e
r � 1 � r

�
. The variance swap rate is

defined as the risk-neutral expectation of the realized variance specified in equation (24).

Kozhan et al. (2013) show how to calculate the variance swap rate with maturity T at

time t from option prices, as follows:

V S
(T )
t =

2

B
(T )
t

"Z F
(T )
t

0

P
(T )
t (K)

K2
dK +

Z 1

F
(T )
t

C
(T )
t (K)

K2
dK

#
, (25)

where B(T )
t is the risk-free bond price at time t with maturity T , F (T )

t is the forward price

at time t with maturity T and P
(T )
t (K) and C

(T )
t (K) are prices of European put and call

options at time t with maturity T and strike price K.

Kozhan et al. (2013) show how to approximate equation (25) using a finite number

of available put and call options. Given the set of available option prices P
(T )
t (Ki) and

C
(T )
t (Ki) for 0  i  N where prices are mid points from bid and ask quotes, Kozhan
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et al. (2013) compute variance swap rates as follows. Define the following function:

�I(Ki) =

8
><

>:

Ki+1�Ki�1

2 , for 0  i  N (with K�1 := 2K0 �K1, KN+1 := 2KN �KN�1)

0, otherwise.

Then the variance swap rate is computed as follows:

V S
(T )
t ⇡ 2

X

KiF
(T )
t

P
(T )
t (Ki)

B
(T )
t K

2
i

�I(Ki) + 2
X

Ki>F
(T )
t

C
(T )
t (Ki)

B
(T )
t K

2
i

�I(Ki). (26)

Options on the S&P 500 expire every month on the third Friday. Using linear interpola-

tion, I calculate variance swap rates that expire on the last trading day of each month.

The linear interpolation works in the following way: Variance swap rates with maturity

T1 < T and T2 > T are calculated by equation (26); then the variance swap rate with

maturity T is constructed as follows:

V S
(T )
t = ↵V S

(T1)
t + (1� ↵)V S

(T2)
t ,

where T = ↵T1 + (1 � ↵)T2. With the data from OptionMetrics I calculate a panel of

variance swap rates with one month up to 18 months to maturity.

A.3 Compare synthetic variance swaps to OTC variance swaps

In this section, I compare the data on synthetic variance swaps that are obtained from

option pricing to the data on variance swaps from the OTC market. The data on variance

swaps from the OTC market is from Dew-Becker et al. (2017). Their sample covers the

period from December 1995 to September 2013 and variance swap rates up to a maturity

of 12 months. During the period from January 1996 to September 2013, I observe a

synthetic variance swap rate obtained using my methodology and a variance swap rate

from the actual OTC data. I plot these rates in following graphs for one, three, six, and

12 months to maturity, which are the maturities of my benchmark analysis.
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Figure 6: This figure plots the synthetic variance swap rate and OTC swap rate from Dew-Becker et al.
(2017) for four maturities. The top-left graph plots the one-month swap rate, the top-right graph plots
the three-month swap rate, the bottom-left graph plots the six-month swap rate, and the bottom-right
graph plots the 12-month swap rate.
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Overall, Figure 6 provides strong evidence that the synthetic variance swap rate is

very similar to the swap rate in the OTC market. This indicates that the option market

and the variance swap market are integrated markets and contain the same information

regarding the pricing of variance risk. Notable di↵erences include the di↵erence in the

one-month swap rate during the financial crisis and the di↵erence in the 12-month swap

rates during the first years of my sample. Furthermore, the average correlations between

synthetic and OTC swap rate of the four maturities equals 0.991.

In Table 7, I present sample statistics from the panel of variance swap returns. Note

that I also present sample statistics on the realized variance of the S&P 500, because
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realized variance plays the role of the dividend payment in the calculation of the return.

Moreover, I calculate simple returns and log-returns in order to quantify its di↵erences

in the case of variance swaps. The sample statistics of the realized variance and variance

swap returns are shown in Table 7. In Table 7, sample statistics of monthly realized

Table 7: The table shows sample statistics of realized variance in Panel A, simple variance swap returns
in Panel B and log variance swap returns in Panel C. The sample statistics of monthly realized variance
in Panel A are scaled to represent the yearly standard deviation. The mean, standard deviation, yearly
Sharpe ratio and the 5%, 25%, 50%, 75% and 95% quantiles are presented.

Panel A: Realized variance

Maturity Mean SD SR 5% 25% Median 75% 95%

- 0.162 0.095 - 0.068 0.101 0.142 0.188 0.323

Panel B: Simple returns on variance swaps

18 -0.006 0.187 -0.106 -0.231 -0.123 -0.037 0.071 0.317
12 -0.013 0.227 -0.202 -0.269 -0.151 -0.056 0.081 0.346
6 -0.050 0.316 -0.544 -0.363 -0.232 -0.110 0.058 0.480
3 -0.098 0.447 -0.756 -0.477 -0.353 -0.204 0.002 0.581
1 -0.285 0.676 -1.458 -0.779 -0.630 -0.456 -0.193 0.838

Panel C: Log-returns on variance swaps

18 -0.021 0.167 - -0.262 -0.131 -0.037 0.069 0.275
12 -0.034 0.195 - -0.313 -0.164 -0.057 0.078 0.297
6 -0.090 0.264 - -0.451 -0.265 -0.117 0.057 0.392
3 -0.181 0.365 - -0.649 -0.435 -0.228 0.002 0.458
1 -0.572 0.640 - -1.508 -0.995 -0.608 -0.214 0.609

variance on the S&P 500 and returns on variance swaps with di↵erent maturities ranging

from one to 18 months are presented. Panel A presents sample statistics of realized

variance scaled to yearly standard deviation, Panel B presents simple returns on variance

swaps, and Panel C presents log-returns on variance swaps. The mean monthly realized

variance over the sample is equal to 16.2% p.a., with a standard deviation of 9.5%.

Furthermore, the distribution of monthly realized variance is right-skewed, indicated by

the quantiles of the distribution.

The first observation from Panel B of Table 7 is that, on average, returns on variance

swap returns are negative. This result is in line with a positive variance risk premium
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for the market portfolio as in Bollerslev et al. (2009) and Drechsler and Yaron (2011).

Economically, a negative expected return on a variance swap indicates that if an investor

wants to hedge variance risk, she pays a risk premium. The premium the investor pays

for holding a variance swap is decreasing in the maturity of the variance swap. A variance

swap with maturity longer than one month has exposure toward realized variance in the

next month and toward expected variance for the remainder of the contract. Dew-Becker

et al. (2017) show that the premium for hedging realized variance the next month is

much larger than for hedging expected variance, and, therefore, the premium for holding

a variance swap is decreasing in the maturity. Moreover, returns on variance swaps are

volatile, as seen in the third column of Panel B in Table 7 and the volatility is decreasing in

the maturity of the variance swap. However, the yearly Sharpe ratio is strongly increasing

in maturity, and the yearly Sharpe ratio for investing in variance swaps with one month

to maturity is very low (⇡ �1.46), and similar to what Dew-Becker et al. (2017) find.

