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Research on asset pricing centers on the idea of a pricing kernel, i.e., a stochastic

process that is guaranteed to exist in the absence of arbitrage opportunities and

prices all payoffs. The pricing kernel has to be very volatile to explain the large

average excess return on the aggregate stock market (Hansen and Jagannathan

1991; Alvarez and Jermann 2005). We document that the pricing kernel displays

very little comovement with return volatility. This finding implies a surprising

amount of time-variation in the pricing of stock market risks and it stands in sharp

contrast to the economic mechanisms of prominent asset pricing theories.

For our purposes, it is essential to distinguish between the pricing kernel, Mt+1,

which is a function of many different shocks, and its projection onto stock market

returns, Et[Mt+1|Rt+1], which is a function of only returns. The “projected pricing

kernel” reveals how marginal utility is expected to vary with returns, conditional

on investors’ information set at time t, and it has the same pricing implications as

Mt+1 for any claim on the market. We propose a maximum likelihood estimator

of the projection based on options and return data. The estimator requires no

distributional assumptions about returns and allows us to condition on ex ante

stock market volatility. Figure I shows our estimate of the projected pricing kernel

for the 10th and 90th percentile of volatility. The steeper curve in periods of low

volatility implies that negative returns are considerably more painful to investors in

calm markets. We show that the difference is statistically significant and robust to

alternative estimation methods.

To interpret the empirical evidence, we derive the projected pricing kernel under

the assumption that returns and the pricing kernel are conditionally jointly log-

normal. This setting is stylized, but it encompasses the models of Campbell and

Cochrane (1999) and Bansal and Yaron (2004) and the intuition it provides carries

over to models with non-normal shocks. We show analytically that a rise in stock

market volatility makes the projected pricing kernel flatter, as in the data, if it is not

accompanied by changes in the conditional distribution of the pricing kernel, such

as an increase in its conditional volatility. Counter to first intuition, the finding in
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Figure I: Volatility and the projected pricing kernel. We plot the projected pricing kernel,
Et[Mt+1|Rt+1], for the 10th and 90th percentile of conditional stock market volatility. The pricing
kernel is measured at a monthly horizon, parameterized by equations (4) and (5) with a polynomial
order of N = 2, and estimated over the 1990-2019 sample. Shaded areas represent pointwise 90%
confidence bounds.

Figure I therefore suggests that return volatility evolves mostly independently from

the pricing kernel and that investors’ risk aversion does not vary with volatility.

Our findings provide a unified view of four facts about stock market risk pre-

mia that have been highlighted as puzzling in prior work. First, it is challenging

to detect a risk-return trade-off in the time series of stock market returns (Glosten

et al. 1993) and simple volatility-timing strategies earn positive CAPM alphas as a

result (Moreira and Muir 2017). Figure I shows that this is the case because risk

prices for negative returns are lower when such returns are more likely to occur.

Second, whereas shocks to realized stock market variance carry a large negative

risk premium (Carr and Wu 2009), shocks to future variance do not (Dew-Becker
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et al. 2017). Since a large realized variance frequently coincides with large neg-

ative returns, the variance risk premium can be explained by the steep slope of

the projected pricing kernel. In turn, investors’ indifference towards shocks to ex-

pected variance is consistent with our result that return volatility evolves largely

independently from the pricing kernel. Third, the risk-neutral return distribution

implied by equity index option prices is much more non-normal than the physical

distribution, which is reflected in a large difference between the VIX index and a

related simple VIX, or SVIX, index (Martin 2017). This sizable risk-adjustment

reflects the steep slope of the projected pricing kernel, which increases the amount

of risk-neutral tail risk relative to its physical counterpart. Fourth, the majority of

the equity premium reflects shocks that coincide with monthly stock market returns

between -30% and -10% (Beason and Schreindorfer 2022). This is the case because

such returns tend to coincide with very high levels of marginal utility, as shown in

Figure I. Hence, all four puzzles can be traced back to properties of the projected

pricing kernel. While the prior literature has shown that popular consumption- and

intermediary-based asset pricing models are inconsistent with these facts, it has not

recognized the connection between them.

Contrary to Figure I, we show that the habit model of Campbell and Cochrane

(1999) implies that negative returns are less painful in calm markets, whereas the

long-run risks model of Bansal and Yaron (2004) implies that investors are indifferent

to the timing of negative returns. This counterfactual pricing kernel behavior is

an inherent feature of the models’ economic mechanisms, which rely on a tight

connection between return volatility and the pricing kernel to rationalize the level

and predictability of stock returns. We argue that, without this tight connection,

the habit model is not able to explain the countercyclical volatility and long-horizon

predictability of stock returns, whereas the long-run risks model loses its ability to

explain return predictability and most of the equity premium.

We consider a number of additional models with habits and recursive utility,

most of which were explicitly designed to capture features of stock market volatility
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and option markets. Specifically, we show that the models of Drechsler and Yaron

(2011), Wachter (2013), Constantinides and Ghosh (2017), and Bekaert and En-

gstrom (2017) closely resemble the original habit and long-run risks models in terms

of their implications for the projected pricing kernel.

