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Abstract

We document asset pricing implications of zero days-to-expiration (0DTE) options,
which now comprise half of total S&P 500 option volume, and contrast them to
longer-maturity contracts. A distinctive feature of the ODTE market is that in-
vestors mainly require compensation for positive market returns, rather than nega-
tive returns. This is reflected in a high variance risk premium, which is largely driven
by compensation for upside risk and negatively predicts market returns. Moreover,
most 0DTEs appear mispriced from the perspective of risk-averse investors. Such
mispricing is highly profitable before 2022, but dissipates after the daily availability
of 0DTEs, consistent with growing integration with the underlying market.
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1 Introduction

We investigate the asset pricing implications of a new, relatively unexplored market:
zero days-to-expiration (0DTE) S&P 500 options, i.e., options on the market index ex-
piring by the end of the same day. These are weekly options that were listed at least
a week before. Since May 2022, weeklies are listed every trading day by the Chicago
Board Options Exchange (CBOE), resulting in the daily availability of ODTE options.
While one-month options were among the most traded contracts up to ten years ago,
which partially justified the focus on these options by the literature, the landscape of
the option market has changed dramatically more recently. Today, the daily volume of
0DTEs accounts for around half of total S&P 500 option volume, being thus by far the
most traded maturity. The tremendous growth of these ultra short-maturity options has
made them a trending topic in financial media outlets, trader forums and social media.

Our interest in ODTE options is justified not only by the fact that they are now
the most traded options in the market, but also because they contain new, valuable
information about investors’ risk preferences and risk premia over intra-daily horizons.
Our goal is to extract this information by exploring, from different perspectives, how
ODTE option prices relate to the time series of high-frequency market returns. Our
analysis provides new asset pricing stylized facts for ultra short-horizons and highlights
how they are remarkably different from the empirical evidence of longer horizons.

We focus on two main questions. First, what is the compensation required by investors
for bearing market risks over the day? The answer to this question is directly related to the
intra-day pricing kernel implied by 0DTEs and its shape as a function of market returns.!
We document a number of patterns in the equity and variance risk premia that are aligned

with a nonmonotonic pricing kernel that is higher for positive returns than negative

IStarting with Jackwerth (2000), Ait-Sahalia and Lo (2000) and Rosenberg and Engle (2002), a large
literature estimates this pricing kernel for longer horizons and documents a nonmonotonic shape, which
is puzzling under a representative investor framework. See Cuesdeanu and Jackwerth (2018) for a survey.



returns, revealing that investors mainly require compensation for upside risk during the
day. Second, are ODTE option prices consistent with risk-averse investors? We find
that violations of stochastic dominance increase as maturity shortens, with most 0DTEs
appearing “mispriced”.? A trading strategy exploiting this mispricing is highly profitable
before 2022, but dissipates after the daily availability of ODTEs. This is consistent with
growing market efficiency and stronger integration of the underlying and option markets.
We start by analyzing average returns of ODTE call and put options across strikes.
These are informative about investors’ preferences over intra-day market return states,
i.e., about the shape of the pricing kernel projected onto market returns over the op-
tions horizon. Calls experience low returns overall, which decrease with the strike and
eventually get highly negative. Following the rationale of Bakshi, Madan, and Panayotov
(2010), this is evidence that the pricing kernel is increasing for some region of positive
market returns, violating monotonicity. Put returns are also negative, especially out-of-
the-money (OTM), indicating that the pricing kernel is a decreasing but steep function of
market returns in the negative return region, consistent with aversion to downside risk.
Such risk preferences have strong implications for the equity premium over intra-
daily horizons. Applying the decomposition of Beason and Schreindorfer (2022) to 0DTE
options and realized market returns, we find that most of the intra-day equity premium
stems from compensation to market returns between —5% and 0%. In contrast, positive
return states have a negative contribution. This happens when the pricing kernel is
nonmonotonic and marginal utility is high for positive market returns. In this case,
investors would be willing to pay a premium to hold Arrow-Debreu securities paying in
those states, i.e., they are willing to give up part of the compensation for equity risk.

Implications are also substantial for the variance risk premium. We first document

2We emphasize that “mispriced” here means only that we cannot reconcile 0DTE prices with informa-
tion from the underlying market under risk-averse preferences. This does not mean that 0DTEs violate
no-arbitrage conditions (which imply much wider bounds that 0DTEs in general satisfy) or that it is not
possible to price 0DTEs with an option pricing model (see, e.g., Bandi, Fusari, and Reno, 2023).



that the average returns of at-the-money (ATM) delta-hedged calls and straddles are sig-
nificantly negative. Since these strategies represent long positions in volatility, this means
that investors are willing to pay a high premium to be protected against variance risk
over the day (Bakshi and Kapadia, 2003; Coval and Shumway, 2001). This is confirmed
when we compute a direct estimate of the variance risk premium, similarly to Bollerslev,
Tauchen, and Zhou (2009). The (annualized) average variance risk premium implied by
ODTESs can be up to four times larger than what is observed for longer horizons.

To disentangle the compensation demanded by investors to bear variation risk in
positive versus negative market returns, we respectively compute the “good” and “bad”
components of the total variance risk premium, as in Kilic and Shaliastovich (2019).
Strikingly, while at the one-month horizon the “good” variance risk premium is negative
and the “bad” is highly positive, the upside risk premium increases as the option maturity
shortens, until it becomes larger than the premium for downside risk over intra-daily
horizons. This, again, would be consistent with a pricing kernel that is exceptionally
high for positive market returns, such that investors demand compensation for these
states of high marginal utility.

We further investigate whether 0D'TE options contain predictive information for excess
market returns over the day. We consider predictive regressions using the variance risk
premium, risk-neutral moments (Bakshi, Kapadia, and Madan, 2003) and the equity
premium lower bound of Martin (2017). From these variables, only the variance risk
premium significantly predicts returns, but with a negative coefficient, which is at odds
with the existing evidence for longer horizons (Bollerslev et al., 2009). By substituting
the total variance risk premium with its “good” and “bad” components, we find that
only the “good” component helps predict market returns, with a strong and statistically
significant negative sign. In other words, the compensation for upside risk drives the

result for the total variance risk premium. This negative relation is, once more, aligned



with high marginal utility in states of positive market returns: the higher the pricing
kernel in this region, the higher is the compensation for positive return variation risk and
the more negative is the contribution of positive return states to the equity premium.

The findings above provide indirect evidence that the intra-day pricing kernel as a
function of market returns is nonmonotonic and, in particular, high for positive returns.
To confirm this evidence, we directly estimate the pricing kernel implied by 0ODTE options
and high-frequency market returns. For comparison, we also estimate pricing kernels for
maturities up to one month. Over our sample, the average pricing kernel is mostly
decreasing across returns when considering tenors between two weeks and one month,
while as maturity shortens, a U-shaped pattern starts to appear. The pattern is more
pronounced for 0DTEs, where the pricing kernel is actually higher for positive market
returns than negative returns. This reveals that, over recent years, the nonmonotonicity
of the pricing kernel has shifted to shorter maturities.

Our evidence shows that ODTE option prices can only be jointly reconciled with
the physical distribution of market returns under a pricing kernel displaying pronounced
nonmonotonicity. However, if we entertain the possibility that the ODTE option market
is segmented, there could still be a different risk-averse trader in the market index that
is marginal in each option. To test for that, we compute, for each option, price bounds
from the physical distribution consistent with all pricing kernels that are monotonically
decreasing in market returns (Ritchken, 1985). Over our sample, only around 30% of
ODTE options (and 6% of the ATM options) satisfy these bounds, which is again in
stark contrast with evidence from longer horizons (Almeida and Freire, 2022). In fact, we
show that around 97% of one-month options satisfy stochastic dominance bounds, while
violations increase monotonically as maturity shortens.

As a result, ODTE options are mostly “mispriced”, in the sense that they do not re-

flect the risks implied by the time series of intra-day market returns under risk-averse



preferences. To assess the economic significance of this mispricing, we consider a trad-
ing strategy purchasing (writing) the delta-hedged ATM option if it is cheap (expensive)
according to risk-averse investors, i.e., if its price represents a lower (upper) bound vio-
lation. Up to 2022, this strategy is highly profitable, even after transaction costs, with
a Sharpe ratio about ten times as large as that obtained by always writing the delta-
hedged ATM option, that is, exploiting the variance risk premium. However, after the
daily availability of 0DTEs and the associated increase in liquidity and attention to these
options, the profitability dissipates. This indicates that the ODTE market has become
more efficient and closely integrated with the underlying market over the recent years.
The remainder of the paper is organized as follows. After a brief discussion of the
related literature, Section 2 describes the theoretical framework behind our analysis.
Section 3 presents the data and implementation details of the methods we use. Section 4
contains our empirical analysis. Section 5 reports robustness results with respect to
different subsamples and monetary policy announcements. Section 6 concludes the paper.

Appendix A collects the figures and tables of the paper.

1.1 Related literature

Our paper mainly relates to three strands of the literature. The first strand consists
of an increasing number of papers studying the new 0DTE option market from different
lenses. Brogaard, Han, and Won (2023) show that a higher fraction of 0DTE option
trading increases the volatility of the underlying asset, while Dim, Eraker, and Vilkov
(2024) and Adams, Fontaine, and Ornthanalai (2024) provide contrary evidence based on
net open interest measures. Beckmeyer, Branger, and Gayda (2023) document that 0DTE
options are popular among retail traders, even though these investors mainly experience

losses in this market.” Bandi et al. (2023) present a novel option pricing formula designed

3While ODTE options account for more than 75% of retail trading in S&P 500 options, the vast
majority of 0DTE S&P 500 trading (around 94%) is still attributable to institutional investors.



for 0DTEs and investigate how leverage and volatility-of-volatility affect instantaneous
risk premia. Vilkov (2023) explores the performance of 0DTE option trading strategies.
Focusing on 1DTE options instead, Johannes, Kaeck, Seeger, and Shah (2024) analyze
option returns around macroeconomic announcements. Chong and Todorov (2024) use
0DTEs to show that there is no segmentation between the equity and option markets
based on restrictions for how short-horizon volatility should behave.? We contribute by
recovering investors’ risk preferences implied by 0DTEs, analyzing their implications for
intra-day equity and variance risk premia, examining whether these options are mispriced
relative to the underlying asset in the stochastic dominance sense, and comparing these
findings to those from longer-maturity options.

The second strand recovers information about investors’ expectations and risk prefer-
ences from relatively long-maturity options. Jackwerth (2000), Ait-Sahalia and Lo (2000)
and Rosenberg and Engle (2002) estimate the projection of the pricing kernel onto market
return states. Almeida and Freire (2022) find that S&P 500 option prices satisfy bounds
consistent with risk-averse investors, where the preferences of the marginal agent vary
across the options. Beason and Schreindorfer (2022) decompose the equity premium into
different parts of the return state space. Bollerslev et al. (2009) show that the variance
risk premium is generally positive and helps predict market returns. Bollerslev, Todorov,
and Xu (2015) and Andersen, Fusari, and Todorov (2015, 2017) document the special
role of compensation for jump risk in determining market risk premia. Using information
from the new O0DTE market, which is the most relevant option market today, we provide
novel asset pricing stylized facts for intra-daily horizons that are strikingly different from
those obtained for longer horizons. In particular, we study the intra-day pricing kernel

implied by 0ODTEs.® As a methodological contribution, we discuss how all these elements

4As an implication of their result, the aggregate pricing kernel that reconciles 0DTE option prices
with high-frequency market returns exists, which is the object of our study.

Relatedly, Aleti and Bollerslev (2024) study intra-day realizations of a pricing kernel obtained from
high-frequency returns of factors constructed from a monthly conditioning set of variables. In contrast,
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are connected through the shape of the pricing kernel as a function of market returns.
The third literature strand investigates return predictability over relatively short hori-
zons. Gao, Han, Zhengzi Li, and Zhou (2018) and Baltussen, Da, Lammers, and Martens
(2021) document intra-day momentum patterns across different markets, relating them
to infrequent portfolio rebalancing and hedging demand, respectively. Ait-Sahalia, Fan,
Xue, and Zhou (2022) study the predictability of ultra high-frequency stock returns us-
ing machine learning methods. Aleti, Bollerslev, and Siggaard (2023) predict intra-day
market returns with high-frequency cross-sectional returns of the factor zoo. Almeida,
Ardison, Freire, Garcia, and Orlowski (2023), Almeida, Freire, Garcia, and Hizmeri (2023)
and Alexiou, Bevilacqua, and Hizmeri (2023) use high-frequency market returns, cross-
sectional stock returns and option returns, respectively, to estimate volatility and tail
risk measures and predict risk premia over daily horizons. We show that 0DTEs contain
useful predictive information about intra-day risk premia over the options horizon. More
specifically, the variance risk premium negatively predicts excess market returns over the
day, which is driven by a strong negative relation between the premium for positive return

variation risk and future market returns.

2 Theoretical background

In this section, we present the theoretical background behind our analysis of the asset
pricing implications of ODTE options. We first describe what is the pricing kernel implied
by options. Then, we discuss its relation with expected option returns, market risk premia
and option price bounds. Finally, we explain how this framework will be used to study

the ODTE option market.

the pricing kernel we analyze is a function of market returns that is forward-looking and conditional on
the investors’ information set at the time of the day that the ODTE options are observed.



2.1 The pricing kernel

In the absence of arbitrage, the current price P, of any asset is given by the expectation

of the future asset payoftf X7 at time 7' = ¢ 4+ 7 multiplied by the pricing kernel m, r:

Py = B [myr X1| ] = / X (s) mar(s) 7P (s) ds, (1)

where s represents the state of the economy, F; is the information available to investors at
time ¢ and ij +(s) is the probability density function (PDF) under the physical measure
P;. The pricing kernel distorts the physical measure as to reflect investors’ compensation
for risk, such that one can take simple expectations to calculate the price of any asset.
More specifically, given the almost sure positivity of m;r under no-arbitrage, the
pricing kernel induces a change of measure from the physical measure P; to the risk-
neutral measure ;. Given a risk-free rate R; from ¢ to T, this can be seen by noting

that E;[m,r] = 1/Ry, and dividing and multiplying (1) by E;[m, r]:

mtT)]P’sszi stss:iQ
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where WST(S) is the PDF under the risk-neutral measure Q;. This PDF is often called the
state-price density, as it defines the (forward) prices of Arrow-Debreu securities paying
one dollar at time T if state of nature s is realized, and zero elsewhere. In contrast,
WE r(s) can be interpreted as the expected payoff of an Arrow-Debreu security for state s.