Furthermore, the distributions of variance swap returns are right-skewed, indicated by

the quantiles of the return distribution.

The sample average of the log-returns on variance swaps in Panel C of Table 7 are

lower than the sample average for simple returns in Panel B of Table 7. This is driven

by the fact that log-return distributions are less right-skewed than the simple return

distributions and, therefore, is the sample average lower. The distribution of one-month

returns is a↵ected the most by the log-transformation. This result derives from the fact

that the approximation of log-returns is equal to simple returns is close if the volatility

of the return is low.

A.4 Variation in upside and downside variance swap prices

In this section, I show how the price of a variance swap can be decomposed as the sum

of an upside and downside variance swap. In addition, I show that most of the variation

in variance swap prices is attributable to variation in downside variance swap prices.

I start by showing how to decompose the variance swap as in Kozhan et al. (2013),

into the sum of an upside and downside variance swap. As shown in Kozhan et al. (2013),
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the payo↵ of the variance swap is given by:

g(rt,T ) = 2(ert,T � 1� rt,T ),

where rt,T is the log-return on a forward contract from time t to maturity T . The payo↵

of the upside and downside variance swap are defined as follows:

gu(rt,T ) = 2(ert,T � 1� rt,T ) · 1(rt,T � 0) and (27)

gd(rt,T ) = 2(ert,T � 1� rt,T ) · 1(rt,T < 0), (28)

where 1(·) is an indicator function. Using the formula from Bakshi and Madan (2000), I

show that the prices of the payo↵ functions (27) and (28) are given by:

V S
(T )
u,t =

2

B
(T )
t

"Z 1

F
(T )
t

C
(T )
t (K)

K2
dK

#
and

V S
(T )
d,t =

2

B
(T )
t

"Z F
(T )
t

0

P
(T )
t (K)

K2
dK

#
,

such that V S
(T )
t = V S

(T )
u,t + V S

(T )
d,t . Note, by Proposition 1 of Kozhan et al. (2013)

there exists a unique trading strategy that perfectly hedges the payo↵ functions (28)

and (27). However, the inclusion of the indicator function in the payo↵ functions makes

this trading strategy infeasible to implement without strong assumptions on the process

of the underlying. Therefore, I will only focus in this analysis on the prices of the upside

and downside variance swap which is a combination of the cash flow and the discount

rate.

My definition of the upside and downside variance swap is similar to Andersen and

Bondarenko (2009) and Baele et al. (2019). While these papers focused on the average

upside and downside variance premium for a maturity of one month, my analysis fo-

cuses on time-series variation in upside and downside variance swap prices and I include

maturities from one-month up to 18 months. Moreover, in some other studies, the condi-
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tioning is di↵erent in the pricing equation than in the calculation of the realized payo↵.

For instance, Kilic and Shaliastovich (2019) and Dew-Becker et al. (2017) use a similar

specification for the upside and downside variance swap price, but in order to calculate

realized payo↵ they condition on intraday or daily returns. Hence, their realized payo↵

conditions on a di↵erent set of events compared to the pricing equation, for which the

condition is whether the stock price at maturity is above or below the current forward

price. This blurs the comparison of the realized payo↵ and price of the upside and down-

side variance swap, and, therefore, does not identify the upside and downside variance

discount rate well.

I derive an identity to decompose variation in the variance swap price into variation

due to the upside and downside variance swap price, in the following way (I suppressed

the constants):

vs
(T )
t = log

⇣
V S

(T )
u,t + V S

(T )
d,t

⌘
⇡ ⇢1(T )vs

(T )
u,t + (1� ⇢1(T ))vs

(T )
d,t ,

() 1 ⇡
cov(vs(T )

t , ⇢1(T )vs
(T )
u,t )

var(vs(T )
t )

+
cov(vs(T )

t , (1� ⇢1(T ))vs
(T )
d,t )

var(vs(T )
t )

(29)

=: bu + bd.

The coe�cients bu and bd are estimated in two stages, in the first stage I estimate ⇢1(T )

using a simple regression and in the second stage bu and bd are estimated with a simple

regression using ⇢1(T ) from the first stage. Similar to before, the sum of the coe�cients

should be close to one, and if this is the case it indicates that this log-linear approximation

is, in fact, a good approximation. The results these second-stage regressions are presented

in Table 8. The main result from Table 8 is that the main driver of variation in the

variance swap price is the downside variance swap price. This result makes sense, because

an important determinant of the variance swap price is crash risk. Overall, the importance

of the downside variance swap price increases in the maturity of the variance swap (except

for the one-month variance swap). Finally, the sum of the coe�cients bu and bd is very

close to one, which indicates that the log-linear approximation is a good approximation
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Table 8: In this table the results of the decomposition of the variance swap price into the upside and
downside variance swap price are presented. The definition of the coe�cients bu and bd are given in
equation (29). The t-statistics of the coe�cients are given in parentheses and are calculated using
Newey-West standard errors with 50 lags.

Dependent variable: ⇢1(T )vs
(T )
u,t (1� ⇢1(T ))vs

(T )
d,t

Maturity bu
(t-stat.)

R
2

bd
(t-stat.)

R
2

18
0.256 0.859 0.742 0.980
(19.18) (57.96)

12
0.275 0.865 0.722 0.978
(16.58) (45.13)

6
0.368 0.886 0.634 0.956
(20.74) (50.42)

3
0.371 0.923 0.635 0.970
(22.96) (56.47)

1
0.314 0.957 0.687 0.991
(27.06) (64.09)

for the log-price of the variance swap.

A.5 Decomposition of variance swap prices in a subsample

In this section, I show that the results of Subsection 3.1 are robust to running the pre-

dictive regressions on a subsample. The analysis is done on the sample period starting in

September 2005, and the reason is that Cboe introduced Long-Term Equity Anticipation

Securities (Leaps) for the S&P 500 in this month. Leaps are option contracts with the

same specifications as before, only with a maturity up to three years. Cboe lists these

options once every year, and the option expire on the third Friday in January. For this

reason, I can obtain a balanced panel of variance swap prices up to a maturity of 24

months using interpolation on the sample period from September 2005 up to June 2019.

To decompose the variance swap prices on this subsample, I run the predictive regressions

of equations (12) and (13).

Table 9 has two main takeaways. First, the results on this subsample are highly similar

to the results over the total sample presented in 3.1. Second, the pattern documented

in the term structure of the variance price decomposition continues to hold for longer
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Table 9: This table shows the results of the predictive regressions of equations (12) and (13), in which the
variance swap price is the independent variable. t-statistics are represented in brackets and are computed
using Newey-West standard errors with number of lags equal to T .

Dependent variable: yrv,t+T yrp,t+T

Maturity brv
(t-stat.)

R
2

brp
(t-stat.)