In the last section, we propose a consumption-based asset pricing model to ra-

tionalize our empirical finding. The model assumes that consumption growth is

IID, whereas dividend growth is heteroscedastic. We do not provide an explicit

microfoundation, but argue that this assumption is consistent with countercyclical

leverage (Halling et al. 2016). IID consumption growth implies that the pricing

kernel’s conditional distribution is time-invariant. Heteroscedastic dividend growth

implies that the volatility of returns is time-varying, which makes the pricing ker-

nel’s projection onto returns flatter in volatile times. This feature is implied by

our analytical results and it reflects the intuition that negative returns are more

indicative of deteriorating macroeconomic conditions if they occur in calm markets,

rather than the middle of a recession. We assume additionally that the represen-

tative agent is disappointment averse (Gul 1991; Routledge and Zin 2010). This

assumption captures the steep slope of the projected pricing kernel, as previously

shown by Schreindorfer (2020). A calibration of the model is quantitatively consis-

tent with Figure I and it resolves the four aforementioned puzzles.

Related Literature. We build on a large literature that studies the pricing

kernel’s projection onto stock market returns based on index options, starting with

Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002). The

central finding of these studies is that the pricing kernel is a non-monotonic function

of stock market returns – an observation dubbed the “pricing kernel puzzle” due

to its inconsistency with standard models.1 With one exception that we discuss

below, however, the literature has not systematically examined time-variation in

the pricing kernel’s conditional distribution, and it has not connected properties of

1In the online appendix, we show that our estimates are consistent with the projected pricing
kernel’s non-monotonicity. The main text focuses on the negative return region to draw attention
to the novel fact we document – covariation with volatility – and away from the existing fact.

4



the projected pricing kernel to macro-finance puzzles.

Our theoretical result that market volatility must evolve close to independent

of the pricing kernel in order to explain time-variation in the projected pricing

kernel is consistent with prior empirical work. In particular, Jurado et al. (2015)

show that macroeconomic uncertainty is only weakly correlated with stock market

volatility and considerably more persistent. Additionally, these authors find that an

increase in macroeconomic uncertainty leads to sizable and protracted decline in real

activity (production, hours, employment), whereas Berger et al. (2020) show that an

increase in expected stock market volatility does not. It is therefore plausible that

stock market volatility is not an important determinant of marginal utility, whereas

macroeconomic uncertainty is.

We also relate to Bliss and Panigirtzoglou (2004), who use option prices to

estimate the representative investor’s relative risk aversion. Their study focuses

on the level of risk aversion, but shows as an auxiliary result that estimates are

higher in subsamples with low volatility. Our finding is consistent with this result,

but differs along three key dimensions. First, Bliss and Panigirtzoglou’s estimates

are based on specific utility functions that imply a near-linear projected pricing

kernel. In contrast, we model the projection with a flexible polynomial and find

that it is strongly convex in returns. Our estimates show that linear specifications

are inconsistent with the large variance risk premium in the data, as well as the

central importance of stock market tail events for the equity premium (Beason

and Schreindorfer 2022). Second, Bliss and Panigirtzoglou interpret their auxiliary

finding as showing that risk aversion rises in times of low volatility. We argue in stark

contrast that the data is most consistent with stock market volatility evolving largely

independently from the pricing kernel and risk aversion. Third, we use the projected

pricing kernel to shed new light on the economic mechanisms of equilibrium models,

whereas Bliss and Panigirtzoglou’s study is purely empirical.

A contemporaneous and independently developed paper by Kim (2022) also stud-

ies time-variation in the projection. Kim shows how the projected pricing kernel
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varies with many different macroeconomic covariates and analyzes implications for

conditional risk premia. In contrast, we focus on covariation of the projected pricing

kernel with volatility and link it to properties of the (multivariate) pricing kernel

and the economic mechanisms of equilibrium models.2

The idea to estimate time-variation in the pricing kernel is complementary to

recent “recovery” research, started by Ross (2015). The general idea of this lit-

erature is to impose economically motivated restrictions on the pricing kernel and

data-generating process in order to recover physical probabilities from risk-neutral

probabilities based on options data. Our assumptions are statistical in nature, but

implicitly share the goal of recovering conditional physical probabilities from op-

tions. The parametric structure we impose on the projected pricing kernel allows us

to employ a likelihood-based estimation approach to recover physical densities that

provide the best fit to the data.

2There are also numerous implementation differences. Our estimation approach has the advan-
tage of being likelihood-, rather than moment-based, and it guarantees that the implied density of
stock market returns integrates to one on every day of the sample, which is not the case for Kim’s
estimator. Additionally, our parameterization of the projected pricing kernel implies considerably
more time-variation (as a function of volatility) and results in a better fit to the data.

6



I. Estimation

This section explains our approach for estimating the pricing kernel as a function

of stock market returns and conditional volatility, discusses data sources, and illus-

trates the robustness and statistical significance of our estimates. Throughout, the

pricing kernel in period (t + 1) is denoted by Mt+1, the ex-dividend market return

by Rt+1, and “t”- subscripts indicate moments and probability density functions

that condition on investors’ information set at time-t.