From (1) and (2), it becomes evident that the pricing kernel is the ratio of discounted

risk-neutral probabilities and physical probabilities:

1 WST<S)

Ry wr(s) )

mer(s) =

The economy-wide pricing kernel above depends on the realization of the state s of the



economy. However, there is no consensus among researchers on which are the relevant
state variables to consider from a modeling perspective.

As an alternative, a large strand of the literature, starting with Jackwerth (2000), Ait-
Sahalia and Lo (2000) and Rosenberg and Engle (2002), has proposed to focus instead

on the projection of the pricing kernel onto states R, of the market return:

1 7r;%(Rt,T)

— . 4
Ry WET(RLT) @)

mt,T(Rt,T) =

The main advantage is that this projection can be estimated using S&P 500 options and
the time series of market returns. On the one hand, the seminal result of Breeden and
Litzenberger (1978) allows to recover from option prices across different strikes the risk-
neutral distribution of underlying returns over the maturity 7 of the options, WST(Rt,T).
On the other hand, historical market returns are informative about the physical dis-
tribution W]tpj +(R7).° Importantly, m; (R r) has the same pricing implications as the
economy-wide pricing kernel m, r(s) for assets with payoffs that depend only on R, r.
The focus on the projection of the pricing kernel onto S&P 500 returns is also justified
by the general interest in learning about investors’ risk preferences towards the market
index and associated equity and variance risk premia. In particular, if one assumes that
the market index is equal to the aggregate wealth and a representative agent exists,
my (R ) is the marginal utility of this agent. Under this interpretation, the pricing
kernel should be monotonically decreasing in market returns if the representative agent
is risk-averse. However, the literature provides extensive evidence for monthly or longer
horizons that my r(R; 1) is usually a nonmonotonic (generally U-shaped) function of mar-

ket returns instead, characterizing the pricing kernel puzzle (Cuesdeanu and Jackwerth,

6There is a potential mismatch of conditioning information sets when estimating W?T(Rt7T) with

option prices, that are forward-looking, and w? (R, ) with historical returns, that are backward-looking
(see, e.g., Linn, Shive, and Shumway, 2018). We discuss how we handle that empirically in Section 3.4.
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2018).” In the next subsections, we discuss how various objects of interest in our analysis

relate to the pricing kernel and its shape.

2.2 Expected option returns

The shape of the pricing kernel has direct implications for expected option returns.

The expected return of a call option can be defined as below:®

Et [maX(Sth’T — K, 0)]

c S R K =
i (Se, Rery K) Ei[max(S;Rer — K,0) mer(Rer)]

- 17 (5)

where S; is the market index at ¢t and K is the option strike price. The expected return of
a put option is analogously defined for the payoff max(K — S;R; 7, 0). The numerator in
(5) is the expected payoff of the option under the physical measure, while the denominator
is the expected payoff under the risk-neutral measure, i.e., the option price.

Coval and Shumway (2001) show that if m, r(R; 1) is monotonically decreasing, calls
(puts) have expected returns that are positive (negative) and increase with the strike
price. Intuitively, a monotonically decreasing m; (R, r) shifts probability mass towards
states where the call (put) is less (more) valuable. Therefore, as the strike increases, the
call price decreases by more than the expected payoff, increasing the expected return.
Conversely, as the strike decreases, the put price decreases by less than the expected
payoff, decreasing the expected return. If, instead, the pricing kernel is a U-shaped
function of returns (i.e., increasing for some region of positive returns), Bakshi et al.
(2010) show that expected call returns are decreasing in the strike and negative beyond
a strike threshold. This is because m;r(R;r) shifts probability mass towards states

where the call option is more valuable, such that the call price decreases by less than the

"More recently, Almeida and Freire (2023) show that if one interprets m; r(R: ) as representing the
preferences of a marginal agent in the option market instead of a representative investor, a nonmonotonic
shape is not puzzling but rather reflects the risk exposures from the marginal agent’s options positions.

8 max (St Ry, 7—K,0) o E:[max (SR, 7—K,0)]
To see that, note that Ey[g s —morme s ()] = Bilmax(Si o r =K 0 me (Re)]”
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expected payoff as the strike increases, decreasing the expected return.’

2.3 Equity premium

The shape of m; 7 (R;.r), or, equivalently, how W?T(Rt’T) relates to WE r(Re.r), is infor-
mative about which return states are compensated via the equity premium. To see that,

first note that the conditional equity premium can be written as:

E/[Rir] - Ry = / Rurltr(Rur) — 7% (Ror)ldRer. (6)
0

To decompose the unconditional equity premium, Beason and Schreindorfer (2022) take

the unconditional expectation of (6) and consider net market returns R = R—1 to define:

= (7)

where 7¥(R) = E[W£T<Rtj)] and 79(R) = ]E[WST(RW)]. EP(z) measures the fraction of
the average equity premium that is associated with market returns below x.

Returns around zero contribute only marginally to the equity premium (as R =~ 0),
such that £ P(z) is expected to be flat around those states. Outside this region, the shape
of the EP(z) function will depend on the shape of the (average) pricing kernel. Under a
monotonically decreasing pricing kernel, every state R contributes positively to the equity
premium, i.e., EP(x) is always increasing. To see that, note that in the negative return
region, R < 0 and the pricing kernel is above 1, which means that 77 (R)—72(R) < 0, such
that R [rF(R) — 7%(R)] > 0 and EP(z) is increasing. Analogously, in the positive return
region, R > 0 and the pricing kernel is below 1, which means that 7"(R) — 7%(R) > 0,
such that R [7"(R) — 7%(R)] > 0 and EP(z) is again increasing. Now, if we consider

instead a U-shaped pricing kernel where 7%(R) is above 7F(R) (i.e., pricing kernel is

9Since a U-shaped pricing kernel is declining in the region of negative market returns, the implications
for expected put returns are the same as under a monotonically decreasing shape.
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above 1) for some positive return R > 0, then R [z"(R) — 7%(R)] < 0 and EP(z) is
decreasing, i.e., such positive returns contribute negatively to the equity premium.

We give a new economic interpretation for these relations, which is as follows. For
cach state R, consider the asset that pays R in this state and zero otherwise, i.e.,
the asset defined by buying R units of the Arrow-Debreu security of state R. Then,
R[x®(R) — n%(R)] is the expected payoff minus the price of this asset. If the pricing
kernel is monotonically decreasing, these assets have a low (high) payoff when the pricing
kernel is high (low), such that they are speculative assets with a positive expected re-
turn, i.e., R [7"(R) — 7¢(R)] > 0. In other words, investors would require compensation
for holding any of these assets, such that all states contribute positively to the equity
premium. In contrast, if there is a U-shape where the pricing kernel is high for a region
of positive returns, the assets in this region will have a high payoff when the pricing
kernel is high, such that they are hedging assets with a negative expected return, i.e.,
R[x"(R) — #%(R)] < 0. That is, investors would be willing to give up compensation to

hedge against these states, such that they contribute negatively to the equity premium.

2.4 Variance risk premium

The pricing kernel projection onto market returns is also informative about the magni-
tude of the variance risk premium. Defined as the difference between the risk-neutral and
physical expected variance of the market return over horizon 7, it reflects the compensa-
tion investors require for bearing variance risk (Bollerslev et al., 2009). Baele, Driessen,
Ebert, Londono, and Spalt (2019) demonstrate that the variance risk premium is closely
related to expected option returns. In particular, it can be written as a weighted average
of expected returns of put and call options across strikes, with negative weights. Con-
sequently, the variance risk premium is higher under a U-shaped pricing kernel, where

both call and put expected returns are negative, than under a monotonically decreasing
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pricing kernel. Intuitively, this premium reflects compensation for extreme negative and
positive return states, such that this compensation is higher when m; r(R: r) is U-shaped.

It is also possible to decompose the total variance risk premium into the specific com-
pensation for variation risk in positive and negative market returns (Kilic and Shalias-
tovich, 2019). Analogously to above, the risk premium for positive (negative) return
variation is a weighted average of expected call (put) returns, with negative weights. If
the pricing kernel is monotonically decreasing (U-shaped), expected call returns are posi-
tive (mostly negative) and the positive return variation premium is negative (positive).'?
That is, if marginal utility is high for positive market returns, investors would be willing
to pay a premium to be protected against large positive returns. On the other hand,
the more negative expected put returns are, the steeper is the pricing kernel for negative
returns and the higher is the compensation for negative return variation.

The expected returns of specific option strategies contain further information about
the variance risk premium. Bakshi and Kapadia (2003) and Coval and Shumway (2001)
show, respectively, that negative delta-hedged option returns and negative straddle re-
turns reflect a positive variance risk premium. These strategies profit from (and are a
hedge against) increases in market volatility, such that a negative expected return indi-

cates that investors are willing to pay a premium to be protected against variance risk.

2.5 Option price bounds

The shape of my; (R 1) tells us how option prices are jointly reconciled with the
physical distribution implied by market returns. A related, but alternative way of in-
vestigating this relation is by comparing each observed option price with option price

bounds consistent with the physical distribution m ,(R;r) and specific risk preferences.

10More precisely, under a U-shaped pricing kernel, expected call returns are only negative beyond a
strike that depends on how pronounced the U-shape is. Therefore, if the pricing kernel is only mildly
U-shaped, it can still be the case that expected call returns are mostly positive and the positive return
variation premium is negative.
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Of particular interest for us are the second-order stochastic dominance (SSD) bounds
(Levy, 1985; Perrakis and Ryan, 1984; Ritchken, 1985), which provide the maximum and
minimum price for a given option consistent with risk-averse investors trading in the
underlying asset and the risk-free rate. In other words, these bounds allow for market
segmentation by giving all option prices compatible with the set of pricing kernels that
are monotonically decreasing in the market returns.

A violation of the SSD lower (upper) bound by a given option means that any risk-
averse investor can improve expected utility by taking a long (short) position in the
option, or, equivalently, that the option dominates (is dominated by) the underlying
asset by second-order stochastic dominance. That is, a violation would mean that there
is no marginal investor in the index, risk-free rate and the option with a monotonically
decreasing pricing kernel (i.e., satisfying risk aversion). This option is often regarded
as “mispriced” as its price cannot be reconciled with the physical distribution under
reasonable risk preferences.

It is important to note that SSD bounds offer related, but complementary insights
relative to the pricing kernel in (4). If m; r(R; 1) is monotonically decreasing, then this
pricing kernel is part of the SSD admissible set and the option prices will be inside the
SSD bounds. In contrast, if m; r(R; 1) is nonmonotonic, this means that no unique mono-
tonically decreasing pricing kernel prices all options, but it is still possible that different
monotonically decreasing pricing kernels price the different options in the cross-section.
Conversely, if option prices satisfy SSD bounds, this does not mean that m; r(R;r) is
monotonically decreasing, whereas if they violate the bounds, this implies that m; (R 7)
is nonmonotonic. In fact, while empirical evidence favors a U-shaped pricing kernel pro-
jection at the one-month horizon, Almeida and Freire (2022) show that S&P 500 option

prices generally satisfy SSD bounds, where options with different moneyness require het-
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erogeneous investors who differ in their assessment of tail risk to be priced.!!

2.6 Empirical strategy

The theoretical framework described above provides insights into investors’ risk pref-
erences over the horizon 7 corresponding to the maturity of the options used. Most of
the literature applying these methods has focused on the one-month horizon or longer,
partially motivated by the liquidity of the associated options. However, as previously
described, the option market has changed dramatically over the last few years. Now, the
most traded contracts are 0DTE options, which give investors the opportunity to hedge
against or make leveraged bets on specific market movements over the day. As such,
0DTEs are a valuable source of information about risk premia and compensation for risk
at intra-daily horizons. We aim to extract and analyze this information.

For the 0DTEs, we will consider different times of the day for ¢, while T" will always
be the market close, which is usually at 16:00. More specifically, our analysis will be
based on the cross-section of 0DTEs at 10:00, 10:30, 11:00, 11:30, 12:00, 12:30, 13:00,
13:30 and 14:00, such that the horizon/option maturity 7 will be 6, 5.5, 5, 4.5, 4, 3.5, 3,
2.5 and 2 hours, respectively. In the next section, we show that this range of times of the
day is where the relative option bid-ask spread is reasonably stable at its minimum over
the day. For each of those times of the day, we will estimate the pricing kernel in (4),
calculate option returns of different strategies (from ¢ to T'), decompose the corresponding
equity premium, estimate the variance risk premium and compute SSD bounds for each
option. For comparison, we will also consider options with maturities ranging from 1 to

22 business days, i.e., from 1 to 22DTE.

"This evidence differs from that by Constantinides, Jackwerth, and Perrakis (2009), who find sub-
stantial violations of SSD bounds in the S&P 500 option market. The main reason for this difference is
that the conditional physical distribution they estimate keeps the volatility constant over long periods of
time, during which volatility varies considerably. In contrast, Almeida and Freire (2022) adjust volatility
daily in the estimation of the conditional physical distribution.

16



3 Data description and implementation details

3.1 Data

We obtain the intra-day S&P 500 option data from CBOE, which includes bid and ask
quotes, trading volume, open interest and underlying asset price at 1-minute intervals.
We define the price of an option as the bid and ask midpoint. We select all dates between
January 6 2012 and March 18 2025 for which 0DTE SPXW options are available. The
first weeklies were introduced by CBOE on October 28 2005 with Friday expirations.
Wednesday, Monday, Tuesday and Thursday expirations followed with introduction dates
February 23 2016, August 15 2016, April 18 2022 and May 11 2022, respectively. This
means that our sample contains one day per week up until February 23 2016, then two
days per week until August 15 2016, three days per week until April 18 2022, four days
per week until May 11 2022, and all days of the week afterwards. We have 1,815 dates in
total, where roughly 40% of those dates are between May 11 2022 and March 18 2025.