R
2

24
-0.205 0.023 -1.239 0.454
(-0.61) (-3.88)

18
0.161 0.014 -0.844 0.263
(0.65) (-3.68)

12
0.502 0.120 -0.495 0.109
(2.81) (-2.81)

6
0.772 0.274 -0.231 0.030
(4.93) (-1.42)

3
0.951 0.414 -0.048 0.002
(9.18) (-0.44)

1
1.130 0.565 0.130 0.017
(14.55) (1.67)

maturities. That is, the variance swap price for contract with 24 months to maturity is

solely driven by risk premia. Notably, the coe�cient brp is less than -1 which indicates the

variation in the variance swap price is larger than the variation in risk premia. However,

the coe�cient is not significantly di↵erent from -1.

A.6 VAR specification to obtain expected variance in levels.

In this section, I explain how to decompose the price variation in variance swap prices

in levels (identity 10) rather than in logs (identity 6) using a VAR. I focus on the same

VAR, only model stock market variance in levels RVt rather than in logs rvt, as follows:

Zt+1 = LZt + ✏t+1 and (30)

Zt =
⇣
RVt pc

(1)
t pc

(2)
t DEFt

⌘0
.
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Equivalent to the definition of E
(T )
rv,t and E

(T )
rp,t for log variance swap prices, expected

variance and risk premia for variance swap prices in levels are defined as follows:

E
(T )
RV,t = Et

TX

i=1

RVt+i and

E
(T )
RP,t = Et

TX

i=1

V P
(T�i+1)
t+i .

These expectations are obtained using the VAR of this section by:

E
(T )
RV,t = e

0
1

⇣
L+ L

2 + · · ·LT )zt and

E
(T )
RP,t = E

(T )
RV,t � V S

(T )
t ,

where the second equality follows by the identity of variance swap prices in levels.

Table 10: This table presents the estimated coe�cients of the VAR of Equation (30).
t-statistics are presented below the estimates in parentheses. The sample period for the
dependent variables is January 1996 to June 2019, with 282 monthly data points.

Coe�cients VAR model

RVt pc
(1)
t pc

(2)
t DEFt R

2

RVt+1 0.56 0.02 -0.06 0.28 0.53
(9.58) (0.62) (-2.85) (3.21)

pc
(1)
t+1 0.14 0.86 0.00 0.05 0.85

(2.19) (27.50) (0.16) (0.49)

pc
(2)
t+1 0.01 0.13 0.85 -0.04 0.75

(0.11) (3.28) (25.96) (-0.30)

DEFt+1 0.03 -0.01 -0.01 0.96 0.94
(1.93) (-0.93) (-1.05) (46.44)

In the following, I show that the current specifications of the VAR are able to estimate

variance expectations and risk premia e↵ectively. I test this by estimating the same

predictive regressions of the future variance and future returns on the variance swap as

before, only in this case variance expectations and risk premia obtained from the VAR
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are used as the predictive variables. The regressions are specified as follows:

yrv,t+T = �0,rv + �1,rv · E(T )
rv,t + �2,rv ·

�
� E

(T )
rp,t

�
+ u

rv
t+T and (31)

�yrp,t+T = �0,rp + �1,rp · E(T )
rv,t + �2,rp ·

�
� E

(T )
rp,t

�
+ u

rp
t+T . (32)

If the VAR is correctly specified, I should find the following: �1,rv = 1 in the case

of regression equation (31) and �2,rp = 1 in the case of regression equation (32). In

case expectations are obtained using the identity for variance swap prices in levels, the

variables in regressions (31) and (32) have to be adjusted accordingly. Table 11 presents

the results of both specifications.

Table 11: The results of the predictive regressions of equations (31) and (32) in which the
expected realized variance and expected risk premia are the independent variables. The
columns indicated by yrv,t+T and �yrp,t+T (yRV,t+T and �yRP,t+T ) use the VAR estimates
of Table 2 (10) to obtain expected variance and risk premia. t-statistics are represented
in parentheses and are computed using Newey–West standard errors with number of lags
equal to T .

yrv,t+T �yrp,t+T yRV,t+T �yRP,t+T

E
(T )
rv,t �E

(T )
rp,t E

(T )
rv,t �E

(T )
rp,t E

(T )
RV,t �E

(T )
RP,t E

(T )
RV,t �E

(T )
RP,t

T = 1
1.04 0.35 -0.04 0.65 1.01 0.10 -0.01 0.90

(18.11) (1.20) (-0.74) (2.27) (6.69) (0.36) (-0.09) (3.36)

T = 3
0.96 0.14 0.03 0.84 0.85 -0.12 0.15 1.12

(13.24) (0.52) (0.44) (2.97) (7.55) (-0.38) (1.33) (3.53)

T = 6
1.02 0.18 -0.00 0.79 0.78 -0.05 0.22 1.05
(7.72) (0.73) (-0.03) (3.08) (4.74) (-0.20) (1.33) (4.44)

T = 12
1.10 0.12 -0.09 0.82 0.71 0.04 0.29 0.96
(4.54) (0.58) (-0.34) (3.64) (3.43) (0.23) (1.40) (5.04)

T = 18
0.94 -0.01 0.09 0.96 0.59 0.02 0.41 0.98
(3.67) (-0.03) (0.35) (4.06) (3.06) (0.10) (2.10) (6.20)

The main result from Table 11 is that, indeed, expected stock market variance and

risk premia are e↵ectively estimated using the VAR. First, focusing on the regressions

to predict future variance, Columns yrv,t+T and yRV,t+T , the results show that future
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variance is solely predicted significantly by expected variance and not by risk premia.

Moreover, the regression coe�cient of variance expectations, Columns E
(T )
rv,t and E

(T )
RV,t,

show that the estimated coe�cient is relatively close to one for each maturity, and this

shows that the VAR is able to capture stock market variance beyond one month. Finally,

the estimated coe�cient E
(T )
RV,t decreases in the maturity which suggests that the VAR

for log stock market variance is better able to recover long-term variance than the VAR

for stock market variance in levels.

Second, focusing on the regressions to predict realized risk premia, Columns �yrp,t+T

and yRP,t+T , the results show that future realized premia are predicted significantly by

expected risk premia. Furthermore, the regression coe�cient of risk premia, Columns

�E
(T )
rp,t and E

(T )
RP,t, show that the coe�cient is not significantly distinct from one. In sum,

Table 11 shows that the utilized VARs are able to e↵ectively recover short- and long-term

expected variance and risk premia e↵ectively.
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Internet Appendix A

Impulse response functions of the VAR

In this section, I show the impulse response function of stock market variance in response

to a change of each of the other variables in the VAR of equation (15) in the main paper.

The impulse responses are presented in Figure IA1.