A. Estimation Approach

In the absence of arbitrage opportunities, the pricing kernel’s projection onto stock

market returns equals3

Et[Mt+1|Rt+1] =
1

Rft

f∗t (Rt+1)

ft(Rt+1)
, (1)

where Rft is the risk-free rate and f∗t (Rt+1) and ft(Rt+1) denote the conditional

risk-neutral and physical density of Rt+1, respectively. The projection measures the

mean of Mt+1 conditional on investors’ information set at time-t and conditional

on a (potential) return outcome at time-(t+ 1). Apart from the market return, (1)

therefore averages over all shocks that affect the pricing kernel at (t + 1). Impor-

tantly, (1) is generally a nonlinear conditional expectation function of Rt+1 for any

time-t information set, i.e., it is not a linear projection. Our estimation conditions

on volatility as part of investors’ time-t information set, as further detailed below.

To estimate Et[Mt+1|Rt+1], we extract f∗t from option prices for each day of

the sample based on the classic result of Breeden and Litzenberger (1978). This

methodology is fairly standard and we refer interested readers to Appendix A for

details. Next, we model the projection with a flexible parametric function of returns

and the conditional return volatility, M(Rt+1, σt; θ), and combine it with (1) to

3The fact that the pricing kernel equals the ratio of risk-neutral to physical probabilities (scaled
by Rf ) is a well-know textbook result – see, e.g., Cochrane (2005), p. 51. We provide a derivation
for the projected pricing kernel in the online appendix.
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express the conditional physical density as

ft(Rt+1; θ) =
f∗t (Rt+1)

Rft ×M(Rt+1, σt; θ)
. (2)

Given a functional form for M(Rt+1, σt; θ), the unknown parameter vector θ can be

estimated by maximizing the log-likelihood of realized returns,

LL(θ) =

T∑
t=1

ln ft(Rt+1; θ). (3)

Our notation emphasizes ft’s dependence on the parameter vector θ, but it is im-

portant to note that the density does not belong to a known parametric family of

distributions. Rather, it results from applying a (parametric) change-of-measure to

the risk-neutral distribution f∗t , whose shape is completely flexible and implied by

the market prices of equity index options.

Our maximum likelihood estimator is statistically efficient and it incorporates

conditioning information from the entire risk-neutral distribution. Both features

represent important advantages over moment-based estimation approaches. Fur-

thermore, our estimator makes it straightforward to incorporate information from

additional time-t conditioning variables, which we utilize to illustrate the robustness

of our findings in Section I.E.

B. Parameterizing the Projected Pricing Kernel

We model the projection as an exponential polynomial,4

M(Rt+1, σt; θ) = exp

{
δt +

N∑
i=1

cit × (lnRt+1)
i

}
, (4)

where the polynomial coefficients cit vary with volatility according to

cit =
ci

σb×it

, (5)

δt is a time-varying intercept, and θ = (b, c1, ..., cN ). The intercept is calculated for

each day of the sample to satisfy the theoretical restriction that ft(Rt+1; θ) integrates

4Prior papers that have modelled the pricing kernel as a polynomial include Chapman (1997),
Dittmar (2002), Rosenberg and Engle (2002), and Jones (2006).
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to one, i.e., δt does not represent a free parameter.5,6 The conditional volatility σt

is estimated with the heterogeneous autoregressive (HAR) model of Corsi (2009)

based on intradaily return data– see Appendix B for details.

We experimented with different functional forms for the time-varying polynomial

coefficients cit, and found that (5) provides a very good fit (in terms of log-likelihood)

despite its parsimony. Additionally, when we estimated a more flexible functional

form for the relationship between cit’s and σt with more free parameters, we found

that its shape closely resembles the one in (5) – see Section I.B of the online appendix

for details. This alternative specification for cit’s is used to illustrate the robustness

of our results in Section I.F. Lastly, (5) nests two interesting special cases. For b = 0,

the projected pricing kernel equals a time-invariant function of returns,

M(Rt+1, σt; θ) = exp

{
δt +

N∑
i=0

ci × (lnRt+1)
i

}
, (6)

i.e., the graph of E[M |R] does not vary with volatility, apart from a small vertical

shift induced by δt. For b = 1, the projected pricing kernel equals a time-invariant

function of standardized returns (up to a vertical shift due to δt),

M(Rt+1, σt; θ) = exp

{
δt +

N∑
i=0

ci ×
(
lnRt+1

σt

)i}
. (7)

In this case, the graph of E[M |R] scales horizontally and proportionally with volatil-

ity. Intermediate values of b allow E[M |R] to change with volatility to varying

degrees. To formally test whether E[M |R] varies with volatility, we evaluate the

hypothesis H0 : b = 0.

5The intercept equals δt = − lnRf
t + ln

(∫∞
0

f∗ × exp
{
−
∑N

i=1 cit × (lnRt+1)
i
}
dRt+1

)
, i.e.,

its value is implied by Rf
t , f

∗
t , and the polynomial coefficients (b, c1, ..., cN ). We find δt for each

date by evaluating this integral numerically. By substituting the expression for δt into (4) and then
(4) into (2), it can be verified that ft integrates to one.