Figure 1 depicts the striking evolution of the 0DTE option market over the last years
in terms of its fraction of trading volume relative to the entire S&P 500 option market.
While 0DTESs accounted for only around 2% of total trading volume in 2012, today they
represent more than 50% of the entire option market and are the most traded maturity.
As noted by Bandi et al. (2023), this corresponds to a daily notional dollar volume
of around 1 trillion dollars. This meteoric increase can partially be explained by the
daily availability of ODTE options since May 2022, allowing investors to hedge and make
leveraged bets on specific intra-daily market movements for any day of the week.

To filter the raw option data, we aim to avoid as much as possible options with small
trading volume and zero bid, while also selecting a comparable set of strikes over time.
What mainly defines the range of strikes being traded on a given day is volatility: on

days where volatility is high (low), large return realizations are more (less) likely to occur,
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such that investors trade options for a larger (smaller) range of strikes. For this reason,
we classify options in terms of their standardized log-moneyness kyq = %, which
controls for the level of volatility as opg(0) is the ATM implied volatility for time of the
day ¢t and maturity 7.

By analyzing the ODTE option data, we identify that the range of kg4 between —6
and 3 strikes a good balance between trading volume and low proportion of zero bids.
This can be visualized in the upper subplots of Figure 2, which report, for different times
of the day and bins of kg4, the average trading volume and proportion of contracts with
zero bid over time. As can be seen, the bulk of trading volume is within the k4 range of
—6 and 3, whereas the volume outside this interval is negligible. At the same time, zero
bids are essentially inexistent for kgy € [—3, 2] and then occur increasingly more for more
extreme moneyness levels. Our interval of [—6, 3] avoids the extremely large proportion
of zero bids of deeper OTM put and call options. From this interval, we further drop
observations that have both zero volume and zero bid.

The bottom subplots of Figure 2 further display the average implied volatilities (IVs)
and average number of strikes for each bin. For all times of the day, ODTE IVs display
a smile across moneyness, where OTM puts and calls are equally expensive in terms of
IV. This is in contrast to the usual smirk observed for longer-maturity S&P 500 options
(where IVs are much higher for OTM puts than for OTM calls). The average IVs outside
ksia € [—6,6] are extremely high, which highlights the importance of excluding these
options that are not traded and would contaminate results.'?> As for the average number
of strikes, it is approximately constant across moneyness bins and decreases from around

4 at 10:00 to 2 strikes per bin at 14:00.

Having defined our option sample, we proceed to choose a set of times of the day

121Vs outside kg;q € [—6, 6] are that high due to the deeper OTM options that have very small, but still
positive prices, while the probability of returns occurring such that they finish in-the-money is virtually
zero. Since these deeper OTM options are not traded, their extremely high IVs are artificial and do not
reflect market expectations.
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for our analysis with the goal of being representative while feasible to report results. To
guide our choice, Figure 3 reports, for our option sample, the 0DTE trading volume and
relative bid-ask spread over the day. While trading volume is higher at market open and
close, these times of the day are also the ones with highest bid-ask spread over the day.
The bid-ask spread tends to be relatively stable at its minimum between 10:00 and 14:00.
For this reason, we select this range of times of the day for our analysis, with intervals of
30 minutes to keep it feasible to report the results.

Throughout our analysis, we also use data for longer DTEs ranging from 1 to 22
business days. For these options, we always observe them at the market close, for all
dates that they are available between January 6 2012 and March 18 2025. For ease
of comparison with our 0DTE results, for each longer DTE, we select the options with
standardized log-moneyness between —6 and 3, and drop observations with both zero
volume and zero bid. For each maturity, we extract the dividend yield that makes the
put-call parity satisfied for the ATM call and put. Finally, we obtain high-frequency
data on the S&P 500 index, spanning January 1996 to March 2025, from Refinitiv Tick
History. The risk-free rate, which we obtain for the same sample period, is the daily one-
month Treasury bill rate from the FRED (Federal Reserve Bank of St. Louis) website.

We assume that the risk-free rate remains constant throughout the day.

3.2 Option returns

For a given day in our sample and time of the day ¢, we compute hold-until-maturity
returns of different portfolios of options expiring at the end of the day. We first calculate
the return of the call (put) option with price Of  (O7;) and strike K as:

max(Sr — K, 0)
Ofr

max(K — Sz, 0)
-1, R,= o7 D, (8)

R, =
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where St is the market index at the option expiration. We will analyze how call and put
returns vary with the strike price over our sample, which is informative about the shape
of the pricing kernel. To have returns of options with the same moneyness for each day
of our sample, we select the option with moneyness closest to a given target value.
Then, we compute the returns of different option strategies that are insightful about
the variance risk premium. First, we consider simple straddle returns obtained from the

simultaneous purchase of an ATM call and ATM put with strike K:

max(Sy — K,0) + max(K — Sz, 0)
Ofr+ Ofp

Simple-Straddle = -1 9)

We focus on the ATM straddle that is more exposed to volatility risk. In addition, we

calculate the return of an exactly delta-neutral ATM straddle:

Aol
AJO5r — A, 00,

Straddle = wR. + (1 —w)R,, w= (10)

where A. (A,) is the call (put) Black-Scholes delta.
Finally, we follow Bakshi and Kapadia (2003) by calculating ATM delta-hedged call

returns as:'?

max(Sy — K,0) = Ofp — Au(Sr — S) = 7 (O — AuSy) X 7

24%365)
St

A-Hedged = , (11)

where 7{ is the annualized risk-free rate and 7 is the time to maturity expressed in hours,
e.g., 7 = 6. Since the straddle and delta-hedged strategies are essentially long positions
in market volatility, we will analyze their average returns over our sample to extract
information about the variance risk premium over the day. For these strategies, we use

the observed price of the option closest to ATM.

13Results are very similar if, instead of the underlying price S;, we set the denominator to be the
initial investment absolute cost |Of p — AcSy|.
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3.3 Risk-neutral distribution

For a given day of our sample and time of the day, we estimate the risk-neutral
distribution from the cross-section of 0DTE option prices. Breeden and Litzenberger
(1978) show that, under no-arbitrage and in the presence of a continuum of options
across strikes, risk-neutral probabilities are equal to the risk-free rate times the second
derivative of option prices with respect to the strike price:

0?0 (K)
OK? ’

K=Sr

ng(RLT) =S X Ry % (12)
where the strikes represent different states of the underlying asset price at maturity and
multiplying by S; performs a change of variables from WS)T(ST) to WST(Rt’T>.

In practice, however, we only observe a discrete set of strikes that sometimes does
not cover the whole range of moneyness. For this reason, it is necessary to interpolate
and extrapolate observed option prices to compute the derivative and estimate WST(RLT).
To do so, we follow the standard practice in the literature of converting option prices to
IVs using the Black and Scholes (1973) formula, fitting an interpolant to them, using
the interpolant to generate IVs for a fine grid of strikes, translating IVs back to option
prices, and computing (12) over the fine grid of strikes via finite differences.'* Only OTM
options are used to fit the interpolant, as they are more liquid than in-the-money (ITM)
options, which should contain redundant information by put-call parity.

We fit the IV curve across strikes using the parsimonious Stochastic Volatility In-
spired (SVI) method of Gatheral (2004). This method has also been used by Beason and
Schreindorfer (2022) to estimate the risk-neutral distribution and combines reliable inter-

polation of the IV curve with well-behaved extrapolation for extreme moneyness levels.

147t is important to emphasize that this approach does not assume that the Black and Scholes (1973)
model is valid. Rather, the Black and Scholes (1973) formula is only used as a one-to-one mapping
between option prices and IVs. This is done because fitting the IV curve is much easier than fitting
option prices as IVs are comparable across strikes.
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More specifically, the SVI describes the square of IV with the function:

ohs(k) =a+b{plk —m) + /e =m)? + o2}, (13)

where k = log(K/S;) is the log-moneyness and a, b, p, m and o are parameters.'> We fit
(13) to the cross-section of observed IVs for a given DTE and estimate the parameters by
minimizing the mean squared error with a constrained nonlinear programming solver.'6
Figure OA.1 plots, for a representative date of our sample and different maturities, the
observed Vs and the fitted IVs using the SVI method. The SVI provides an overall ex-
cellent fit, with average OLS R?’s higher than 90%. This, in turn, results in well-behaved
risk-neutral distributions, as can be seen in Figure OA.2 for the same representative day.
These distributions are obtained by interpolating and extrapolating the IVs in a grid using
the SVI method, mapping the IVs back to option prices and then computing WST(Rt,T)
via the Breeden and Litzenberger (1978) formula. The plot shows for ODTEs how the
broad range of standardized log-moneyness we consider translates to a narrow range of
return states that investors believe the market can experience over this particular day. As

the time gets closer to market close, the risk-neutral distribution gets narrower, reflecting

that there is less room for large return realizations.

3.4 Physical distribution

To calculate the pricing kernel projection and the SSD option price bounds, we need to
estimate the conditional physical distribution m, (R ). Ait-Sahalia and Lo (2000) and

Jackwerth (2000) rely directly on the historical market return distribution, where there is

15More specifically, a controls the IV level, b the IV slope, p the asymmetry of the IV slope for negative
and positive k, m the horizontal location of the IV curve, and ¢ the ATM curvature of the IV curve.

16The SVI is well defined for a € R, b >0, |p| <1, m € R, 0 >0 and a+boy/1 — p2 > 0. We impose
these constraints in the optimization, with two small modifications: we replace a +bo+/1 — p2 > 0 with
the slightly stronger restriction a > 0, which yields better behaved extrapolations for the right tail, and
we impose o > 0.01, which helps discipline the IV ATM curvature.
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a trade-off between using a short sample, which makes the distribution conditional, and
using a long sample, which improves the estimation precision, especially for the tails. A
more recent approach has been to take the unconditional return distribution from a long
sample and make it conditional by adjusting for the conditional volatility at time ¢ using
GARCH models (see, e.g., Barone-Adesi, Engle, and Mancini, 2008). This preserves the
empirical patterns of skewness, kurtosis, and tail probabilities, but has the drawback
that GARCH models can be misspecified. Even if one uses realized variance instead to
make the distribution conditional, there is still a potential mismatch of conditioning sets
in comparing backward-looking information from historical returns with forward-looking
information from option prices (see, e.g., Linn et al., 2018).

We follow a similar approach to Almeida and Freire (2022) to overcome the issues
above. For a given day in our sample and DTE, we first estimate the historical return
distribution as the histogram of past market returns from ¢ to 7" over a long sample
starting on January 1996.'” Then, we make the return distribution conditional by setting
its volatility equal to the ATM IV at time ¢ of the current day, which is forward-looking.
That is, we use minimal option information to make the conditioning sets of 7, (Ryr)
and W?T(Rtj) comparable. While the ATM IV contains a risk premium, other papers
such as Dew-Becker, Giglio, and Kelly (2021) also use it as a proxy for the expected
physical volatility given its good performance in forecasting future realized volatility.

The resulting conditional physical distribution is an unsmoothed histogram. For the
purpose of estimating the pricing kernel projection, it is necessary to smooth it to obtain a
well-behaved PDF. We follow Jackwerth (2000) in fitting a kernel density with a Gaussian

18

kernel to smooth the histogram and obtain 7, (R r)."* Figure OA.2 displays, for a

1"Following Almeida and Freire (2022), we also impose the sensible economic restriction of a 5% lower
bound on the annualized equity premium over the risk-free rate. That is, if the annualized mean of the
unconditional return distribution generates a premium less than 5% over the risk-free rate, we demean
the returns and reintroduce a 5% equity premium. Jackwerth (2000) imposes a similar restriction.

18For a given day, the obtained histogram is smoothed with a Gaussian kernel with bandwidth

=z
T{L/ﬁ’
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representative date of our sample, the conditional physical distribution together with the
risk-neutral distribution for different horizons. The (discounted) ratio between the risk-
neutral and physical PDFs gives the estimate of the pricing kernel projection my r(R; 1)

for that day and horizon.

3.5 SSD bounds and risk premia

Using the estimated physical distribution, we compute, for each call option with strike

K, the following SSD upper and lower price bounds as in Ritchken (1985):'

Cmax = Emax(S;R; 7 — K, 0)]/E[R; ], (14)

Cmin = ]E[maX(Sth’T — K, O)|Sth7T < S;] (15)

1
R_f’
where s is chosen such that E[S; R, r[Si Rir < sj] = Sy Ry. All expectations are calculated
under the estimated m;,(Ry7) over the grid of states R;r. Equation (14) says that
the maximum price of the call should be the price such that the expected call return
equals the expected return on the market. The interpretation for the lower bound is less
straightforward. Ritchken (1985) uses linear programming techniques to show that these
bounds contain all prices for the call option consistent with the set of pricing kernels
that are monotonically decreasing in R;r. The bounds for the put option with strike K
can be obtained via put-call parity. We will compare the bounds to the observed option
prices to identify any potential mispricing of the 0DTEs.

We follow Beason and Schreindorfer (2022) to implement the decomposition of the un-
conditional equity premium as in (7). First, we estimate the unconditional risk-neutral

distribution 7@(R) over our sample as the average of the conditional risk-neutral dis-

where o is the volatility of the return distribution, n is the number of observations, and we set x = 1.8
and m = 5, which strikes a good balance between smoothness and fit.
YPerrakis and Ryan (1984) and Levy (1985) derive the same bounds following different approaches.
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tributions, i.e., the average of WST(RLT) state by state. With that, we can evaluate
5 Rr%(R)dR numerically over the grid of R (which is equal to the grid of R,y — 1).
Then, we compute [ Ra®(R)dR from the unconditional empirical distribution of market
returns (of the horizon of the option) over our sample as (1/7) 3.7, Riyp1{Ri,r < z},
where 7T denotes the total number of days, RmT is the realized market return of day
i from time of the day ¢ to horizon T, and we consider z’s over the grid of R. This is
equivalent to computing the integral under the unconditional physical distribution.
Finally, we compute a measure of the variance risk premium similarly to Bollerslev
et al. (2009). They calculate it for the one-month horizon as the risk-neutral expected
variance over the next month minus the physical expected variance proxied by the realized
variance from the previous month to the current one. Analogously, our ex-ante variance
risk premium V RP, 1 from time ¢ to T is the expected risk-neutral variance implied by the
cross-section of 0DTEs at time ¢ minus the realized variance from ¢ to T of the previous

20

day.”’ The expected risk-neutral variance is computed as in Bakshi et al. (2003):

> 9[1 — log(K/S))] . 521 +log(Si/K)] -,
vg = [ B o man + [ EEER o ik, (16

t

where we compute the integrals using the interpolated and extrapolated option prices from
the SVI method. The realized variance (Andersen, Bollerslev, Diebold, and Labys, 2003)
RV, r is the sum of 1-minute squared log-returns on the market index. To disentangle
the compensation demanded by investors to bear variation risk in positive and negative
market returns, we also compute the “good” and the “bad” variance risk premium in
the spirit of Kilic and Shaliastovich (2019). The former (latter), VRP. (VRP, ), is
defined as the first (second) integral in (16) minus the sum of 1-minute squared market
returns times an indicator function for a positive (negative) return. Naturally, VRP,r =

VRP/ + VRP.