Figure IA1: This figure plots the monthly impulse response functions of stock market variance in response
to a change of the variables in the VAR. The scale of the y-axis is in standard deviation of stock market
variance, where each of the variables increases by one standard deviation at time 0. The top-left graph
plots the responses to a change in rv, the top-right graph plots the responses to a change in pc(1), the
bottom-left graph plots the responses to a change in pc(2), and the bottom-right graph plots the responses
to a change in DEF .
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Figure IA1 plots the impulse response functions of stock market variance for a horizon

up to 36 months. The top-left graph shows that there is very little persistence in stock

market variance, if the current level increases. The top-right graph shows that an increase

in pc
(1) increases future stock market variance up to 10 months forward. The bottom-left

graph shows that an increase in pc
(2) decreases future stock market variance and the

shock is more persistent than a shock in pc
(1). Finally, the bottom-right graph shows

that shocks towards DEF are the most persistent and, therefore, a↵ect long-term stock

market variance.

Internet Appendix B

Di↵erent specifications of the VAR

In this section, I show that the results of the decomposition of variance swap prices are

robust to a variety of di↵erent specifications of the VAR. Many of the variables included

have been shown by prior studies to be important state variables that predict stock market

returns or stock market variance. In Table IA1, I show the results of the decomposition

of variance swap prices for the following specifications:

1. zt =

✓
rvt pc

(1)
t pc

(2)
t

◆0

. In this specification the default spread is excluded in

order to alleviate any concerns induced by the persistence of the default spread.

2. zt =

✓
rvt pc

(1)
t pc

(2)
t rvt�13,t�1

◆0

. In this specification lagged long-term stock

market variance is included. rvt�13,t�1 is defined as the log of realized variance in

the past year, and lagged one month additionally such that the variable does not

overlap with rvt.

3. zt =

✓
rvt pc

(1)
t pc

(2)
t pet

◆0

. In this specification the log of smoothed price-

earnings ratio is included, because Campbell et al. (2018) show that it predicts

2



future stock market variance.

4. zt =

✓
rvt pc

(1)
t pc

(2)
t deft pet rvt�13,t�1

◆0

. In this specification all state vari-

ables used in the previous analyses are included.

Table IA1: This table shows the results of the variance decomposition of variance swap prices using
equation (19). Note that the (co)variances of the third, fourth, and fifth columns are scaled with the
variance of the second column such that the sum of the three (co)variances equals one. Standard errors
are computed using the Delta method.

T

�2
rv

�2
vs

�2
vdr
�2
vs

�2�rv,vdr

�2
vs

�2
rv

�2
vs

�2
vdr
�2
vs

�2�rv,vdr

�2
vs

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

Specification 1 Specification 2

18
0.148 0.678 0.174 0.423 0.604 -0.027

(0.102) (0.297) (0.229) (0.291) (0.233) (0.335)

6
0.750 0.201 0.049 0.855 0.223 -0.078

(0.217) (0.126) (0.213) (0.258) (0.126) (0.286)

1
1.200 0.035 -0.235 1.200 0.035 -0.236

(0.124) (0.018) (0.136) (0.124) (0.018) (0.136)

Specification 3 Specification 4

18
0.227 0.800 -0.028 0.564 1.016 -0.580

(0.176) (0.360) (0.429) (0.306) (0.353) (0.540)

6
0.774 0.219 0.007 1.040 0.443 -0.482

(0.223) (0.135) (0.239) (0.272) (0.175) (0.369)

1
1.200 0.036 -0.236 1.200 0.035 -0.236

(0.124) (0.019) (0.136) (0.124) (0.018) (0.136)

The results in Table IA2 show that the main result of the paper holds in each of the speci-

fications; that is, short-term variance swap prices mainly driven by variance expectations,
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whereas long-term variance swap prices are mainly driven by risk premia. Moreover, the

decomposition of the one-month variance swap price shows that the variables other than

pc
(1)
t and pc

(2)
t add little in terms of predicting the one-month variance. The variables

mostly add something for long-term stock market variance, due to the persistence of each

of the variables. To test how well each of the specifications estimates variance expecta-

tions and risk premia, I run the following regressions(the same as equations (31) and (32)

in the main paper):

yrv,t+T = �0,rv + �1,rv · E(T )
rv,t + �2,rv ·

�
� E

(T )
vdr,t

�
+ u

rv
t+T and

�yvdr,t+T = �0,vdr + �1,vdr · E(T )
rv,t + �2,vdr ·

�
� E

(T )
vdr,t

�
+ u

vdr
t+T .

In case variance expectations and risk premia are estimated e↵ectively, I should find

�1,rv = �2,vdr = 1 and �2,rv = �1,vdr = 0.
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Table IA2: This table presents the results of the predictive regressions of equations (31) and (32) in
which the expected realized variance and expected risk premia are the independent variables. t-statistics
are represented in parentheses and are computed using Newey-West standard errors with number of lags
equal to T .

T
�1,rv �2,rv �1,vdr �2,vdr �1,rv �2,rv �1,vdr �2,vdr

(t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.) (t-stat.)

Specification 1 Specification 2

18
2.184 -0.341 -1.163 1.299 1.026 -0.284 -0.004 1.223

(5.94) (-1.86) (-3.07) (7.11) (3.92) (-1.39) (-0.01) (5.81)

6
1.072 0.014 -0.057 0.939 1.024 -0.025 -0.011 0.973

(8.23) (0.06) (-0.43) (3.80) (8.27) (-0.10) (-0.08) (4.12)

1
1.075 0.765 -0.075 0.234 1.075 0.760 -0.075 0.239

(16.23) (1.91) (-1.14) (0.58) (16.17) (1.90) (-1.12) (0.60)

Specification 3 Specification 4

18
1.723 -0.161 -0.780 1.143 0.985 -0.058 -0.015 1.032

(6.77) (-0.81) (-3.18) (6.06) (5.55) (-0.32) (-0.08) (5.64)

6
1.076 -0.016 -0.067 0.988 1.013 0.075 -0.009 0.915

(8.72) (-0.07) (-0.53) (4.32) (9.98) (0.42) (-0.13) (4.87)

1
1.072 0.754 -0.075 0.245 1.037 0.257 -0.038 0.743

(16.36) (1.91) (-1.13) (0.62) (18.51) (1.17) (-0.67) (3.39)

Table IA2 shows that many VAR specifications are not able to obtain the one-month

variance discount rate, and long-term variance expectations. In particular, specifications

1 through 3 fail in obtaining the one-month variance discount rate e↵ectively. It follows

that the default spread is an important variable in order to obtain this discount rate.

Furthermore, specification 1 and 3 predict long-term variance expectations which exceed

the realized variance. Finally, specification 4 does a good job in obtaining short-term risk
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premia as well as long-term variance expectations, and the results are very similar to the

results of the benchmark specification of the VAR.

Internet Appendix C

VAR using quarterly data

In this section, I show that the results continue to hold if the analyses are done at the

quarterly rather than monthly frequency. This is done to alleviate concerns that the

estimates based on monthly frequency overstate the persistence of the variables and,

therefore, create a bias in the variance expectations. The VAR is used to calculate quar-

terly stock market variance expectations and for this reason the variance swap rate with

three months to maturity is the shortest maturity considered in this exercise. Table IA3

presents the estimation results.
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Table IA3: This table shows the estimated coe�cients of the VAR of equation (15) with t-values in

parentheses. All variables are normalized to have mean equal to zero, and pc(1)t and pc(1)t are additionally
standardized to have standard deviation equal to one. The sample period for the dependent variables is
March 1996 to June 2019, with 94 quarterly data points.