6Instead of computing δt based on the theoretical restriction
∫
f = 1, one could add a time-

varying intercept c0t to polynomial (4) and model c0t as a function of volatility. Since this approach
does not guarantee

∫
f = 1, however, it becomes necessary to add a penalty for violations of the

restriction to the objective function. In turn, doing so requires the researcher to make a (necessarily
subjective) choice on the relative importance of the restriction and the fit to realized returns. Kim
(2022) does so in the context of a moment-based estimation of the pricing kernel.
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C. Parameter Identification

The pricing kernel controls the extent to which conditional real world probabilities

differ from their risk-neutral counterparts. Specifically, (2) shows that ft(R) takes

on smaller values than f∗t (R) for return regions where M(Rt+1, σt; θ) > 1/Rft and

higher values whereM(Rt+1, σt; θ) < 1/Rft . Individual elements of θ = {c1, ..., cN , b}

are therefore identified if they alter the shape of E[M |R] in such a way that it better

explains the relative likelihood of different return realizations. Since f∗t does not vary

with θ, one can equivalently think of parameters as being identified by risk premia:

An increase in the mean of ft is equivalent to a higher equity premium, an increase

in the variance of ft is equivalent to a higher (less negative) variance premium, etc.

Most elements of θ alter the shape of ft in multiple ways relative to that of f∗t .

Nevertheless, it is useful to discuss the main sources of parameter identification.

c1, the slope of E[M |R], controls the relative probabilities of negative and positive

returns. If the slope is negative, for example, the left tail of f∗t gets downweighted

in computing ft, whereas the right tail gets upweighted. c1 is therefore identified

by the mean of ft and the likelihood of negative returns. c2, the curvature of

E[M |R], controls the relative probabilities of small and large absolute returns. If the

curvature is positive, both extreme tails of ft get downweighted relative to the tails

of f∗t , whereas the center of the distribution gets upweighted. Hence, c2 is identified

by the variance of ft and the likelihood of extreme returns. c2 is also negatively

related to the mean of ft because f∗t is left-skewed, so that the equity premium

further aids in its identification. Similarly, c3, c4, etc. are identified by higher order

moments of ft. The scaling parameter b controls how parameters of E[M |R] vary

with volatility, and therefore the amount of time-variation in the probabilities of

different returns. For b > 0, an increase in volatility makes the slope of E[M |R] less

negative and its curvature less positive. b is therefore identified by the amount of

time-variation in the moments of ft, relative to time-variation in the corresponding

f∗t moments. We illustrate these channels quantitatively in Table IA.I of the online

appendix by showing the sensitivity of moments of ft to individual parameters.
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D. Data

We use the S&P 500 index as a proxy for the aggregate stock market and focus

on a return horizon of one month (30 calendar days). Return data comes from

the Center for Research in Security Prices (CRSP). Option price quotes for the

estimation of f∗t come from the Chicago Board Options Exchange (CBOE). Because

this data limits our sample to the 30-year period from 1990 to 2019, we sample

daily to maximize the efficiency of our estimates, i.e., we work with a daily sample

of T = 7, 556 overlapping monthly returns. The estimation of conditional return

volatilities (detailed in Appendix A) relies on intra-daily price quotes for S&P 500

futures, which were purchased from TickData. We use quotes for the large futures

contract (ticker “SP”) from 1990 to 2002, and for the E-Mini Futures contract

(ticker “ES”) from 2003 to 2019, i.e., we use data for the more actively traded

futures contract in each part of the sample. Lastly, we use interest rates data from

the Federal Reserve Bank of St. Louis’ FRED database for robustness tests.

E. Estimation Results

Table I shows estimates for the parameterized pricing kernel in (4) and (5), and

polynomial orders between N = 1 and N = 5. To account for autocorrelation

that results from the use of overlapping return data, we determine the statistical

significance of our estimates based on a block bootstrap with a block length of 21

trading days.7

The estimation results are easily summarized. The volatility-scaling parameter

b is positive and significantly different from zero for all polynomial orders, and

its significance grows in N . The observation that the shape of E[M |R] varies with

volatility is therefore not sensitive to the assumed polynomial order. In fact, E[M |R]

is well-described as scaling proportionally with volatility since the point estimate of

b is close to one for all N > 1.

7Volatility is also persistent, but this fact does not require a standard error adjustment because
it does not induce autocorrelation into the observations that enter the objective function (3).
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Table I: Estimation results

We estimate the projected pricing kernel in (4) and (5) for different polynomial orders N by maxi-
mizing the log likelihood of realized returns, (3). Statistical inference is based on a block bootstrap
with a block length of 21 trading days. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5% and 1%
levels.