20For longer DTEs, the realized variance is computed from day t — T to t.
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4 Empirical results

4.1 Average option returns

We start by analyzing the returns of different option strategies. Figures 4 and 5 plot
the average over our sample of call and put returns across strikes, respectively, together
with 90% i.i.d. bootstrap confidence bands, for different maturities.?! Focusing first on
the 0DTEs, observed patterns are similar across different times of the day. Call options
experience low returns overall, which are decreasing with the strike starting from the ATM
region and eventually become highly negative with statistical significance. Following the
rationale of Bakshi et al. (2010), this provides evidence that the intra-day pricing kernel is
increasing in a region of positive return states. In other words, writing naked OTM calls
is usually profitable in the 0DTE option market, which would be aligned with investors
requiring compensation for bearing positive return variation risk. As for put options,
average returns are always negative, with statistical significance for OTM puts. This is
consistent with a monotonically decreasing pricing kernel in the region of negative market
returns, reflecting investors’ aversion to downside risk. Again, writing naked OTM puts is
usually a profitable strategy, compatible with compensation for negative return variation
risk. Importantly, average OTM call returns are more negative than OTM put returns,
suggesting more compensation for upside than downside risk.

For longer maturities, average OTM call returns are less negative than for 0DTEs.
In fact, for one-month options, average call returns are mostly positive and increasing in
the strike, and negative values for deep OTM calls are insignificant. This suggests that
nonmonotonicity in the pricing kernel over the positive return region gets less pronounced

as maturity increases. In contrast, average OTM put returns are more negative for 1-22

21Due to the small dollar prices of ODTE options, for a few days returns can be quite extreme. To
minimize the effect of these outliers and produce a smoother plot, for each moneyness we winsorize
the right-tail of the time-series of ODTE option returns at 0.5%. This has no qualitative effect on the
conclusions we obtain from the average returns.
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DTEs than 0DTESs, reflecting stronger compensation for downside risk. This is such that,
over longer horizons, compensation for negative return variation risk dominates that for
positive return variation risk.

We further consider the returns of ATM delta-hedged call options, straddles and
delta-neutral straddles. Figure 6 displays their average returns together with 90% i.i.d.
bootstrap confidence bands for different tenors.?> All 0DTE strategies produce negative
average returns. Since these strategies are essentially long positions in volatility, a nega-
tive average return indicates that investors are willing to pay a premium to be protected
against variance risk over the day. On the other hand, an investor willing to be exposed
to this risk would profit, on average, from shorting delta-hedged calls and straddles in the
O0DTE market. The confidence bands indicate that the statistical significance of the neg-
ative average returns is stronger from 12:00 to 14:00. The evidence is similar for longer
maturities, with negative average returns indicating a positive variance risk premium,

which are statistically significant for all maturities except for 22D TEs.

4.2 Risk premia

We now investigate the implications of 0D'TE options for intra-day market risk premia.
Panel (a) of Figure 7 plots the decomposition of the equity premium across return states
for different times of the day. Most of the equity premium stems from compensation to
market returns between -5% and 0%. Strikingly, these states account for 300% (800%)
of the total equity premium from 10:00 (14:00) to close, which would amount to an
annualized premium of 50% (150%), as seen in the right axis of the plot. More important
than the magnitude of these values, however, is the reason why they exceed 100%: positive
market returns contribute negatively to the equity premium. This is consistent with a

U-shaped pricing kernel, as discussed in Section 2.3. Since marginal utility is high for

22To alleviate the effects of outliers associated with Covid, we winsorize the right-tail of the returns.
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positive market returns, investors are willing to pay a premium to hold Arrow-Debreu
securities paying in these states, such that they have a negative contribution to the equity
premium. That is, the intra-day equity premium, which is around 15% annualized over
our sample, would be much higher if the pricing kernel were monotonically decreasing.
For comparison, Panel (b) of Figure 7 depicts the equity premium decomposition for
longer horizons as implied by 1 to 22 DTEs. As can be seen, the negative contribution of
positive market return states to the equity premium decreases as the maturity lengthens,
consistent with pricing kernel nonmonotonicity becoming less pronounced. For the one-
month horizon, returns between —30% and —10% account for half of the equity premium,
whereas positive returns between 0% and 5% account for the other half. The fact that
positive returns contribute positively to the equity premium suggests that marginal utility
is relatively low for these states, i.e., the U-shape is less pronounced for this maturity.?*
We next estimate, for each day and maturity, the VRP, r and its two components,
VRP[}, and VRP, . Tables 1 and 2 report summary statistics over our sample of each
of these measures for 0DTEs and 1-22 DTEs, respectively. For ODTEs, across all times
of the day, the average V RP, r is high and significantly positive, confirming the evidence
from option returns that investors require substantial compensation to bear variance risk
over the day. In fact, the annualized 0DTE V RP, r varies from 1.54% to 2.95%, which
is considerably larger than the 0.55% of 1DTESs or the 0.81% of 22DTEs. Interestingly,
both VRP,r components as implied by ODTEs are significantly positive as well, where
the compensation for upside risk is actually larger than the compensation for downside
risk. This is in stark contrast to the evidence from longer horizons, where the average

VRP;FT decreases with the maturity and becomes negative from 5DTE onwards, while

Z0ver the 1990-2019 sample, Beason and Schreindorfer (2022) show that at the one-month horizon
2/3 of the equity premium stem from returns between -30% and -10%, while states up to a monthly
return of 5% account for around 120% of the equity premium, and higher returns contribute negatively
to it. Over our more recent sample, returns between -30% and -10% retain their importance, but the
absence of a pronounced U-shape makes positive returns contribute to the equity premium as well.
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V RP/7 increases with the horizon and eventually dominates the total VRP, 7.

Figure OA.3 plots, for 0DTEs across different times of the day, the time series of the
(one-week moving average of the) VRP, r, VRP,. and VRP, ;. Up to 2022, the three
measures are almost always positive, while afterwards negative values become more fre-
quent. The largest spike in VRP, 1 is associated with the Covid-19 crisis. During this
period, the total variance risk premium reached extreme values such as 100%. Impor-
tantly, this spike is driven by both the upside risk premium (VRP;’FT) and the downside
risk premium (VRP, ;). This is in contrast to the patterns observed for 1-22 DTEs, as

depicted in Figure OA.4, where the VRP;FT mostly contributes with negative spikes.

4.3 Intra-day return predictability

We further investigate whether ex-ante measures capturing information from 0DTE
options are able to predict realized intra-day excess market returns from ¢ to T with

predictive regressions of the following form:
Rt,T — Rf =a+ bXt + €T, (17)

where X collects different predictors available in real time at ¢t. We first focus on the
variance risk premium and its components, given that these summarize the compensation
investors require to bear variation risk in different regions of the market return space.
Then, we analyze as predictors the risk-neutral variance, skewness and kurtosis as in Bak-
shi et al. (2003), the realized variance, and the SVIX of Martin (2017), which represents
a lower bound for the equity premium under a negative correlation assumption.

Table 3 reports the results for univariate predictive regressions based on VRP, r,
VRP[}, and VRP[;, and a multivariate regression including both VRP;, and VRP, .

The total variance risk premium negatively predicts the intra-day equity premium, with
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statistical significance at most times of the day. This is at odds with the positive relation
documented at monthly or longer horizons (Bollerslev et al., 2009). Using the two compo-
nents of the V RP, 1 in the predictive regressions sheds light on this finding. The VRP;’T
is a strong predictor of market returns, with a negative coefficient that is statistically
significant at nearly all times of the day. In contrast, there is a positive relation between
V RP/7 and future returns, which is often insignificant and of weaker magnitude. That is,
the results for VRP, p are driven by V RP;,. The R*’s of the multivariate regressions are
also much higher than those for the total V RP, r, which mainly comes from the predictive
power of VRP;“T7 as can be seen from the univariate regressions.

The negative relation between VRP;FT and market returns from ¢ to T is consistent
with a U-shaped pricing kernel. As discussed in Section 2.3, the equity premium can
be seen as the aggregate compensation required for holding assets paying R in each
market return state, and zero otherwise. When marginal utility for positive market
return states is high, such assets paying in positive return states are hedges (as they pay
a high payoff when the pricing kernel is high). This is such that investors are willing to
give up compensation to hold them, resulting in a smaller equity premium. As VRP;’T
summarizes the compensation for positive return variation risk, this explains the negative
relation with future returns. On the other hand, since the Arrow-Debreu-like assets
paying R for negative return states behave as speculative assets (as they pay a low payoff
when the pricing kernel is high), investors require compensation to hold them and they
contribute positively to the equity premium. This explains the positive relation between
VRP[; and future market returns. The fact that the effect of VRP, is dominant
over that of V RP, ;. reflects the exceptional role that the U-shape plays in the intra-daily
horizons. This, again, is in contrast to the one-month horizon or longer where the positive
coefficient of V RP,; is predominant and drives the positive relation between the total

V RP, 1 and the equity premium.
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Table OA.1 contains the results for the univariate predictive regressions based on RV,
risk-neutral skewness and kurtosis, and SVIX. As can be seen, none of these measures
is able to predict the intra-day equity premium. That is, we find no evidence of an intra-
day risk-return trade-off. In particular, the fact that the lower bound of Martin (2017),
SVIX, does not predict future returns, could either mean that the bound is not tight at
the intra-daily horizons we consider, or that the negative correlation assumption under
which the bound is derived is not valid. More specifically, this assumption states that the
covariance between R,y and my (R ;) X Ry must be negative. While this condition is
valid under most macro-finance models, it would be violated under a pricing kernel with
pronounced nonmonotonicities. Given the extensive evidence from our analysis in favor
of such nonmonotonicity over intra-daily horizons, this seems like a plausible explanation.

Table OA.2 further considers predictive regressions based on the variance risk premium
measures including the risk-neutral moments as controls (results including RV instead
of SVIX are very similar). As can be observed, the inclusion of the controls can make
the negative relation between the total variance risk premium and future market returns
even stronger. Among the controls, SV I.X becomes marginally significant with a positive
coefficient at 12:00, while the other variables have no predictive power. When we replace
V RP, 7 with its two components, we see that the R? increases substantially and VRPJT is
a stronger significant predictor of returns than V RP, 7., where a higher value of the former
leads to a lower equity premium. This provides additional robustness to the findings of

this subsection.

4.4 Investors’ risk preferences

The previous subsections provide indirect evidence that the pricing kernel as a func-
tion of market returns is nonmonotonic and high for positive market returns. In this

subsection, we directly estimate the pricing kernel for each maturity and analyze its av-
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erage shape over our sample. Figure 8 displays the results together with 90% confidence
bands. For 0DTEs, regardless of the time of the day, there is a pronounced U-shaped pat-
tern in the pricing kernel that is almost symmetric, such that marginal utility is high for
both negative and positive returns, and often higher in the positive return region. This
confirms the relative importance of compensation for upside risk in the 0DTE market.
Panel (b) of Figure 8 further reveals that the U-shaped pattern in the pricing kernel
is concentrated at the shortest maturities below one week. For horizons between one and
two weeks, nonmonotonicity is milder, and the pricing kernel is much higher for negative
returns. Finally, for longer DTEs up to one month, the pricing kernel is mostly decreasing
across returns, with mild nonmonotonicity in the ATM region, more closely resembling
an S shape. Again, this is aligned with our previous evidence from option returns and risk
premia, indicating that nonmonotonic patterns in the pricing kernel have mostly shifted

to shorter maturities over recent years.

4.5 ODTE (mis)pricing according to risk-averse investors

So far, we have shown that ODTE option prices can only be jointly reconciled with
the physical distribution of market returns under a pricing kernel displaying pronounced
nonmonotonicity. In this subsection, we address the problem from a different angle. For
each option, we compute SSD bounds from the physical distribution consistent with all
pricing kernels that are monotonically decreasing in market returns. In other words, we
entertain the possibility that the option market is segmented and test whether, for each
option, a risk-averse investor that is marginal in the market index and the risk-free rate
would also be marginal in the option. As discussed in Section 2.5, a nonmonotonic pricing
kernel projection does not necessarily imply that option prices violate SSD bounds.