Coe�cients VAR model

rvt pc
(1)
t pc

(2)
t DEFt R

2

rvt+1 -0.031 0.468 -0.267 0.448 0.459

(t-stat.) (-0.17) (3.07) (-3.28) (1.66)

pc
(1)
t+1 -0.013 0.750 0.003 0.104 0.585

(t-stat.) (-0.07) (5.02) (0.04) (0.40)

pc
(2)
t+1 -0.108 0.294 0.696 0.140 0.619

(t-stat.) (-0.60) (1.99) (8.82) (0.54)

DEFt+1 0.024 -0.025 -0.007 0.847 0.709

(t-stat.) (0.46) (-0.59) (-0.33) (11.50)

Overall, the estimation results based on quarterly frequency are very similar to the

results based on monthly frequency. Variance expectations and risk premia are calculated

using these estimates and by adjusting equations (17) and (18) accordingly. Table IA4

presents the results.
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Table IA4: This table shows the results of the variance decomposition of variance swap rates using
equation (19), based on the VAR estimated on quarterly data. Note that the (co)variances of the third,
fourth, and fifth columns are scaled with the variance of the second column such that the sum of the
three (co)variances equals one.

T var
�
vs
� var(Erv)

var(vs)
var(Evdr)
var(vs)

�2·cov(Erv,Evdr)
var(vs)

18 0.220 0.218 0.665 0.117

12 0.227 0.434 0.505 0.060

6 0.274 0.824 0.206 -0.030

3 0.348 1.021 0.085 -0.107

The results of the decomposition of variance swap rates in Table IA3 are remarkably

close to the results of Table 3. Therefore, my results are robust whether the frequency of

the VAR is monthly or quarterly. Finally, I also decompose the variance swap rate using

the predictive regressions of equations (12) and (13). Table IA5 presents the results.
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Table IA5: This table shows the results of the predictive regressions of equations (12) and (13) in which
the variance swap price is the independent variable. The frequency of the data is quarterly. t-statistics
are represented in parentheses and are computed using Newey-West standard errors with number of lags
equal to 1

3 · T .

Dependent variable: yrv,t+T yvdr,t+T

Maturity brv
(t-stat.)

R
2

bvdr
(t-stat.)

R
2

18
0.240 0.029 -0.741 0.218

(1.21) (-3.76)

12
0.540 0.129 -0.452 0.092

(3.32) (-2.71)

6
0.836 0.303 -0.162 0.016

(5.48) (-1.04)

3
0.964 0.417 -0.036 0.001

(8.05) (-0.30)

The similarity between the results of Table 1 and Table IA5 indicate that the results

of predictive regressions are robust to decreasing the frequency to the quarterly level.

Internet Appendix D

Appendix asset pricing models

In the following subsections, I discuss more the models considered in this paper in detail.

Section Internet Appendix D.1 discusses the model by Gabaix (2012), Section Inter-

net Appendix D.2 discusses Wachter (2013), and Section Internet Appendix D.3 dis-

cusses Drechsler and Yaron (2011).
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Internet Appendix D.1

Variable disaster risk and CRRA preferences

In this subsection, I discuss the variable rare disaster model of Gabaix (2012). I use the

following specification from Dew-Becker et al. (2017):

�ct+1 = µc + �c✏c,t+1 + Jc,t+1,

Lt+1 =
�
1� ⇢L

�
L̄+ ⇢LLt + �L✏L,t+1 and

�dt+1 = ⌘�c✏c,t+1 � Lt · 1Jc,t 6=0,

where ✏c,t+1, ✏L,t+1 ⇠ N(0, 1) and Jc,t+1 is the jump process (rare disaster). The state

variable Lt captures the exposure of the dividend process toward the rare disaster, and

this exposure varies over time. During times when Lt is large, the stock market is a↵ected

more by consumption disasters than when Lt is low. The rare disaster process is modeled

as a compound Poisson process and is defined as follows:

Jt =
NtX

i=1

⇠i,t, where Nt ⇠ Poisson(�t) and ⇠i,t ⇠ N
�
µd, �d

�
. (33)

Note that in the model by Gabaix (2012) �t = �; that is the jump intensity does not vary

over time. The representative agent in the model has power utility preferences with risk

aversion parameter �, which yields the following stochastic discount factor:

Mt+1 = �

⇣
Ct+1

Ct

⌘��

,

where � is the utility discount rate. I use the calibration from Dew-Becker et al. (2017),

which is calibrated to match the risk premium on one-month variance swaps, and is given

in Table IA9 of Appendix Internet Appendix D.1.
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In order to obtain an equation for the realized stock market variance, I use the fol-

lowing log-linear stock market return approximation:

rm,t+1 ⇡ 0 + 1pdt+1 � pdt +�dt+1, (34)

where 0,1 are log-linearization constants and I use the follow approximation: pdt ⇡

z0 + z1Lt. The stock market return is then driven by two Gaussian shocks
�
✏c,t+1 and

✏L,t+1

�
and a jump shock

�
Lt · 1Jc,t 6=0

�
. I follow Dew-Becker et al. (2017), who assume

that, in the absence of a disaster, the shocks to consumption and the variable disaster

have a deterministic variance. In the case of a disaster occurring, Dew-Becker et al. (2017)

assume that the largest daily decline in the value of the stock market is F%. Under these

assumptions, realized variance over the next period equals the following:

RVt+1 = 
2
1z

2
1�

2
L + ⌘

2
�
2
c + F · Lt1Jc,t 6=0, (35)

where the first two summands correspond to the variance from the consumption process

and variable rare disaster process, and the last summand is the realized variance from

the jump process.

Equation (35) o↵ers a first insight into the drivers of variance risk in the model by

Gabaix (2012). Realized variance depends on whether the consumption disaster hits the

economy. Given that the consumption disaster is a (very) undersirable outcome of the

agent, she is willing to pay a large price to hedge this risk. Furthermore, it follows from

equation (35) that the disaster size Lt drives variation in expected stock market variance.

The variance swap rate at time t with T months to maturity is computed as the sum

of risk-neutral realized variances of equation (35), as follows:

V S
(T )
t =

TX

t=1

EQ
t

�
RVt+i

�
= T · v0 + v1

TX

i=i

Et

�
Lt+i�1

�
, (36)
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where v0 = 
2
1z

2
1�

2
L + ⌘

2
�
2
c is the di↵usive variance and v1 = F · EQ�1Jc 6=0

�
. These

equations show that the size of the disaster Lt also drives the risk premium embedded in

the variance swap rate.

The calibration of the model by Gabaix (2012) is from Dew-Becker et al. (2017) and

given in the following table.

Table IA6: Calibration of the model by Gabaix (2012).