N 1∗∗∗ 2∗∗∗ 3∗∗∗ 4∗∗∗ 5∗∗∗

Log-likelihood 14,275∗∗∗ 14,370∗∗∗ 14,370∗∗∗ 14,384∗∗∗ 14,384∗∗∗

ĉ1 -0.017∗∗∗ -0.067∗∗∗ -0.068∗∗∗ -0.095∗∗∗ -0.095∗∗∗

ĉ2 –∗∗∗ 0.100∗∗∗ 0.103∗∗∗ 0.020∗∗∗ 0.020∗∗∗

ĉ3 –∗∗∗ –∗∗∗ 0.000∗∗∗ 0.011∗∗∗ 0.011∗∗∗

ĉ4 –∗∗∗ –∗∗∗ –∗∗∗ 0.003∗∗∗ 0.003∗∗∗

ĉ5 –∗∗∗ –∗∗∗ –∗∗∗ –∗∗∗ 0.000∗∗∗

b̂ 1.600∗∗∗ 0.976∗∗∗ 0.973∗∗∗ 1.098∗∗∗ 1.097∗∗∗

The log-likelihood increases substantially when the polynomial order is increased

from N = 1 to N = 2, but only moderately thereafter. A likelihood ratio test rejects

N = 1 in favor of N = 2 with a p-value of 0.15%, but fails to reject N = 2 in favor of

any N > 2 at the 10% level (untabulated).8 We show below that the reason for the

log-linear pricing kernel’s poor fit lies in its inability to match the sample variance

premium. Hence, the data clearly favors specifications for which the logarithm of

E[M |R] is convex. Since the parsimonious quadratic (N = 2) kernel is not rejected in

favor of more flexible specifications, we use it as our benchmark case. All subsequent

results are based on this estimate, unless otherwise mentioned.

Figure I in the introduction illustrates graphically how E[M |R] varies with

volatility by plotting it for the 10th and 90th percentile of σt (p10 and p90). The

figure shows that the pricing kernel is considerably steeper when volatility is low.

For example, for a monthly return of -10%, the projected pricing kernel equals

M(Rt+1 = −0.1, σt = p10; θ) = 3.68 when volatility is low andM(Rt+1 = −0.1, σt =

p90; θ) = 1.32 when volatility is high.

8There is no established method for dealing with overlapping data in likelihood ratio tests. We
therefore rely on an ad-hoc sub-sampling approach. Specifically, we use observations 1, 22, 43, ..., as
the first subsample, observations 2, 23, 44, ..., as the second subsample, and so on, up to observations
21, 42, 63, ..., as the last subsample. We then estimate the two nested specifications of E[M |R] in
each subsample, compute their likelihood ratio, and average the individual likelihood-ratio statistics
across the 21 subsamples. Finally, we compute critical values based on the statistic’s asymptotic
χ2-distribution.
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Figure II: Conditional density estimates for select days. We plot the estimated physical and
risk-neutral return density for days on which conditional volatility is close to its 10th (left panel)
or 90th (right panel) percentile. Estimates are based on the E[M |R] specification in equations (4)
and (5) and a polynomial order of N = 2.

Figure II shows the resulting conditional return densities for two dates. For

comparability with Figure I, we choose days on which conditional volatility is close

to its 10th percentile and 90th percentile, respectively. Because our parameterization

of E[M |R] implies a smooth change-of-measure, ft inherits many of f∗t ’s properties.

It is unimodal, roughly bell-shaped, and its conditional volatility moves with that of

f∗t . Relative to f
∗
t , however, ft has more probability mass in the center and less mass

in the left tail. As a result, the physical density is less left-skewed and leptokurtic

than its risk-neutral counterpart, the equity premium is positive, and the variance

premium is negative.

Across the 7,556 trading days in our sample, the conditional physical (risk-

neutral) density has an average mean of 9.06% (0.98%) p.a., standard deviation of

13.83% (17.97%) p.a., skewness of -0.61 (-1.48), and kurtosis of 4.43 (10.47). We

show the time series of these moments in Figure IA.III of the online appendix. Our

density estimates imply that the conditional equity premium Et[Rt+1] − E∗
t [Rt+1]
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has an average of 8.1% p.a., which closely matches the average excess return on

the S&P 500 of 8.0% over the 1990-2019 period. Similarly, our density estimates

imply that the conditional variance premium vart[Rt+1]−var∗t [Rt+1] has an average

of -12.4%2 per month, which closely matches the average σ2t −
(
V IXt
100

)2
of -13.2%2

per month over 1990-2019. The parametric pricing kernel therefore provides a good

fit for stock market risk premia in our sample. Additionally, both risk premia are

well-identified by E[M |R]: Our bootstrap estimates imply 99% confidence intervals

of [2.8%, 13.3%] per year for the average equity premium and [−17.0%2,−7.5%2]

per month for the average variance premium.

F. Robustness

We perform five robustness tests. First, we model the projected pricing kernel’s

volatility-dependence with the alternative specification

cit =

K∑
k=0

cik × σkt , (8)

which assumes that coefficients of the E[M |R]-polynomial are themselves polyno-

mials of volatility. The combination of (4) and (8) is equivalent to a bivariate

polynomial in lnRt+1 and σt with a tensor product base. We find that, for K = 2

and higher orders, the estimated functional relationship between σt and cit’s implied

by (8) closely resembles the one in our benchmark specification (5). As a result, the

relationship between σt and the shape of M(Rt+1, σt; θ) also closely resembles the

one in our benchmark specification. We illustrate this fact for K = 3 below and for

other polynomial orders in the online appendix.9 Relative to (8), our benchmark

specification (5) has the advantage of being more parsimonious.