Table 4 reports, for ODTEs across different times of the day, the percentage over our

sample of options on a given category that: satisfy the SSD bounds; violate the upper
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bound; or violate the lower bound. Patterns are similar across the day. Strikingly, only
around 25% (35%) of the call (put) prices are consistent with monotonically decreasing
pricing kernels. This is mainly driven by the ATM category, where only around 6% of the
prices satisfy the SSD bounds. In particular, we observe mainly upper bound violations,
meaning that ATM option prices are usually too high, in the sense that any risk-averse
investor would improve expected utility by selling ATM options. On the other hand,
OTM calls and puts rarely violate the upper bound, while their prices are below the
lower bound reasonably often, i.e., they are generally too cheap from the perspective of
these investors.?* ITM options frequently violate both the upper and lower bound, which
can be due to the fact that they are less liquid and may present unreliable prices. Table 5
provides the analogous evidence for options from 1 to 22 DTE. As can be seen, violations
of the SSD bounds decrease monotonically with the maturity, where there is essentially no
mispricing at the one-month horizon. In other words, while 22DTE option prices can be
reconciled with the physical distribution of market returns under risk-averse preferences,
the underlying and option markets are much less integrated over ultra-short horizons.
To assess the economic significance of the mispricing we identify for 0DTEs, we build
a trading strategy that exploits the SSD bounds violations. The strategy focuses on the
ATM option and is defined as follows. If the option is overpriced (underpriced) with
respect to the underlying asset according to risk-averse investors — i.e., if the option
represents an upper (lower) bound violation — we write (purchase) the option and buy
(sell) delta shares of the underlying. If, instead, the option price is inside the SSD
bounds, we go long on the risk-free rate. As a benchmark, we consider the strategy that

always sells the ATM delta-hedged option, which amounts to exploiting the variance risk

2AThere is no inconsistency between options being “cheap” according to risk-averse investors and
“expensive” in terms of high IVs as each criteria benchmark prices relative to those implied by different
distributions: the former with respect to the physical distribution adjusted by monotonically decreasing
pricing kernels and the latter to a log-normal distribution. Options can also be “expensive” in terms of
low average returns but “cheap” according to risk-averse investors if the SSD lower bound price is already
enough to generate such low returns.
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premium. The SSD violation strategy would be equivalent to this benchmark if the ATM
option always violated the upper bound.

Table 6 reports the Sharpe ratio of the SSD violation strategy and the benchmark for
different times of the day, before and after transaction costs. We focus on the ATM call,
as results for the ATM put are very similar. To incorporate transaction costs, whenever
we buy (sell) the option, we consider the ask (bid) price instead of the bid-ask midpoint,
that is, we consider the worst case scenario for the strategy. As can be seen, the SSD
violation strategy is highly profitable, yielding Sharpe ratios in the range of 0.1 to 0.2 for
very short-term horizons. These Sharpe ratios are an order of magnitude larger than those
obtained from selling the ATM delta-hedged call. In particular, transaction costs have
a small impact on the performance of the SSD strategy, while the benchmark produces
mostly negative Sharpe ratios net of costs. The profitability associated with the SSD
violation strategy reinforces our finding that ODTE options are mispriced. In fact, if our
results were driven by misspecification of the estimated physical distribution, it is very
unlikely that exploiting the violations would lead to such economic gains.

Figure 9 further plots the cumulative returns of the strategies at two different times
of the day, before and after transaction costs. Returns are adjusted to have unit stan-
dard deviation to reflect risk-adjusted performance. The SSD violation strategy has a
remarkably stable performance up to 2022, while the benchmark is more erratic and ex-
periences long periods with decreasing cumulative returns. This highlights the economic
significance of the lower bound violations, which signal when the strategy should go long
in the ATM delta-hedged call instead of going short. After 2022, the performance of the
strategy mostly stagnates, suggesting growing market efficiency and stronger integration
between the underlying and ODTE markets over recent years.

To shed further light on the economic significance of the mispricing we document,

we compute Sharpe ratios after transaction costs conditioned to different variables being
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above the median (high) or below the median (low) in our sample.?” Table 7 reports the
results. The Sharpe ratio of the SSD violation strategy is higher when the 0ODTE volume,
realized variance and attention to the 0DTE option market (measured with Google trends)
are low. In other words, the mispricing is more pronounced, in economic terms, when
liquidity is low, uncertainty is low and agents are not paying attention to 0ODTEs. On
the other hand, conditioning on the V RP has only a small effect on the Sharpe ratio of
the violation strategy, reinforcing that the strategy is not simply exploiting the variance
risk premium. In fact, its risk-adjusted profitability is slightly larger when the V RP is
low. Overall, these results are consistent with the idea that after the daily availability
of 0ODTEs and the associated increase in liquidity and attention to these options, the

profitability of the SSD violation strategy is greatly reduced.

5 Robustness checks

In this section, we provide robustness checks for our main results. More specifically,
we investigate how our findings are affected if we consider the sample before and after the
daily availability of ODTE options, and if we remove days with FOMC announcements.

Tables and figures supporting this analysis are collected in the Online Appendix.

5.1 Before and after 2022

As previously mentioned, since the introduction of Thursday expirations in May 11
2022, ODTE options on the S&P 500 index are available on a daily basis. This comes
hand in hand with the largest increase in ODTE trading volume in recent years, as seen
in Figure 1. In this subsection, we investigate how our results are affected by splitting

the sample before and after May 11 2022.

25Figure OA.5 depicts the time-series of these variables together with their median.
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Table OA.3 reports the average 0ODTE VRP, VRP' and VRP~ on the two subsam-
ples. The average variance risk premium is significantly positive in both cases, albeit
larger before May 11 2022. Upon inspection of Panels B and C, we can see that this is
mainly because the compensation for downside risk is larger before May 11 2022. In fact,
after this date, statistical significance of the average V RP~ is reduced. In contrast, the
compensation for upside risk is similar for both subsamples. Table OA .4 contains the re-
sults for 1-22 DTESs, which are also similar to those based on the whole sample, where the
VRP* decreases from shorter to longer maturities, becoming negative or insignificant,
while the V RP* increases with the horizon.

Table OA.5 contains the intra-day market return predictability exercise with variance
risk premium variables. Focusing first on the V RP, it negatively predicts market returns
for both subsamples, with statistical significance for most cases. When decomposing the
V RP into its two components, we can see that the V RPT negatively predicts the equity
premium both before and after May 11 2022, also with statistical significance for most
times of the day. In contrast, V RP~ is mostly insignificant before May 11 2022, while it
significantly predicts market returns with a negative relation afterwards.

Table OA.6 further reports the option price bounds results for 0DTEs before and after
May 11 2022. The proportion of calls inside the bounds increases to around 30% with
the daily availability of 0DTEs. This is mainly because bound violations for I'TM calls
decrease. Interestingly, lower bound violations for ATM calls become rare, while upper
bound violations dominate. This indicates that ATM calls are most of the time expensive
in the most recent subsample according to risk-averse investors, which might explain the
performance deterioration of the SSD strategy as it will almost always sell the ATM call
delta-hedged. Results for puts are similar, with the exception that violations for OTM
puts increase, which is mainly due to lower bound violations. That is, OTM puts are

in general too cheap according to the stochastic dominance criterion. For 1-22 DTEs in
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Table OA.7, there are more violations of the bounds after May 11 2022, but the relative
patterns across maturities are similar.

Finally, Figures OA.6 and OA.7 depict the average pricing kernel before and after
May 11 2022, respectively. Observed patterns are very similar for short horizons across
the subsamples, while there is stronger evidence of nonmonotonicity for the pricing kernel

implied by options with one week to one month maturities after May 11 2022.

5.2 FOMC announcements

0DTEs allow investors to hedge and make leveraged bets on specific intra-daily market
movements and resolution of uncertainty, which is especially relevant for days with events
that can affect financial markets. Announcements from Federal Open Market Committee
(FOMC) meetings are arguably the most important kind of events happening during
regular trading hours (around 14:00) that are relevant for ODTEs. During our sample,
there are 68 FOMC announcement days coinciding with dates for which ODTEs were
traded. Rather than analyzing effects in such a relatively small sample,”® we investigate
how our results are affected by excluding FOMC announcement dates from our sample.

Table OA.8 reports the average VRP, VRP' and VRP~ over our sample after re-
moving days with FOMC announcements. The only change with respect to Table 1 is
that the variance risk premium and its components are on average smaller once FOMC
days are excluded. However, they are still economically large and statistically significant,
and the VRP" continues to dominate the VRP~. That is, our conclusions regarding
the compensation investors require to bear variance risk over the day are not affected by

FOMC announcements.

26For instance, Figure OA.8 plots average returns of ATM delta-hedged calls and straddles on FOMC
announcement days. Before the announcement, average returns are mostly negative, while around the
announcement and its resolution of uncertainty, average returns become positive, such that investors
would not be willing to pay for protection against variance risk anymore. However, average returns are
not statistically significant due to the small sample, making it difficult to draw conclusions.
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Table OA.9 contains the market return predictability exercise with variance risk pre-
mium variables when removing FOMC announcement days. Focusing first on the VRP,
it continues to negatively predict market returns, but with smaller statistical significance.
The VRPT also has its significance somewhat reduced compared to the total sample, but
it is still significant for most times of the day in the regression including VRP~. This
indicates that FOMC announcement days are relevant for the predictive relation between
compensation for variation risk and market returns, but do not solely account for this
relation.

Tables OA.10 and OA.11 report the option price bounds results and the Sharpe ratios
for the SSD violation strategy for days without FOMC announcements. Both tables show
that these results are essentially unaffected by removing FOMC days. In other words,
the stochastic dominance violations and the profitability associated with these violations
are not explained by FOMC announcements. Finally, Figure OA.9 depicts the average
pricing kernel over our sample without FOMC days, which is again largely the same as

for the total sample.

6 Conclusion

We explore the asset pricing implications of the new 0DTE option market, which today
accounts for more than half of total S&P 500 option volume. These options contain new,
valuable information about investors’ risk preferences and risk premia over the intra-
daily horizons for which the options expire. We extract this information from different
perspectives to document a number of new asset pricing stylized facts, contrasting them
with evidence from longer horizons.

A distinctive feature of the 0DTE market is that investors mainly require compen-

sation for positive market returns, rather than negative returns. This is reflected in low
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average returns of call options and a high variance risk premium that is largely driven by
compensation for upside risk. The variance risk premium also negatively predicts mar-
ket returns over the day, which is mainly driven by the negative relation between future
returns and the compensation for upside risk. In contrast, for longer horizons up to a
month, the variance risk premium is smaller, dominated by compensation for downside
risk, and positively predicts market returns. Moreover, most 0DTEs appear mispriced
from the perspective of risk-averse investors. A trading strategy exploting this mispric-
ing is highly profitable before 2022, but stagnates after the daily availability of 0DTEs,
consistent with growing integration between the 0DTE and underlying markets.

Our empirical results are all consistent with a strong U-shape in the intra-day pricing
kernel as a function of market returns, which we confirm with direct estimates. While
there is a large literature documenting pricing kernel nonmonotonicity at the one-month
horizon, we show that over recent years these nonmonotonic patterns have shifted towards

ultra-short maturities, and especially the intra-daily horizons of 0DTE options.
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O0DTE Trading Volume / Total Trading Volume

A Figures and tables

Figure 1: Yearly fraction of trading volume in ODTE options
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Note: The figure depicts the yearly fraction of trading volume in ODTE S&P 500 options relative
to the entire S&P 500 option market. The sample ranges from January 6 2012 to March 18 2025.
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Avg. Volume

Figure 2: Descriptive statistics of raw 0DTE option data
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Note: The figure plots, in four subplots, for different times of the day and different standardized
log-moneyness bins, the average trading volume, proportion of contracts with zero bid, average

implied volatility and average number of strikes. The sample ranges from January 6 2012 to March
18 2025.
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Figure 3: Trading volume and relative bid-ask spread of ODTE options over the day

ODTE Trading Volume 0DTE Relative Bid-Ask Spread
6000 0.80 -

0.60 [

040 -

L L L
10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00 16:00:00

Note: The left plot of this figure depicts the time series average of the trading volume in terms
of number of contracts of 0DTE S&P 500 options over the day. The right plot depicts the time
series average of the average relative bid-ask spread across all 0DTE options over the day, where
the relative spread is computed as (Ask — Bid)/MidQuote. The sample ranges from January 6
2012 to March 18 2025.
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Figure 4: Average call returns across strikes
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Note: The figure shows the average returns (in %) of 0DTE (Panel a) and 1-22 DTE (Panel b) call
options across different strikes with 90% confidence bands. For a given moneyness, 0DTE option
returns over the time-series are winsorized in the right-tail at 0.5%, i.e., returns above the 99.5%
quantile are set to that quantile. Confidence bands are based on 2,500 bootstrap replications. The
sample ranges from January 6 2012 to March 18 2025.



Figure 5: Average put returns across
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options across different strikes with 90% confidence bands. For a given moneyness, 0DTE option
returns over the time-series are winsorized in the right-tail at 0.5%, i.e., returns above the 99.5%
quantile are set to that quantile. Confidence bands are based on 2,500 bootstrap replications. The
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Figure 6: Average returns of option strategies
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(b) 1-22 DTEs

Note: The figure shows the average returns (in %) of ODTE (Panel a) and 1-22 DTE (Panel b)
option strategies with 90% confidence bands. For 0DTEs (1-22 DTEs), returns over the time-
series are winsorized in the right-tail at 1% (5%). Confidence bands are based on 2,500 bootstrap
replications. The sample ranges from January 6 2012 to March 18 2025.
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Figure 7: Equity premium decomposition
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(b) 1-22 DTEs

Note: The figure plots the equity premium decomposition implied by 0DTEs (Panel a) and 1-22
DTEs (Panel b). The left vertical axis displays the fraction of the equity premium stemming from
market returns below x, while the right vertical axis displays the total annualized equity premium
that would be implied from market returns up to . The sample ranges from January 6 2012 to

March 18 2025.
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Figure 8: Average pricing kernels
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Note: The figure plots the average of the pricing kernel, as a function of market returns, implied
by ODTEs (Panel a) and 1-22 DTEs (Panel b) with 90% confidence bands. Confidence bands are
based on 1,000 bootstrap replications. The sample ranges from January 6 2012 to March 18 2025.
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Figure 9: Cumulative returns of SSD violation strategy
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Note: The figure plots, for two different times of the day, the cumulative returns of the SSD
violation strategy based on the ATM call (in the upper panels) and the benchmark strategy writing
the ATM call delta-hedged (in the lower panels). To incorporate transaction costs, whenever we
buy (sell) the option, we consider the ask (bid) price instead of the bid-ask midpoint, that is, we
consider the worst case scenario for the strategy. Returns are adjusted to have standard deviation
of one. The sample ranges from January 6 2012 to March 18 2025.
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Table 1: Intra-day variance risk premium

10:00:00  10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: VRP
Mean 1.804 1.562 1.540 1.717 1.806 2.205 1.981 2.460 2.956
St. Dev. 9.124 7.633 8.051 9.060 8.669 13.788 10.020 12.266 14.414