Parameter Value Parameter Value

µc 0.01/12 �c 0.02/
p
12

µd �0.3 �d 0.15

L̄ � log(0.5) �L 0.04

⇢L 0.871/12 ⌘ 5

� 0.961/12 � 7

�
0.01
12

Note that in the calibration of Dew-Becker et al. (2017) the risk-aversion is raised to

7 in order to match the Sharpe ratio on one-month variance swaps.

In the following, I present more details of the results from the simulation study for

the model by Gabaix (2012). First, I present sample statistics of realized variance and

risk premia in the model. The results of this simulation study are represented in the

following table.
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Table IA7: This table presents sample statistics of the realized variance and risk premia in the model
by Gabaix (2012). The mean, standard deviation and Sharpe Ratio of the 18-, 12-, 6-, 3-, and 1-month
simple risk premia are presented. The second column consists of the empirical result, and the third,
fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study, respectively.

Statistic Data Model

Est. 5% 50% 95%

Realized variance

E
�
RV
�

0.162 0.115 0.116 0.117

�
�
RV
�

0.095 0.000 0.021 0.043

risk premia

E
�
r
(18)
�

-0.006 -0.024 -0.021 -0.017

�
�
r
(18)
�

0.187 0.021 0.056 0.109

SR
�
r
(18)
�

-0.106 -4.091 -1.278 -0.572

E
�
r
(12)
�

-0.013 -0.037 -0.032 -0.025

�
�
r
(12)
�

0.227 0.021 0.080 0.161

SR
�
r
(12)
�

-0.202 -5.976 -1.326 -0.578

E
�
r
(6)
�

-0.050 -0.075 -0.063 -0.050

�
�
r
(6)
�

0.316 0.023 0.155 0.319

SR
�
r
(6)
�

-0.544 -11.028 -1.362 -0.584

E
�
r
(3)
�

-0.098 -0.150 -0.127 -0.099

�
�
r
(3)
�

0.447 0.028 0.308 0.636

SR
�
r
(3)
�

-0.756 -17.644 -1.370 -0.585

E
�
r
(1)
�

-0.285 -0.451 -0.380 -0.296

�
�
r
(1)
�

0.676 0.068 0.926 1.905

SR
�
r
(1)
�

-1.458 -22.305 -1.366 -0.585
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Table IA7 confirms the finding of Figure 3 that the model by Gabaix (2012) is able

to capture the strongly increasing term structure of expected variance swap returns doc-

umented in the data. Moreover, Table IA7 shows that the volatility of variance swap

returns varies a lot across simulation sets, and this results from the fact that the prob-

ability of a disaster is small (1% p.a.). If no disasters occur in a simulation set, the

volatility of variance swap returns is very low. Finally, I conclude from Table IA7 that

the model by Gabaix (2012) is not able to capture the dynamics of empirical stock market

volatility.

In the following, I decompose variance swap rates in the model by Gabaix (2012) for

each simulation set seperately. Table IA8 presents the results.

14



Table IA8: This table presents the results of the simple variance decomposition of variance swap rates
in the data and in the model by Gabaix (2012). The results of the data are from Table 1, with standard
errors in parentheses. The regression coe�cients of the model are estimated for each simulation set, and
the mean and standard deviation of the regression coe�cients are represented in the table.

Maturity Data Model

brv bvdr brv bvdr

18
0.245 -0.728 0.002 -0.985

(0.185) (0.188) (0.028) (0.125)

12
0.558 -0.419 0.002 -0.989

(0.151) (0.158) (0.028) (0.101)

6
0.833 -0.168 0.002 -0.994

(0.119) (0.122) (0.028) (0.069)

3
0.957 -0.040 0.002 -0.997

(0.083) (0.086) (0.027) (0.047)

1
1.101 0.101 0.002 -0.998

(0.056) (0.056) (0.027) (0.027)

Table IA8 shows that the result of Figure 1 is stable across the simulation sets. In

particular, short-term variance swap rates are solely driven by risk premia, and this

number is very similar across simulations, and, therefore, it is strong evidence that the

model is not in line with the data.
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Internet Appendix D.2

Time-varying disaster risk and Epstein-Zin preferences

In this subsection, I discuss a discrete version of the model by Wachter (2013). Similar

to Gabaix (2012), the consumption disaster risk varies over time. However, in the model

by Wachter (2013), the disaster intensity, rather than the disaster size, varies over time.

Furthermore, the agent in the model has preferences as in Epstein and Zin (1989), rather

than CRRA preferences.

Consumption and dividend growth in the model are given by

�ct+1 = µc + �c✏c,t+1 + Jt+1 and

�dt+1 = ⌘�ct+1,

where ✏c ⇠ N(0, 1) and Jt is a compound-Poisson as in equation (33) of the model

by Gabaix (2012). However, in this model the intensity of the consumption disaster is

time-varying and follows the following square-root process:

�t+1 = ��t + (1� �)µ� + ��

p
�t✏�,t+1,

where ✏�,t ⇠ N(0, 1). The investor has Epstein-Zin utility with elasticity of intertemporal

substitution (EIS) equal to one and, therefore, is the log-utility given by

vt = (1� �)ct +
�

1� ↵
logEt exp

�
vt+1(1� ↵)

�
,

where � is the utility discount rate and � = 1 � ↵ is the risk aversion parameter. The

calibration of the model is from Dew-Becker et al. (2017) and is given in Table IA9 of

Appendix Internet Appendix D.2.
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An equation for the realized variance in the model by Wachter (2013) follows from

the log-linear market return which is given by

rm,t+1 ⇡ 0 + 1pdt+1 � pdt +�dt+1,

where 0,1 are log-linearization constants for the log-market return and pdt is the log

price-dividend ratio and is approximately linear in the state variable: pdt ⇡ z0 + z1�t.

Under these assumptions, realized variance in this model given by

RVt+1 = ⌘
2
�
2
c + 

2
1z

2
1�

2
��t � F⌘Jt+1, (37)

where the first two summands correspond the variances of the di↵usive shocks ✏c,t+1 and

✏�,t+1 and the last summand corresponds to the realized variance from the consumption

disaster.

Equation 37 o↵ers a first insight into the pricing of variance risk in the model byWachter

(2013). The first summand of equation (35) is constant over time; however, the second

summand scales with the level of the intensity of the consumption disaster. This results

from the fact that the disaster intensity follows a square-root process, which indicates

that future variance of the disaster intensity scales with the current level of the disaster

intensity. Therefore, even in the absence of consumption disasters, stock market variance

is time-varying in this model. This result is di↵erent from the model by Gabaix (2012)

in which the variance of the stock market only varies if a disaster hits the economy. The

third summand of equation (37) corresponds to the stock market variance that follows

from the disaster process.