Second, we allow the projected pricing kernel to comove with additional macroe-

9The linear case (K = 1) implies too little time-variation in cit’s and therefore too little time-
variation in M(Rt+1, σt; θ). Relative to our benchmark estimates, the log-likelihood is lower (at
14,352) and implied physical moments are closer to their risk-neutral counterparts. The K = 1
case corresponds to the specification in Kim (2022), apart from the fact that he models the pricing
kernel’s intercept as parametric function of volatility, whereas we choose it such that the implied
return densities integrate to one – see footnote 6 for details.
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conomic time series by modeling coefficients of the E[M |R]-polynomial as

cit =
ci0 + ci1 × short rate + ci2 × term spread + ci3 × credit spread

σb×it

. (9)

In doing so, we are able to evaluate whether volatility continues to induce variability

in E[M |R] once other sources of variation are accounted for, i.e., whether b continues

to be significantly different from zero. We measure the short rate by the yield of

a 3-month Treasury bill, the term spread by the difference in yields of a 10-year

Treasury bond and a 3-month Treasury bill, and the credit spread by the difference

in yields of a 10-year corporate bond with Moody’s Aaa rating and an equivalent

bond with a Baa rating.

Third, instead of modelling E[M |R] as a polynomial, we model ft(Rt+1; θ) as

a parametric density and obtain E[M |R] from (1) as the ratio of risk-neutral and

physical densities, scaled by the risk-free rate. Specifically, we parameterize the

density of standardized log returns, gt

(
lnRt+1

σt
; θ
)
, with a normal inverse Gaussian

(NIG) distribution and compute the distribution of simple returns via a change of

variables as ft(Rt+1; θ) = gt

(
lnRt+1

σt
; θ
)
/(σt × Rt+1). The NIG distribution is uni-

modal, bell-shaped, allows for nonzero skewness and excess kurtosis, and depends

on four parameters, which we estimate via maximum likelihood. This method for

estimating the conditional distribution resembles the popular approach of scaling

historical return innovations with an estimate of conditional volatility – see, e.g.,

Rosenberg and Engle (2002), Barone-Adesi et al. (2008) and Christoffersen et al.

(2013) – and shares its limitation that higher conditional moments (beyond volatil-

ity) are time-invariant by construction. In contrast, the parameterized pricing kernel

in our benchmark specification allows all return moments to vary over time.

Fourth, we re-estimate the benchmark specification in the second half of the

sample (2005–2019) to address concerns about a possible segmentation between in-

dex option and equity markets. In particular, Dew-Becker and Giglio (2022) argue

that the two markets have historically been segmented, but also provide evidence

suggesting that they have become well-integrated since about the mid 2000’s. If
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Figure III: Robustness. We plot the projected pricing kernel for the 10th and 90th percentile
of conditional stock market volatility. Top-left: lnE[M |R] is a N = 2 polynomial with coefficients
that depend on volatility via (8) with K = 3. Top-right: lnE[M |R] is a N = 2 polynomial
with coefficients that depend on volatility, short-term interest rates, the term spread, and credit
spreads via (9). Bottom-left: We model the distribution of standardized log returns lnRt+1/σt

with a Normal Inverse Gaussian distribution, compute ft(Rt+1) via a change-of-variables, and
obtain E[M |R] from (1). Bottom-right: E[M |R] is equivalent to the benchmark specification, but
estimated over the 2005-2019 subsample.
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time-variation in the estimated projected pricing kernel was a result of market seg-

mentation, one would expect it to be substantially weaker in more recent data.

Figure III shows that, for each of the four alternative estimates, the projected

pricing kernel’s volatility-dependence looks similar to our benchmark estimates in

Figure I. Parameter estimates for these specifications are reported in Section I.III of

the online appendix. In the bivariate polynomial specification, a likelihood ratio test

strongly rejects the hypothesis H0 : cik = 0∀i, k > 0 (time-invariance) with a p-value

of 0.2%. In the specification with additional covariates, the estimated volatility-

scaling parameter of b̂ = 1.06 is very close to the benchmark estimate of 0.976,

and it remains statistically significant with a p-value of 0.064. The parameterized

density approach does not lend itself to a formal statistical test, but the amount

of time-variation in E[M |R] is quantitatively similar to that in Figure I. In the

2005–2019 estimation, the corresponding point estimate of b is once again similar

to the benchmark at b̂ = 1.01. Our main result is therefore not sensitive to the

way E[M |R] is parameterized, the volatility-dependence of E[M |R] does not reflect

comovement between volatility and other state variables, and it can also not be

explained by market segmentation.

Finally, time-variation in the projected pricing kernel implies that expected op-

tion returns vary systematically with volatility. In the online appendix, we use this

observation to provide non-parametric support for our parametrization of E[M |R].

Specifically, Figure IA.VI shows that average put option returns in our sample are

significantly more negative in periods of low volatility than in periods of high volatil-

ity. These returns are computed based on observed option quotes and realized re-

turns, i.e., without any parametric assumptions, and we show that they line up

closely with the expected put returns that are implied by our parametric estimate

of E[M |R]. Average option returns therefore provide additional support for the

assumed functional form of E[M |R] and the amount of time-variation in its shape.
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Figure IV: Average E[M |R] for linear and quadratic specifications. E[M |R] is parameter-
ized by (4) and (5) with polynomial orders of either N = 1 or N = 2.