25th Percentile 0.182 0.152 0.209 0.212 0.233 0.281 0.325 0.341 0.375
75th Percentile 1.994 1.915 1.973 2.126 2.271 2.332 2.480 2.850 3.158

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel B: VRP*

Mean 0.957 0.935 0.956 1.137 1.131 1.533 1.402 1.650 1.971
St. Dev. 3.708 3.518 3.532 5.559 4.070 9.915 4.956 6.102 7.364

25th Percentile 0.261 0.303 0.315 0.349 0.378 0.417 0.512 0.600 0.687
75th Percentile 1.231 1.256 1.297 1.430 1.532 1.614 1.789 2.009 2.304

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel C: VRP~

Mean 0.847 0.627 0.584 0.580 0.675 0.672 0.579 0.810 0.985
St. Dev. 5.869 4.647 5.012 4.359 4.953 5.523 5.379 6.407 7.452

25th Percentile —0.115  —0.147 —-0.160 —-0.169 —0.212 —-0.232 —-0.230 —0.279  —0.359
75th Percentile 0.795 0.715 0.715 0.751 0.757 0.749 0.781 0.882 0.938
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table reports, for each time of the day for the 0DTEs, summary statistics of the VRP,r, VRP,7, and
V RP,  over our sample. The variance risk premium measures are annualized and expressed in percentage points. The
p-values for the test with null hypothesis that the mean is smaller than or equal to zero, against the alternative that

the mean is positive, are implemented using bootstrapped standard errors with 2,500 replications. The sample ranges
from January 6 2012 to March 18 2025.
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Table 2: Variance risk premium

1DTE 2DTE 3DTE 5DTE TDTE 10DTE 12DTE 15DTE  22DTE

Panel A: VRP
Mean 0.558 0.671 0.477 0.489 0.545 0.596 0.663 0.701 0.812
St. Dev. 9.123 5.714 5.208 4.494 4.996 4.713 4.804 4513 3.502

25th Percentile 0.003 0.101 0.085 0.040 0.134 0.207 0.277 0.323 0.391
75th Percentile 1.413 1.361 1.271 1.205 1.276 1.374 1.376 1.501 1.477

p-value 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel B: VRP*

Mean 0.296 0.133 0.010 —0.122 —0.202 —0.259 —0.267 —0.304 —0.217
St. Dev. 2.521 2.127 1.979 1.728 1.869 1.926 1.855 1.928 1.472

25th Percentile 0.013 -0.040 —-0.093 -0.168 —-0.196 —-0.275 —-0.293 —-0.321 —0.288
75th Percentile 0.768 0.688 0.555 0.346 0.295 0.250 0.222 0.212 0.190

p-value 0.000 0.009 0.831 0.002 0.000 0.000 0.000 0.000 0.000
Panel C: VRP~

Mean 0.262 0.539 0.466 0.611 0.747 0.855 0.930 1.004 1.029
St. Dev. 8.515 4.808 4.008 3.381 3.638 3.181 3.336 2.913 2.240

25th Percentile 0.074 0.135 0.158 0.184 0.280 0.365 0.415 0.477 0.524
75th Percentile 0.834 0.825 0.880 0.959 1.119 1.251 1.323 1.460 1.351
p-value 0.188 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table reports, for each maturity, summary statistics of the VRP, r, VRP+T and V RP, 7 over our sample.
The variance risk premium measures are annualized and expressed in percentage points. The p—Values for the test with
null hypothesis that the mean equals zero, against the alternative that the mean is different from zero, are implemented
using bootstrapped standard errors with 2,500 replications. The sample ranges from January 6 2012 to March 18 2025.
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Table 3: Predicting excess market returns with variance risk premium

10:00:00 10:30:00 11:00:00
VRP —0.049* —0.049 —0.068**
t-stat  —1.723 —1.535 —2.721
VRP* —0.091** —0.218"* —0.077 —0.134* —0.107* —0.199**
t-stat —2.948 —4.105 —2.322 —1.970 —3.365 —3.011
VRP~ —0.018 0.158*** —0.022 0.078 —0.034 0.119*
t-stat —0.539 3.457 —0.727 0.997 —1.441 2.325
R%(%) 0.407 1.436 0.055 2.950 0.461 1.133 0.095 1.652 0.955 2.361 0.237 3.540
11:30:00 12:00:00 12:30:00
VRP —0.056** —0.095*** —0.037*
t-stat  —2.156 —3.823 —1.830
VRPT —0.076* —0.111* —0.103*** —0.119* —0.039 —0.038
t-stat —1.916 —1.696 —3.306 —1.837 —1.287 —0.811
VRP~ —0.020 0.053 —0.082***  0.019 —0.023 —0.001
t-stat —0.859 1.404 —3.872 0.377 —0.886 —0.026
R*(%) 0.729 1.318 0.096 1.684 2.366 2.783 1.745 2.810 0.389 0.430 0.144 0.430
13:00:00 13:30:00 14:00:00
VRP —0.090"** —0.049* —0.060***
t-stat  —4.626 —1.918 —2.386
VRP* —0.109*** —0.222*** —0.062*** —0.203** —0.068** —0.117*
t-stat —3.892 —3.308 —2.625 —3.419 —2.809 —2.784
VRP~ —0.067*  0.128* —0.034 0.153** —0.049* 0.055
t-stat —3.904 2.509 —1.267 2.687 —1.870 1.385
R*(%) 2.622 3.863 1.453 5.075 0.836 1.345 0.418 2.562 1.430 1.816 0.963 2.058

Note: The table reports, for each time of the day, the results from different predictive regressions over our sample using V RP, 7, VRP;T and
VRP, ; to predict the excess market return from ¢ to T'. Regressors are standardized to have mean zero and unit variance. We compute the
t-statistics using Newey-West robust standard errors with a lag length equal to 5. We denote with *, **, and *** significance at the 10%, 5%

and 1% level, respectively. The sample ranges from January 6 2012 to March 18 2025.
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Table 4: Option price bounds for ODTE options

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: Calls
In 23.366 24.278 25.273 27.003 25.397 29.473 20.269 16.196 22.209
All Calls Upper 41.114 39.939 39.905 39.156 39.092 36.901 43.417 45.598 43.744
Lower 35.520 35.782 34.822 33.842 35.510 33.626 36.314 38.206 34.047

In 30.736 33.682 35.603 38.388 36.352 41.287 29.528 20.272 29.844
OTM Upper  5.056 6.847 8.178 7.544 8.178 6.638 7.296 6.919 7.889
Lower 64.209 59.471 56.218 54.068 55.469 52.075 63.176 72.809 62.267
In 7.294 6.725 4.976 5.627 5.162 6.320 3.776 2.809 3.729
ATM Upper 78.711 78.656 80.646 80.753 81.847 82.105 84.827 83.856 82.801
Lower 13.995 14.618 14.378 13.620 12.991 11.575 11.396 13.335 13.469
In 28.088 28.471 30.308 32.085 30.022 35.046 23.823 20.661 27.459
IT™ Upper 38.961 36.241 34.723 33.493 32.753 29.181 40.103 44.972 41.430

Lower 32.951 35.288 34.969 34.422 37.225 35.773 36.074 34.367 31.111

Panel B: Puts
In 32.191 33.598 33.584 36.628 34.812 39.141 31.215 28.060 34.778
All Puts Upper 32.038 32.933 34.177 33.176 33.960 31.181 35.593 38.205 34.325
Lower 35.772 33.469 32.239 30.196 31.228 29.679 33.192 33.736 30.897

In 47.650 49.380 50.013 95.421 53.079 99.322 48.631 45.194 594.576
OTM Upper 10.844 12.403 13.687 11.646 12.396 8.816 16.278 21.191 14.021
Lower 41.507 38.217 36.300 32.932 34.525 31.862 35.091 33.614 31.403
In 8.078 7.226 5.474 5.854 5.336 6.788 3.845 2.900 4.092
ATM Upper 77.783 80.659 83.165 83.591 85.247 83.536 85.749 85.277 84.659
Lower 14.139 12.116 11.360 10.555 9.417 9.676 10.406 11.823 11.249
In 23.405 26.986 27.823 27.663 25.874 28.517 21.116 14.963 20.805
IT™ Upper 25.338 22.361 22.354 22.688 22.596 20.821 19.925 20.323 21.510

Lower 51.258 50.652 49.823 49.649 51.530 50.662 58.959 64.714 57.686

Note: The table reports, for each time of the day and for each class of options, the percentage of options over our sample for
which ODTE prices fall within the SSD bounds (In), above the SSD upper bound (Upper) and below the SSD lower bound
(Lower). The OTM put (ITM call), ATM and ITM put (OTM call) categories are defined as standardized log-moneyness
below —1, between —1 and 1, and above 1, respectively. The sample ranges from January 6 2012 to March 18 2025.
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Table 5: Option price bounds for 1-22 DTE options

1DTE 2DTE 3DTE 5DTE 7DTE 10DTE  12DTE  15DTE  22DTE

Panel A: Calls
In 48.672 62.477 70.391 76.507 83.147 87.261 90.343 93.434 97.136
All Calls Upper 33.836 23.013 17.259 13.276 10.021 7.489 5.395 3.406 1.001
Lower 17.492 14.510 12.350 10.217 6.832 5.250 4.262 3.161 1.863

In 62.431 74.558 84.242 90.407 93.275 94.827 96.245 96.799 98.632
OTM Upper  3.892 2.494 2.260 1.814 1.414 1.766 1.359 1.695 0.695
Lower 33.677 22.948 13.498 7779 5.311 3.407 2.397 1.507 0.674
In 16.225 32.628 45.543 58.466 69.992 79.700 85.703 91.950 97.501
ATM Upper 82.172 65.672 52.857 40.098 29.041 19.562 13.639 7.612 2.216
Lower  1.603 1.702 1.600 1.436 0.967 0.738 0.658 0.438 0.284
In 58.968 73.140 78.137 81.516 87.561 89.988 91.812 93.561 96.294
IT™ Upper 23.014 9.322 3.899 1.636 1.008 0.550 0.265 0.195 0.035

Lower 18.019 17.538 17.965 16.847 11.432 9.463 7.923 6.244 3.671

Panel B: Puts
In 47.473 60.014 67.502 75.967 83.314 87.472 90.354 93.315 96.918
All Puts Upper 23.769 19.545 16.641 14.065 11.196 8.971 7.009 4.775 2.138
Lower 28.758 20.441 15.858 9.969 5.491 3.557 2.637 1.910 0.944

In 08.478 70.985 76.330 84.561 91.651 94.207 95.614 96.625 98.430
OTM Upper  3.098 2.144 1.194 0.800 0.615 0.429 0.217 0.103 0.035
Lower 38.425 26.871 22.476 14.639 7.735 5.364 4.169 3.272 1.534
In 23.460 39.771 51.280 61.740 72.206 80.700 86.177 92.194 97.604
ATM Upper 71.471 56.334 45.987 36.396 26.551 18.421 13.172 7.343 2.055
Lower  5.070 3.896 2.733 1.865 1.244 0.879 0.651 0.463 0.341
In 46.703 55.336 65.462 74.694 79.357 82.078 84.109 85.646 89.591
IT™ Upper 20.689 19.167 18.648 15.381 13.810 13.870 13.166 12.701 9.702

Lower 32.608 25.497 15.891 9.925 6.833 4.052 2.726 1.653 0.707

Note: The table reports, for each maturity and for each class of options, the percentage of options over our sample for which
1-22 DTE prices fall within the SSD bounds (In), above the SSD upper bound (Upper) and below the SSD lower bound
(Lower). The OTM put (ITM call), ATM and ITM put (OTM call) categories are defined as standardized log-moneyness
below —1, between —1 and 1, and above 1, respectively. The sample ranges from January 6 2012 to March 18 2025.
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Table 6: Sharpe ratios for SSD violation strategy

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: Before Transaction Costs
Short ATM Call Delta-Hedge  0.002 —0.016 —0.015 —0.002 0.003 0.015 0.017 0.016 0.010
SSD ATM Call Delta-Hedge 0.161 0.141 0.125 0.142 0.142 0.139 0.147 0.188 0.190

Panel B: After Transaction Costs
Short ATM Call Delta-Hedge —0.037 —0.042 —0.039 —0.027 —0.023 —0.011 —0.010 —0.012 —0.033
SSD ATM Call Delta-Hedge 0.122 0.115 0.101 0.118 0.117 0.114 0.121 0.159 0.146

Note: The table reports, for each time of the day, before and after transaction costs, the Sharpe ratio associated with the SSD
violation strategy based on the ATM call and the benchmark strategy writing the ATM call delta-hedged. To incorporate transaction
costs, whenever we buy (sell) the option, we consider the ask (bid) price instead of the bid-ask midpoint, that is, we consider the
worst case scenario for the strategy. The sample ranges from January 6 2012 to March 18 2025.