Variance swap rates are computed as the risk-neutral expectation of the sum of realized

17



variances of equation (37) of period t+ 1 until t+ T , as follows:

V S
(T )
t =

TX

t=1

EQ
t

�
RVt+i

�
= T · v0 + v1

TX

i=1

EQ(�t+i�1), (38)

where v0 = ⌘
2
�
2
c and v1 = 

2
1z

2
1�

2
� � F⌘ exp

�
� ↵µd +

1
2↵�

2
d

�
(µd � ↵�

2
d). Due to the

Epstein-Zin preferences of the agent, the risk-neutral dynamics of the disaster intensity

are di↵erent from the real-world dynamics in the sense that states with low lifetime

utility, which correspond to states with high disaster intensity, receive a larger risk-neutral

probability. This yields the agent a premium for instruments that o↵er protection against

states in which disaster intensity is high, and this feature is not present in a model with

CRRA preferences.

The calibration of the model is given in Table IA9.

Table IA9: This table shows the calibration of the model by Wachter (2013).

Parameter Value Parameter Value

µc 0.0252/12 �c 0.02/
p
12

µd �0.15 �d 0.10

µ� 0.0355/12 �� 0.067/12

� exp(�0.08/12) � exp(�0.012/12)

⌘ 2.6 � 4.9 = 1� ↵

Note that in the calibration of Dew-Becker et al. (2017) the risk-aversion is raised to

4.9 in order to match the Sharpe ratio on one-month variance swaps as closely as possible.

In the following, I present more details of the results from the simulation study for

the model by Wachter (2013). First, I present sample statistics of realized variance and

risk premia in the model. The results of this simulation study are represented in the

following table.
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Table IA10: This table presents sample statistics of the realized variance and risk premia in the model
by Wachter (2013). The mean, standard deviation, and Sharpe ratio of the 18-, 12-, 6-, 3-, and 1-month
simple risk premia are presented. The second column consists of the empirical result, and the third,
fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation study, respectively.

Statistic Data Model

Est. 5% 50% 95%

Realized variance

E
�
RV
�

0.162 0.094 0.123 0.168

�
�
RV
�

0.095 0.028 0.048 0.073

risk premia

E
�
r
(18)
�

-0.006 -0.015 -0.010 -0.005

�
�
r
(18)
�

0.187 0.080 0.101 0.179

SR
�
r
(18)
�

-0.106 -0.556 -0.357 -0.097

E
�
r
(12)
�

-0.013 -0.019 -0.014 -0.005

�
�
r
(12)
�

0.227 0.084 0.118 0.256

SR
�
r
(12)
�

-0.202 -0.721 -0.412 -0.075

E
�
r
(6)
�

-0.050 -0.032 -0.024 -0.007

�
�
r
(6)
�

0.316 0.086 0.183 0.502

SR
�
r
(6)
�

-0.544 -1.284 -0.464 -0.048

E
�
r
(3)
�

-0.098 -0.060 -0.045 -0.009

�
�
r
(3)
�

0.447 0.074 0.338 1.008

SR
�
r
(3)
�

-0.756 -2.674 -0.459 -0.031

E
�
r
(1)
�

-0.285 -0.173 -0.127 -0.018

�
�
r
(1)
�

0.676 0.045 0.993 3.058

SR
�
r
(1)
�

-1.458 -12.294 -0.442 -0.019
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Table IA10 confirms the finding of Figure 3 that the model by Wachter (2013) is not

able to capture the strongly increasing term structure of expected variance swap returns

documented in the data. Moreover, Table IA10 shows that also in the model by Wachter

(2013) the volatility of variance swap returns varies a lot across simulation sets, and this

results from the fact that the probability of a disaster is, on average, small (3.55% p.a.).

If no disasters occur in a simulation set, the volatility of variance swap returns is very low.

Finally, I conclude from Table IA7 that the model by Wachter (2013) does a better job

than the model by Gabaix (2012) of capturing the empirical dynamics of stock market

volatility.

In the following, I decompose variance swap rates in the model by Wachter (2013) for

each simulation set separately. Table IA11 presents the results.
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Table IA11: This table presents the results of the simple variance decomposition of variance swap rates
in the data and in the model by Wachter (2013). The results of the data are from Table 1, with standard
errors in parentheses. The regression coe�cients of the model are estimated for each simulation set,
and the mean of the regression coe�cients is represented in the table with the standard deviation in
parentheses.

Maturity Data Model

brv bvdr brv bvdr

18
0.245 -0.728 0.973 -0.037

(0.185) (0.188) (0.040) (0.040)

12
0.558 -0.419 0.963 -0.033

(0.151) (0.158) (0.029) (0.032)

6
0.833 -0.168 0.954 -0.033

(0.119) (0.122) (0.021) (0.024)

3
0.957 -0.040 0.950 -0.039

(0.083) (0.086) (0.019) (0.020)

1
1.101 0.101 0.948 -0.052

(0.056) (0.056) (0.018) (0.018)

Table IA11 confirms the finding of Figure 1 that variance swap rates are driven by

variance expectations in the model by Wachter (2013). Moreover, this result is very stable

across the simulation sets, as indicated by the low standard deviation of brv. Therefore,

this is strong evidence that the model is not in line with the data because my analysis

shows that long-term variance swaps are mostly driven by risk premia.

In the following subsection, I discuss long-run risk model by Drechsler and Yaron

(2011).
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Internet Appendix D.3

Long-run risk

In this subsection, I discuss the long-run risk model by Drechsler and Yaron (2011). This

model is a generalization of the long-run risk model by Bansal and Yaron (2004) in order to

incorporate stylized facts regarding the variance risk premium. The model is generalized

in the sense that the long-run mean consumption growth and the stochastic volatility

incorporate jump shocks. Moreover, the long-run mean of the stochastic volatility process

varies over time. The agent in the model has Epstein-Zin preferences, as is standard in

long-run risk models. An important di↵erence between the long-run risk model and

the previously discussed consumption disaster models is that there are no consumption

disasters in the long-run risk model. However, the state variables, which govern the future

consumption growth rate and future consumption volatility, are exposed to jump risk.

Drechsler and Yaron (2011) specify the state vector of the economy as a VAR with

Gaussian and jump shocks, as follows:

Yt+1 =

0

BBBBBBBBBB@

�ct+1

xt+1

�̄
2
t+1

�
2
t+1

�dt+1

1

CCCCCCCCCCA

= µ+ FYt +Gtzt+1 + Jt+1, (39)

22



where, µ is a vector with the means of each state variable, F is specified as follows:

F =

0

BBBBBBBBBB@

0 1 0 0 0

0 ⇢x 0 0 0

0 0 ⇢�̄ 0 0

0 0 (1� ⇢̃�) ⇢� 0

0 � 0 0 0

1

CCCCCCCCCCA

, (40)

GtG
0
t is the variance-covariance matrix, zt+1 ⇠ N(0, I) is a vector of Gaussian shocks,

and Jt+1 is a vector of jump shocks. Jumps are compound-Poisson as in equation (33)

with intensity �t, which can vary over time, similar to the model by Wachter (2013).

Drechsler and Yaron (2011) consider a specification with jumps in xt and �2
t , where Jx,t

is compound normal distributed and J�,t is compound gamma distributed.

The first and last element of Yt are the consumption and dividend growth, respectively.