G. The Economic Importance of Convexity

We saw above that the log-quadratic specification of E[M |R] provides a significantly

better fit to return data than its log-linear counterpart. To illustrate what this

difference implies economically, we now illustrate its implications for risk premia.

For N = 1, the estimates in Table I imply that the conditional physical density

has an average standard deviation of 16.9%, skewness of -1.33, and kurtosis of 11.43.

All of these moments are much closer to their risk-neutral counterparts than in

the benchmark N = 2 case, and risk premia on higher moments are smaller as a

result. For example, the average variance premium equals −4.4%2 per month with

a 99% confidence interval of [−7.1%2,−1.0%2]. The -13.2%2 sample average of

σ2t −
(
V IXt
100

)2
has a bootstrapped p-value of 0.00% under the sampling distribution

of the N = 1 estimator. Hence, a log-linear projected pricing kernel is inconsistent

with risk premia on higher moments.

Whereas the log-linear estimator provides a good fit to the sample equity pre-

mium of 8.0% p.a., with an implied value that also equals 8.0%, we find that it is
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inconsistent with its sources. Specifically, Beason and Schreindorfer (2022) propose

a non-parametric decomposition of the equity premium into contributions of dif-

ferent return regions, and find that monthly returns below -10% account for about

80/100 of the total premium. Based on our parametric estimates, we find the equiv-

alent contribution to be 37/100 for N = 1 and 72/100 for N = 2.10 The log-linear

specification of the projected pricing kernel therefore substantially understates the

importance of stock market tail events for the equity premium, whereas the log-

quadratic specification captures it well.

The reason for both shortcomings is illustrated in Figure IV, which shows the

average projected pricing kernel for polynomial orders of N = 1 and N = 2. Rel-

ative to the log-quadratic case, the log-linear pricing kernel is substantially flatter,

especially in the far left tail of the return distribution. It is therefore misspecified

in the sense that it substantially understates investors’ aversion against tail events.

As a result, it is problematic to estimate investors’ risk aversion based on such a

specification, as, e.g., in Bliss and Panigirtzoglou (2004).

II. Interpretation

This section derives the determinants of time-variation in the projected pricing

kernel. Based on these findings, we illustrate that prominent consumption-based

models are inconsistent with the dynamics of E[M |R] because they assume a coun-

terfactually tight connection between return volatility and the pricing kernel.

A. Determinants of Time-variation in E[M |R]

The following result relates the slope of the projected pricing kernel to the second

moments of returns and the pricing kernel.

10The decomposition is based on the average distributions f(R) = 1
T

∑T
t=1 ft(R)

and f∗(R) = 1
T

∑T
t=1 f

∗
t (R). The relative contribution of returns below -10% equals(∫ 0.9

0
(R− 1)[f(R)− f∗(R)]dR

)
/
(∫∞

0
(R− 1)[f(R)− f∗(R)]dR

)
.
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PROPOSITION 1 (E[M |R] under lognormality). If the log pricing kernel and

log returns are jointly normal with variance [σ2m, σ
2
r ] and correlation ρmr, the slope

of the projected pricing kernel equals

∂E[M |R]
∂R

= ρmr
σm
σr

× E[M |R]
R

. (10)

Proof. Normality implies that the log pricing kernel, conditional on log returns, is

distributed as lnM | lnR ∼ N
(
µm + ρmr

σm
σr

[lnR− µr] , σ
2
m(1− ρ2mr)

)
, where µm is

the mean of lnM and µr the mean of lnR. Using the moment generating function

of a normal random variable, the conditional expectation of the pricing kernel equals

E[M |R] = exp

{
µm + ρmr

σm
σr

[lnR− µr] + σ2m(1− ρ2mr)/2

}
.

Differentiating with respect to R yields (10). ■

Note that a positive equity premium requires ρmr < 0, so that ∂E[M |R]
∂R is nega-

tive. Proposition 1 generates two useful insights. First, all else equal, an increase in

σr makes E[M |R] flatter, similar to what we saw empirically in Figure I. The intu-

ition for this result is that a decrease in σr increases the informativeness of returns

about the macroeconomy. For example, a -10% drop in the market is more indicative

of high marginal utility (deteriorating macroeconomic conditions) if it occurs during

calm markets, rather than the middle of a recession. Second, if an increase in σr

leaves E[M |R] unchanged or makes it steeper, it must be accompanied by at least a

proportional increase in |ρmr×σm|. If σm is proportional to σr, for example, a -10%

drop in the market will be equally informative about macroeconomic fundamentals

during low and high volatility times.

Figure V shows that the second scenario describes the models of Campbell and

Cochrane (1999) and Bansal and Yaron (2004). In particular, the habit model

implies that E[M |R] becomes steeper when volatility is high, whereas long-run risks

model implies that the shape of E[M |R] does not vary with volatility. Since both

models are conditionally lognormal, we can rely on Proposition 1 to connect this

(lack of) time-variation in E[M |R] to their economic mechanisms.
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Figure V: E[M |R] in log-normal asset pricing models. This figure represents the theoretical
equivalent to Figure I. We plot the projected pricing kernel, Et[Mt+1|Rt+1], for periods in which
the conditional volatility of stock market returns is at its 10th or 90th percentile.