Table 7: Sharpe ratios for SSD violation strategy conditional on variables

10:00:00  10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

High 0DTE log-Volume  —0.044  —-0.009 —0.019  —0.011 0.008 —0.012  —0.016 0.029 0.043
Low ODTE log-Volume 0.327 0.265 0.241 0.277 0.250 0.289 0.316 0.332 0.269

High RV 0.020 0.009 0.004 0.026 0.044 0.030 0.023 0.082 0.070
Low RV 0.425 0.444 0.433 0.451 0.404 0.437 0.470 0.463 0.449
High VRP 0.072 0.073 0.065 0.058 0.070 0.074 0.081 0.129 0.103
Low VRP 0.196 0.178 0.166 0.216 0.196 0.183 0.189 0.218 0.238

High Google Trend Index —0.005 0.023 0.012 0.025 0.026 0.002 0.007 0.045 0.049
Low Google Trend Index  0.250 0.204 0.181 0.200 0.199 0.222 0.238 0.273 0.235

Note: The table reports, for each time of the day, after transaction costs, the Sharpe ratio associated with the SSD violation
strategy based on the ATM call, computed on days with a high (above median) or low (below median) value of a conditioning
variable. To incorporate transaction costs, whenever we buy (sell) the option, we consider the ask (bid) price instead of the
bid-ask midpoint, that is, we consider the worst case scenario for the strategy. 0DTE log-volume is the daily S&P 500 ODTE
option log-volume, RV is the average of the realized variances we compute over the different times of the day, VRP is the average
of the VRPs we compute over the different times of the day, and Google Trend Index is a sentiment index created using Google
trends with the keyword “ODTE SPX options”. The total sample ranges from January 6 2012 to March 18 2025.
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Figure OA.1: SVI fit
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(b) 1-22 DTEs

Note: The figure plots, for a representative date of our sample, the observed IVs and the fitted
IVs using the SVI method for 0DTEs (Panel a) and 1-22 DTEs (Panel b). The average OLS R?

fit of the SVI over the entire sample is also reported. Standardized log-moneyness is defined as
log(K/St)
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Figure OA.2: Market return risk-neutral and physical distributions
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Note: The figure plots, for a representative date of our sample, the market return risk-neutral
distribution and physical distribution estimated as described in Sections 3.3 and 3.4, respectively,
for ODTEs (Panel a) and 1-22 DTEs (Panel b). The horizontal axis represents gross market return

states.
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Figure OA.3: Intra-day variance risk premium over time
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Note: The figure plots, for different times of the day, the one-week moving average (for ease of
visualization) of the VRP,p, VRP,;. and VRP, . over time. The measures are annualized. The
sample ranges from January 6 2012 to March 18 2025.
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Figure OA.4: Variance risk premium over time
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Note: The figure plots the one-week moving average (for ease of visualization) of the VRP, r,
VRR;TT and VRP; . over time for different horizons as implied by longer-maturity options. The
measures are annualized. The sample ranges from January 6 2012 to March 18 2025.



Figure OA.5: Conditioning variables
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Note: The figure plots, for each of the conditioning variables in Table 7, their time-series together
with a red dashed line indicating their median. The sample ranges from January 6 2012 to March
18 2025.



Table OA.1: Predicting excess market returns with risk measures

10:00:00  10:30:00  11:00:00  11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00
RV —-0.023 —-0.043 —-0.052 —0.046  —0.055* —0.046* —0.074* —0.056* —0.040
t-stat  —0.495 —-0853 —-1.063 —1.379 —1.691 —-1.828 —-2.016 —-1.670 —1.184
R*(%) 0.090 0.350 0.549 0.496 0.789 0.612 1.788 1.090 0.619
MFIS —-0.015  —0.006 0.001 —0.012 0.002 0.007 0.002  —-0.006  —0.013
t-stat  —0.950  —0.465 0.063  —0.948 0.179 0.680 0.209 —0.451 —1.291
R*(%) 0.037 0.008 0.000 0.033 0.001 0.014 0.002 0.008 0.068
MFIK  0.011 —-0.018 —-0.006  —0.011 —-0.014 -0.016  —0.011 —0.010 0.001
t-stat 0.679 -1.130 -0.316 —-0914 —-1.208 —1.568 —0.994  —1.029 0.080
R*(%) 0.020 0.062 0.008 0.030 0.051 0.074 0.038 0.035 0.000
Svix -0.013 —-0.029 -0.043 —0.036 —0.044 —-0.016  —0.081"* —0.032  —0.028
t-stat  —0.322  -0.625 —-1.074 —-1.408 —1.598 —-0.747 —2.627 —-0.956  —0.793
R*(%) 0.031 0.167 0.379 0.292 0.517 0.076 2.132 0.356 0.310

Note: The table reports, for each time of the day, the results from univariate predictive regressions over our
sample using RV, M FIS (risk-neutral skewness), M FIK (risk-neutral kurtosis) and SVIX to predict the
excess market return from ¢ to 7. Regressors are standardized to have mean zero and unit variance. We
compute the t-statistics using Newey-West robust standard errors with a lag length equal to 5. We denote
with *, ** and ** significance at the 10%, 5% and 1% level, respectively. The sample ranges from January 6
2012 to March 18 2025.



Table OA.2: Predicting excess market returns with variance risk premium and controls

10:00:00 12:00:00 13:00:00 14:00:00
VRP  —0.118" —0.149 —0.064** —0.104"
t-stat  —2.232 —3.221 —1.987 —3.381
VRP* —0.224* —0.132* —0.224* —0.121"
t-stat —4.333 —2.153 —3.200 —2.908
VRP~ 0.137 —0.016 0.139 0.023
t-stat 2.272 —0.404 2.945 0.598

MFIS —0.013 0.013  —0.001 0.007  —0.001 0.023  —-0.020 —0.012
t-stat  —0.596 0.580  —0.049 0.359  —0.081 1.221 —-1.276  —0.803
MFIK  0.007 0.013 -0.018 —-0.017 —=0.022  —0.011 —-0.017  —-0.014
t-stat 0.329 0.582  —1.088  —0.981 —1.331 —-0.664 —1.095  —0.923
SVIX 0.086 0.031 0.069* 0.057  —0.038 —0.016 0.055 0.043
t-stat 1.249 0.496 1.648 1.617  —0.791 —0.520 1.304 1.125

R*(%) 0.617 2.756 2.772 3.036 2.758 5.151 1.734 2.087

Note: The table reports, for each time of the day, the results from multivariate predictive regres-
sions over our sample based on VRP, r, VRP;T, VRFP , MFIS (risk-neutral skewness), M FIK
(risk-neutral kurtosis) and SV IX to predict the excess market return from ¢ to 7. Regressors are
standardized to have mean zero and unit variance. We compute the t-statistics using Newey-West
robust standard errors with a lag length equal to 8. We denote with *, **, and *** significance at
the 10%, 5% and 1% level, respectively. The sample ranges from January 6 2012 to March 18 2025.



OA.1 Robustness - Before and after 2022

Figure OA.6: Average pricing kernels - before May 11 2022
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Note: The figure plots, for different maturities, the average of the pricing kernel, as a
function of market returns, over time before May 11 2022. The sample begins on January
6 2012.



Figure OA.7: Average pricing kernels - after May 11 2022
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Note: The figure plots, for different maturities, the average of the pricing kernel, as a
function of market returns, over time after May 11 2022. The sample ends on March 18
2025.



Table OA.3: Intra-day variance risk premium - before and after 2022

10:00:00  11:00:00  12:00:00 13:00:00  14:00:00 10:00:00 11:00:00 12:00:00 13:00:00  14:00:00

Before May 11, 2022 After May 11, 2022
Panel A: VRP
Mean 1.910 1.624 1.952 2.100 3.347 1.639 1.410 1.579 1.797 2.361
St. Dev. 11.130 9.594 9.977 10.975 15.066 4.434 4.718 6.092 8.329 13.351

25th Percentile 0.172 0.212 0.244 0.292 0.430 0.205 0.202 0.222 0.336 0.325
75th Percentile 1.857 1.802 2.193 2.419 3.263 2.272 2.226 2.362 2.587 3.087

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel B: VRP*

Mean 0.857 0.879 1.080 1.342 1.971 1.114 1.076 1.212 1.496 1.972
St. Dev. 4.426 4.088 4.617 5.405 7.903 2.141 2.415 3.027 4.167 6.465

25th Percentile 0.220 0.269 0.334 0.467 0.653 0.369 0.407 0.456 0.597 0.717
75th Percentile 1.082 1.141 1.375 1.666 2.258 1.489 1.512 1.731 1.936 2.393

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel C: VRP~

Mean 1.053 0.745 0.872 0.759 1.377 0.524 0.334 0.368 0.301 0.389
St. Dev. 7.230 6.117 5.717 5.980 7.691 2.533 2.409 3.417 4.272 7.036

25th Percentile —0.067  —0.097 -0.122  —-0.154 —-0.256  —-0.203 —0.260 —0.322 —-0.372  —0.489
75th Percentile 0.766 0.708 0.846 0.877 1.093 0.886 0.726 0.693 0.665 0.729
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.032 0.075

Note: The table reports, for each time of the day for the 0DTEs, summary statistics of the VRP, p, VRP,%, and V RP,, over our
sample before May 11 2022 and after. The variance risk premium measures are annualized and expressed in percentage points.
The p-values for the test with null hypothesis that the mean is smaller than or equal to zero, against the alternative that the
mean is positive, are implemented using bootstrapped standard errors with 2,500 replications. The total sample ranges from
January 6 2012 to March 18 2025.
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Table OA.4: Variance risk premium - before and after 2022

1DTE 3DTE 5DTE 10DTE  22DTE 1DTE 3DTE 5DTE 10DTE  22DTE

Before May 11, 2022 After May 11, 2022
Panel A: VRP
Mean 0.644 0.443 0.495 0.533 0.723 0.422 0.530 0.481 0.695 0.937
St. Dev. 11.361 6.412 5.542 5.899 4.435 3.334 2.266 1.922 1.648 1.331

25th Percentile 0.096 0.137 0.100 0.220 0.358 —0.165 —0.068 —0.106 0.186 0.434
75th Percentile 1.398 1.283 1.228 1.471 1.483 1.449 1.222 1.166 1.227 1.440

p-value 0.061 0.021 0.003 0.003 0.000 0.001 0.000 0.000 0.000 0.000
Panel B: VRP*

Mean 0.307 —0.083 —0.229 —0.416 —0.377 0.280 0.157 0.047 —0.015 0.010
St. Dev. 2.761 2.304 2.024 2.367 1.854 2.088 1.303 1.094 0.827 0.530

25th Percentile 0.027 —-0.086 -0.165 —-0.297 -0.312 -0.004 —-0.116 —-0.183 —-0.237 —0.218
75th Percentile 0.680 0.505 0.284 0.175 0.099 0.899 0.621 0.463 0.350 0.294

p-value 0.000 0.224 0.000 0.000 0.000 0.000 0.001 0.243 0.631 0.663
Panel C: VRP~

Mean 0.338 0.526 0.724 0.949 1.100 0.142 0.373 0.433 0.710 0.927
St. Dev. 10.735 4.981 4.214 3.986 2.807 2.297 1.517 1.202 1.077 0.980

25th Percentile 0.142 0.217 0.255 0.418 0.561 —0.067 0.040 0.073 0.306 0.496
75th Percentile 0.932 0.946 1.087 1.506 1.513 0.720 0.748 0.806 1.025 1.226
p-value 0.291 0.001 0.000 0.000 0.000 0.099 0.000 0.000 0.000 0.000

Note: The table reports, for each maturity, summary statistics of the VRP, 7, VRP, and V RP,, over our sample before May

11 2022 and after. The variance risk premium measures are annualized and expressed in percentaée points. The p-values for the
test with null hypothesis that the mean equals zero, against the alternative that the mean is different from zero, are implemented
using bootstrapped standard errors with 2,500 replications. The total sample ranges from January 6 2012 to March 18 2025.
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Table OA.5: Predicting excess market returns

with variance risk premium - before and

after 2022
Before May 11, 2022 After May 11, 2022
10:00:00 11:00:00 10:00:00 11:00:00
VRP —0.054 —0.079** —0.047* —0.049**
t-stat —1.482 —2.343 —1.735 —2.165
VRP* —0.108*** —0.138** —0.058** —0.037
t-stat —2.604 —3.331 —1.977 —1.577
VRP~ —0.017 —0.031 —0.033 —0.059*
t-stat —0.403 —-1.073 —1.339 —2.644
R*(%)  0.506 2.004 0.052 1.205 3.703 0.190 0.384 0.594 0.188 0.550 0.320 0.784
11:30:00 12:30:00 11:30:00 12:30:00
VRP —0.066* —0.038 —0.037 —0.044**
t-stat —1.862 —1.568 —1.566 —2.455
VRP* —0.091* —0.043 —0.043* —0.041*
t-stat —1.740 —1.176 —2.008 —2.187
VRP~ —0.018 —0.015 —0.028 —0.046***
t-stat —0.583 —0.469 —0.994 —2.621
R*(%) 0.913 1.723 0.069 0.377 0.496 0.058 0.367 0.514 0.208 0.619 0.523 0.684
13:00:00 14:00:00 13:00:00 14:00:00
VRP —0.109"* —0.071* —0.051%** —0.042**
t-stat  —5.037 —2.024 —2.802 —2.004
VRP* —0.140%* —0.083** —0.049*** —0.040**
t-stat —4.502 —2.561 —2.667 —2.120
VRP~ —0.074** —0.054 —0.052*** —0.042*
t-stat —3.156 —1.381 —2.807 —1.881
R*(%) 3.753 6.127 1.738 1.786 2.441 1.026 0.907 0.829 0.939 0.820 0.778 0.823

Note: The table reports, for each time of the day, the results from different predictive regressions over our sample before May 11 2022 and
after using VRP, 1, VRP; and VRP,, to predict the excess market return from ¢ to 7. Regressors are standardized to have mean zero and

unit variance. We compute the ¢-statistics using Newey-West robust standard errors with a lag length equal to 8. We denote with *

*** gignificance at the 10%, 5% and 1% level, respectively. The total sample ranges from January 6 2012 to March 18 2025.
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Table OA.6: Option price bounds for 0DTE options - before and after 2022

10:00:00  11:00:00 12:00:00 13:00:00 14:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00
Before May 11, 2022 After May 11, 2022

Panel A: Calls
In 14.848 15.157 17.692 14.583 15.652 30.736 33.953 32.071 25.113 28.011
All Calls Upper 41.985 41.364 39.161 43.057 40.680 40.361 38.654 39.033 43.725 46.453
Lower 43.167 43.479 43.147 42.360 43.668 28.903 27.393 28.896 31.163 25.536

In 27.064 29.611 34.266 29.323 28.934 33.725 40.636 38.134 29.704 30.647
OTM Upper  7.322 9.654 8.738 8.703 9.802 3.210 6.939 7.700 6.091 6.201
Lower 65.613 60.735 56.996 61.974 61.264 63.065 52.425 54.165 64.205 63.152
In 5.453 4.716 6.248 4.854 4.695 8.947 5.213 4.157 2.788 2.809
ATM Upper 66.582 65.971 67.376 71.835 68.395 89.601 94.026 95.239 96.748 96.536
Lower 27.965 29.313 26.376 23.311 26.910 1.451 0.761 0.604 0.465 0.655
In 14.158 13.876 15.944 12.763 15.067 40.259 44.140 41.913 32.908 38.056
ITM Upper 45.011 43.328 38.831 44.318 40.929 33.675 27.479 27.620 36.641 41.859