These processes have a time-varying mean, which is driven by the persistent process xt,

the second element of Yt. The third element of Yt is the long-run mean �̄2
t of the stochastic

volatility process �2
t , the fourth element of Yt.

The variance-covariance matrix, GtG
0
t, which governs the stochastic volatility of the

model, and the jump intensity, �t, are a�ne in the state variable �2
t :

GtG
0
t = h+H��

2
t and

�t = l0 + l1�
2
t ,

and, therefore, all variation in either the jump intensity or stochastic volatility is driven

by �2
t .

The representative agent in the model has Epstein-Zin utility for which the stochastic
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discount factor is given by

mt+1 = ✓ log � � ✓

 
�ct+1 + (✓ � 1)rc,t+1,

where ✓ = 1��
1� 1

 

, � is the utility discount rate, � is the risk aversion,  is the EIS, and

rc,t+1, the return on wealth. Drechsler and Yaron (2011) solve a log-linear version of the

model and use pdt+1 ⇡ A0,m + A
0
mYt+1, which says that the log price-dividend ratio is

linear in the state variables. Under these conditions is the log-linearized market return,

written as follows:

rm,t+1 = r0 +
�
B

0
rF � A

0
m

�
+B

0
rGtzt+1 +B

0
rJt+1, (41)

where A0,m, A0
m, r0 and B

0
r are given in equations (8) and (9) of Drechsler and Yaron

(2011). Realized variance during period t+ 1 is equal to

RVt+1 = B
0
rhBr +B

0
rH��

2
tBr +B

0
rJt+1J

0
t+1Br. (42)

The assumption underlying this realized variance equation is that the Gaussian shocks

zt+1 occur di↵usively during period t+ 1, while jumps happen on a single day.

Equation (42) o↵ers a first insight into the pricing of variance risk in the model by

Drechsler and Yaron (2011). The first summand corresponds to the constant variance

coming from the Gaussian shocks in the model. The second summand corresponds to the

stochastic variance coming from the Gaussian shocks for which the variance is governed

by the state variable �2
t . Finally, the third summand corresponds to the realized variance

coming from the jump realizations in the state variables xt and �2
t . Similar to the model by

Wachter (2013) is time-variation in the realized variance coming from stochastic variance

of Gaussian shocks and from the jump shocks.
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The variance swap rate at time t with maturity T is computed as the risk-neutral

expectation of the realized variance of equation (42), as follows:

V S
(T )
t =

TX

t=1

EQ
t

�
RVt+i

�
= T · v0 + v1

TX

t=1

EQ
t

�
�
2
t+i�1

�
,

where,

v0 = B
0
rhBr and v1 = B

0
rH�Br + l1 · B0

r 
Q
Br.

In the last equation,  Q is a matrix that has the risk-neutral variance of the disaster real-

ization on the diagonal and corresponds to equation (21) of Drechsler and Yaron (2011).

In order to derive these equations, I used l0,x = l0,� = 0 and l1,x = l1,� from the calibration

of Drechsler and Yaron (2011). The full calibration of the model is from Drechsler and

Yaron (2011) and presented in Table 5 of their paper, and I use the calibration in which

jump shocks in the xt process follow a compound-Poisson in combination with a normal

distribution.

In the following, I present more details of the results from the simulation study for

the model by Drechsler and Yaron (2011).IA1 First, I present sample statistics of realized

variance and risk premia in the model. The results of this simulation study are represented

in the following table.

IA1I thank Friedrich Lorenz for sharing the codes to solve the model.
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Table IA12: This table presents sample statistics of the realized variance and risk premia in the model by
Drechsler and Yaron (2011). The mean, standard deviation, and Sharpe ratio of the 18-, 12-, 6-, 3-, and
1-month simple variance swap returns are presented. The second column consists of the empirical result,
and the third, fourth, and fifth columns represent the 5%, 50%, and 95% quantile of the simulation
study, respectively.

Statistic Data Model

Est. 5% 50% 95%

Realized variance

E
�
RV
�

0.162 0.157 0.169 0.187

�
�
RV
�

0.095 0.051 0.087 0.134

risk premia

E
�
r
(18)
�

-0.006 -0.036 -0.026 -0.014

�
�
r
(18)
�

0.187 0.191 0.276 0.387

SR
�
r
(18)
�

-0.106 -0.654 -0.333 -0.128

E
�
r
(12)
�

-0.013 -0.045 -0.032 -0.015

�
�
r
(12)
�

0.227 0.232 0.343 0.488

SR
�
r
(12)
�

-0.202 -0.659 -0.326 -0.109

E
�
r
(6)
�

-0.050 -0.063 -0.043 -0.017

�
�
r
(6)
�

0.316 0.304 0.477 0.734

SR
�
r
(6)
�

-0.544 -0.686 -0.314 -0.084

E
�
r
(3)
�

-0.098 -0.089 -0.060 -0.020

�
�
r
(3)
�

0.447 0.394 0.671 1.144

SR
�
r
(3)
�

-0.756 -0.736 -0.309 -0.064

E
�
r
(1)
�

-0.285 -0.176 -0.116 -0.027

�
�
r
(1)
�

0.676 0.708 1.352 2.697

SR
�
r
(1)
�

-1.458 -0.820 -0.292 -0.036
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Table IA12 confirms the finding of Figure 3 that the model by Drechsler and Yaron

(2011) is not able to capture the strongly increasing term structure of expected variance

swap returns documented in the data. Moreover, it shows that the model predicts,

for each maturity, a volatility of variance swap returns, which is larger than observed

empirically. Finally, I conclude from Table IA7 that the model by Drechsler and Yaron

(2011) does a good job of capturing the empirical dynamics of stock market volatility.

In the following, I decompose variance swap rates in the model by Drechsler and Yaron

(2011) for each simulation set separately. Table IA13 presents the results.

Table IA13: This table presents the results of the simple variance decomposition of variance swap rates
in the data and in the model by Drechsler and Yaron (2011). The results of the data are from Table 1,
with standard errors in parentheses. The regression coe�cients of the model are estimated for each
simulation set and the mean of the regression coe�cients are represented in the table with the standard
deviation in parentheses.

Maturity Data Model

brv bvdr brv bvdr

18
0.245 -0.728 0.349 -0.560

(0.185) (0.188) (0.105) (0.108)

12
0.558 -0.419 0.412 -0.502

(0.151) (0.158) (0.105) (0.107)

6
0.833 -0.168 0.506 -0.418

(0.119) (0.122) (0.097) (0.098)

3
0.957 -0.040 0.567 -0.379

(0.083) (0.086) (0.087) (0.086)

1
1.101 0.101 0.615 -0.385

(0.056) (0.056) (0.075) (0.075)
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Table IA13 confirms the finding of Figure 1 that short-term variance swap rates are

driven by variance expectations and long-term variance swap rates by risk premia. More-

over, this result is stable across the simulation sets, as indicated by the low standard

deviations of brv and bvdr. Therefore, this is strong evidence that the model predicts a

variation in short-term risk premia, which is substantially larger than observed empiri-

cally.
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