Lower 40.831 42.796 45.224 42.919 44.004 26.066 28.381 30.468 30.450 20.085

Panel B: Puts
In 30.639 31.598 35.108 31.654 33.417 33.565 35.331 34.552 30.830 35.985
All Puts Upper 34.467 36.927 36.444 37.397 37.181 29.885 31.758 31.778 34.012 31.791
Lower 34.894 31.475 28.448 30.949 29.402 36.550 32.911 33.669 35.158 32.223

In 51.563 53.967 60.132 54.414 57.348 44.194 46.578 47.016 43.687 52.233
OTM Upper 15.882 18.180 15.182 18.447 17.780 6.395 9.782 10.001 14.425 10.843
Lower 32.554 27.854 24.686 27.139 24.872 49.411 43.640 42.983 41.888 36.924
In 6.005 4.996 5.616 4.561 4.143 9.937 5.911 5.078 3.188 4.044
ATM Upper 68.672 73.421 76.431 75.655 75.321 85.956 92.047 93.398 95.002 93.522
Lower 25.323 21.584 17.953 19.783 20.537 4.107 2.042 1.525 1.810 2.434
In 7.179 8.719 10.051 8.468 9.161 37.674 44.373 39.596 32.273 31.610
ITM Upper 36.905 36.201 37.211 34.962 35.870 15.165 10.358 9.922 6.660 8.182

Lower 55.916 55.081 52.737 56.569 54.968 47.161 45.269 50.482 61.067 60.208

Note: The table reports, for each time of the day and for each class of options, the percentage of ODTE options over our sample before
May 11 2022 and after for which prices fall within the SSD bounds (In), above the SSD upper bound (Upper) and below the SSD lower
bound (Lower). The OTM put (ITM call), ATM and ITM put (OTM call) categories are defined as standardized log-moneyness below
—1, between —1 and 1, and above 1, respectively. The total sample ranges from January 6 2012 to March 18 2025.
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Table OA.7: Option price bounds for 1-22 DTE options - before and after 2022

1DTE 3DTE 5DTE 10DTE 22DTE 1DTE 3DTE 5DTE 10DTE 22DTE
Before May 11, 2022 After May 11, 2022

In 54.592 77.206 83.680 92.089 98.009 42.979 63.550 68.562 80.873 95.726
All Calls Upper 32.110 14.333 9.550 4.597 0.826 35.495 20.196 17.403 11.315 1.285
Lower 13.298 8.461 6.770 3.314 1.166 21.525 16.254 14.035 7.812 2.989

In 67.969 84196  89.627  94.173  97.975  57.327 84287  91.301 95884  99.879
OTM Upper 3852  2.755 1.998 2028 1.016  3.929 1.779 1.602 1.341 0.084
Lower 28179  13.049 8375  3.798 1.010 38744  13.934  7.097 2775  0.036
In 19362  55.326  68.796  86.035  97.667  13.214  36.380  48.820  73.554  97.305
ATM Upper 78534 42572  29.017  12.691 1.857  85.664 62490  50.444 26229  2.638
Lower 2104  2.101 2187 1274 0476 1.123 1130 0735 0217 0.057
In 66.510  85.841  89.277 94988  98.264  51.559  69.960  72.087 82201  92.266
IT™ Upper 21.322  4.331 2128 0632 0026 24675  3.440 1.039 0422  0.053

Lower 12.168 9.828 8.594 4.380 1.710 23.766 26.600 26.875 17.377 7.682

Panel B: Puts
In 57.742 77.239 83.364 91.464 97.550 37.675 57.605 67.796 82.241 95.897
All Puts Upper 24.996 15.168 11.674 6.725 1.952 22.598 18.137 16.705 11.915 2.438
Lower 17.262 7.593 4.962 1.811 0.498 39.726 24.258 15.499 5.845 1.665

In 74.750 89.994 94.257 98.323 99.625 43.195 62.090 72.988 87.860 96.005
OTM Upper 5.413 2.113 1.272 0.544 0.036 0.923 0.236 0.237 0.251 0.034
Lower 19.836 7.894 4.471 1.133 0.339 55.882 37.673 26.775 11.888 3.961
In 26.030 58.587 69.660 85.829 97.743 20.998 44.435 54.355 75.731 97.440
ATM Upper 68.758 38.309 27.563 12.715 1.721 74.068 53.180 44.631 23.949 2.450
Lower 5.211 3.104 2.7 1.456 0.536 4.934 2.385 1.014 0.320 0.110
In 48.040 65.121 71.500 80.876 89.807 45.357 65.826 78.441 84.006 89.161
IT™ Upper 23.840 21.433 18.676 14.619 9.233 17.515 15.668 11.515 12.668 10.634

Lower 28.120 13.446 9.823 4.505 0.959 37.128 18.506 10.044 3.325 0.205

Note: The table reports, for each maturity and for each class of options, the percentage of 1-22 DTE options over our sample before
May 11 2022 and after for which prices fall within the SSD bounds (In), above the SSD upper bound (Upper) and below the SSD lower
bound (Lower). The OTM put (ITM call), ATM and ITM put (OTM call) categories are defined as standardized log-moneyness below
—1, between —1 and 1, and above 1, respectively. The total sample ranges from January 6 2012 to March 18 2025.
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OA.2 Robustness - FOMC announcement days

Figure OA.8: Average returns of 0DTE option strategies - FOMC announcement days
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Note: The figure plots, for different times of the day, the average returns together with 90%
confidence bands for ATM delta-hedged calls, delta-neutral straddles and simple straddles, for
FOMC announcement days. Confidence bands are based on 2,500 bootstrap replications. The
total sample ranges from January 6 2012 to March 18 2025.
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Figure OA.9: Average intra-day pricing kernels - removing FOMC days
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Note: The figure plots, for different times of the day, the average of the pricing kernel, as
a function of market returns, over time removing FOMC announcement days. The total
sample ranges from January 6 2012 to March 18 2025.



Table OA.8: Intra-day variance risk premium - removing FOMC days

10:00:00  10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: VRP
Mean 1.591 1.311 1.254 1.365 1.432 1.772 1.439 1.783 1.967
St. Dev. 9.104 7.478 7.839 8.701 8.245 13.545 9.113 11.091 12.044

25th Percentile 0.151 0.129 0.170 0.165 0.196 0.232 0.262 0.289 0.334
75th Percentile 1.885 1.752 1.826 1.987 2.097 2.118 2.283 2.517 2.927

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel B: VRP*

Mean 0.848 0.809 0.811 0.977 0.943 1.321 1.134 1.310 1.473
St. Dev. 3.656 3.423 3.384 5.494 3.828 9.933 4.504 5.508 6.132

25th Percentile 0.249 0.287 0.298 0.340 0.354 0.393 0.489 0.576 0.661
75th Percentile 1.160 1.178 1.196 1.330 1.411 1.491 1.681 1.873 2.176

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Panel C: VRP~

Mean 0.743 0.502 0.443 0.387 0.489 0.451 0.305 0.474 0.494
St. Dev. 5.903 4.607 4.961 4.020 4.788 5.300 4.955 5.846 6.318

25th Percentile —0.128  —0.182  —0.185 —0.195 —0.248 —0.253 —-0.277 —0.318 —0.375
75th Percentile 0.742 0.659 0.640 0.670 0.685 0.631 0.662 0.755 0.793
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.001

Note: The table reports, for each time of the day for the 0DTEs, summary statistics of the VRP,r, VRP,7, and
V RP,  over our sample removing FOMC days. The variance risk premium measures are annualized and expressed in
percentage points. The p-values for the test with null hypothesis that the mean is smaller than or equal to zero, against
the alternative that the mean is positive, are implemented using bootstrapped standard errors with 2,500 replications.
The total sample ranges from January 6 2012 to March 18 2025.
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Table OA.9: Predicting excess

market returns with

variance risk premium - removing

FOMC days
10:00:00 10:30:00 11:00:00
VRP —0.040 —0.034 —0.058**
t-stat  —1.430 —1.063 —2.388
VRP* —0.081** —0.205*** —0.061* —0.117 —0.096*** —0.180*
t-stat —2.589 —3.615 —1.749 —1.591 ~2.839 —2.502
VRP~ —0.011 0.154* —0.009 0.076 —0.025 0.111*
t-stat —0.328 3.209 —0.306 0.977 —1.199 2.021
R*(%) 0.281 1.176 0.021 2.659 0.226 0.751 0.016 1.294 0.710 1.988 0.137 3.120
11:30:00 12:00:00 12:30:00
VRP  —0.046* —0.090* —0.026
t-stat  —1.958 —3.426 —1.490
VRPT —0.065* —0.104* —0.098* —0.109 —0.031 —0.037
t-stat ~1.775 —1.646 —2.938 ~1.635 ~1.150 —0.835
VRP~ —0.011 0.058* —0.077*  0.014 —0.009 0.011
t-stat —0.533 1.675 —3.394 0.271 —0.373 0.280
R*(%)  0.516 1.027 0.029 1.482 2.259 2.667 1.646 2.683 0.211 0.294 0.025 0.319
13:00:00 13:30:00 14:00:00
VRP —0.083"* —0.043 —0.064**
t-stat  —4.017 —1.499 —2.571
VRP* —0.104™* —0.2027* —0.057* —0.180** —0.072* —0.106**
t-stat —3.577 —3.032 —2.192 —3.111 —3.126 —2.986
VRP- —0.058**  0.115** —0.028 0.136** —0.053*  0.039
t-stat —2.922 2.334 —0.903 2.436 ~1.920 1.076
R*(%) 2.425 3.806 1.190 5.064 0.711 1.248 0.300 2.498 1.848 2.294 1.258 2.458

Note: The table reports, for each time of the day, the results from different predictive regressions over our sample removing FOMC announce-
ment days using VRP, 7, VRP, and V RP, 1 to predict the excess market return from ¢ to T'. Regressors are standardized to have mean zero
and unit variance. We compute the ¢-statistics using Newey-West robust standard errors with a lag length equal to 5. We denote with *, **,
and *** significance at the 10%, 5% and 1% level, respectively. The total sample ranges from January 6 2012 to March 18 2025.
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Table OA.10: Option price bounds for ODTE options - removing FOMC days

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: Calls
In 23.762 24.914 26.079 27.750 26.347 30.523 21.084 16.865 22.821
All Calls Upper 41.255 39.997 39.973 39.077 39.047 36.739 43.527 46.574 43.698
Lower 34.983 35.089 33.948 33.173 34.606 32.738 35.389 36.561 33.481

In 31.509 34.654 37.036 39.650 37.839 42.981 30.778 21.357 30.749
OTM Upper  5.113 6.959 8.314 7.684 8.372 6.820 7.526 7.142 7.979
Lower 63.379 58.387 54.650 52.665 53.789 50.199 61.697 71.501 61.271
In 7.340 6.795 4.987 5.971 5.211 6.401 3.782 2.815 3.689
ATM Upper 78.745 78.674 80.734 80.597 81.638 81.686 84.314 84.438 83.316
Lower 13.915 14.531 14.279 13.833 13.151 11.913 11.904 12.747 12.995
In 28.451 29.172 31.138 32.907 31.070 36.170 24.760 21.413 28.113
IT™ Upper 39.341 36.451 34.911 33.527 32.860 29.181 40.630 46.676 41.307

Lower 32.208 34.377 33.950 33.566 36.070 34.649 34.610 31.912 30.580

Panel B: Puts
In 32.924 34.390 34.597 37.681 35.992 40.506 32.359 29.165 36.050
All Puts Upper 31.893 32.882 34.115 33.176 33.969 31.127 35.644 38.006 33.771
Lower 35.183 32.727 31.288 29.143 30.039 28.367 31.997 32.829 30.179

In 48.634 50.366 51.239 56.620 54.464 61.025 50.015 46.547 56.208
OTM Upper 10.855 12.558 13.799 11.869 12.560 8.863 16.466 21.408 13.759
Lower 40.511 37.077 34.962 31.511 32.976 30.112 33.519 32.045 30.034
In 8.180 7.305 5.016 5.932 5.437 6.910 3.883 3.019 4.038
ATM Upper 77.730 80.586 83.098 83.610 85.397 83.676 85.709 84.897 84.757
Lower 14.091 12.109 11.385 10.458 9.166 9.414 10.408 12.084 11.205
In 23.965 27.747 29.049 28.960 27.278 29.791 22.249 15.879 21.954
IT™™ Upper 25.307 22.534 22.599 22.936 22911 21.286 20.742 20.081 20.550

Lower 50.728 49.720 48.352 48.104 49.810 48.923 57.009 64.040 57.496

Note: The table reports, for each time of the day and for each class of options, the percentage of options over our sample,
removing FOMC announcement days, for which prices fall within the SSD bounds (In), above the SSD upper bound (Upper)
and below the SSD lower bound (Lower). The OTM put (ITM call), ATM and ITM put (OTM call) categories are defined as
standardized log-moneyness below —1, between —1 and 1, and above 1, respectively. The total sample ranges from January
6 2012 to March 18 2025.
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Table OA.11: Sharpe ratios for SSD violation strategy - removing FOMC days

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: Before Transaction Costs

Short ATM Call Delta-Hedge -0.001 -0.019 -0.015 -0.002 0.001 0.014 0.020 0.027 0.024
SSD ATM Call Delta-Hedge 0.166 0.146 0.131 0.153 0.145 0.147 0.156 0.194 0.201
Panel B: After Transaction Costs

Short ATM Call Delta-Hedge -0.040 -0.045 -0.040 -0.027 -0.025 -0.013 -0.008 -0.003 -0.012
SSD ATM Call Delta-Hedge 0.128 0.120 0.107 0.128 0.120 0.122 0.129 0.165 0.166

Note: The table reports, for each time of the day, before and after transaction costs, the Sharpe ratio associated with the SSD
violation strategy based on the ATM call and the benchmark strategy writing the ATM call delta-hedged. To incorporate transaction
costs, whenever we buy (sell) the option, we consider the ask (bid) price instead of the bid-ask midpoint, that is, we consider the
worst case scenario for the strategy. The sample ranges from January 6 2012 to March 18 2025 excluding FOMC announcement
days.
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