B. Habits

The Campbell and Cochrane (1999) model provides a simple economic mechanism

for the long-horizon predictability and countercyclical volatility of stock market re-

turns. When consumption falls relative to the agent’s habit level, risk aversion rises.

Higher risk aversion leads to higher expected returns and a lower price-dividend

ratio, because the distribution of future dividend growth rates is time-invariant.

Hence, the price-dividend ratio predicts future returns. At the same time, a drop

in consumption makes the habit more sensitive to additional consumption shocks,

which increases the conditional volatility of the pricing kernel, and thereby the

conditional volatility of the price-dividend ratio and returns. Hence, stock market

volatility moves countercyclically.

Proposition 1 makes it straightforward to understand time-variation in E[M |R]

in the habit model. First, the fact that the habit controls the conditional volatilities

of both returns and the pricing kernel implies that σr and σm are positively related

to one another. We illustrate this effect in the left panel of Figure VI (dotted black
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Figure VI: Sources of E[M |R]’s time-variation in log-normal models. This figure shows how
the conditional volatility of the log pricing kernel (σm, left y-axis, dotted line) and the conditional
correlation between log returns and the log pricing kernel (ρmr, right y-axis, solid line) move in
relation to the conditional volatility of log returns (σr, x-axis). For the long-run risks model, where
different combinations of states can lead to the same σr but different σm and ρmr, we plot medians
and 95% confidence bounds of σm and ρmr. Proposition 1 shows how the shape of E[M |R] relates
to σr, σm, and ρmr.

line; left y-axis). Second, the time-varying sensitivity of the habit process implies

that both the pricing kernel and the price-dividend ratio become more exposed to

consumption shocks when risk aversion (and volatility) is high. As a result, returns

and the pricing kernel become more negatively correlated to one another in volatile

times (solid blue line; right y-axis). Jointly, these effects imply that an increase in

σr is accompanied by more than a proportional increase in |ρmr × σm|. Proposition

1 shows that, as a result, E[M |R] becomes steeper when return volatility rises.

The model’s counterfactual prediction about the variation in E[M |R] results

directly from the habit mechanism. In particular, if the habit did not become more

sensitive to consumption shocks when risk aversion is high, return volatility would

not move countercyclically. Additionally, as explained in Section II.C of Campbell

and Cochrane (1999), the habit’s countercyclical sensitivity is required to ensure that

the habit level moves nonnegatively with consumption, i.e., that it behaves in an

economically sensible manner. The model’s prediction about the projected pricing

kernel can therefore not be changed without altering its main economic mechanism.
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C. Recursive Utility

The mechanism of Bansal and Yaron (2004) rationalizes the level and predictability

of the equity premium. Their model assumes persistent variation in the conditional

mean (xt) and volatility (σt) of consumption growth, along with an Epstein and

Zin (1989) agent who strongly dislikes such “long run risks”. Negative shocks to

xt and positive shocks to σt are therefore associated with high levels of marginal

utility. Dividends are subject to the same variation in conditional moments as

consumption, so that equity becomes less attractive when marginal utility is high.

Hence, investors require a premium for holding stocks. Additionally, higher levels

of σt are associated with riskier dividends and hence higher discount rates, which

lowers the price-dividend ratio. As a result, the price-dividend ratio predicts returns.

Based on Proposition 1, it is straightforward to show that the volatility channel

is responsible for the model’s counterfactual implications for E[M |R]. In particular,

in order for volatility risk to generate an equity premium, it is essential that σt

controls the volatility of both dividends and consumption, as it would otherwise

not induce covariation between returns and the pricing kernel. This assumption

implies, however, that σt also controls the volatility of returns and the pricing kernel,

which are therefore positively related to one another. We show in the right panel

of Figure VI that σm is roughly proportional to σr, whereas ρmr is approximately

constant. As Proposition 1 shows, these features imply that the slope of E[M |R] is

time-invariant.

To eliminate this undesirable implication of the model, one could generate the

equity premium entirely from x-risk. Unfortunately, doing so leads to two undesir-

able consequences. First, the model looses its ability to rationalize the predictability

of stock returns, which results from variation in σt. Second, Beeler and Campbell

(2012) show that relying on xt as a source of risk premia leads to counterfactual

implications about the variance ratios of consumption growth. In response to this

critique, Bansal et al. (2012) proposed a new calibration of the model that attributes

most of the equity premium to σ-risk, i.e., to the source of the model’s inconsistency
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with E[M |R]. It therefore appears infeasible to align the model with the dynamics

of the pricing kernel without substantial changes to its basic structure.

D. Other Models

In Section V of the online appendix, we consider a number of additional recur-

sive utility models with non-normal shocks. Like the original long-run risks model,

Drechsler and Yaron (2011), Wachter (2013), and Constantinides and Ghosh (2017)

rationalize the equity premium by interacting recursive utility with a persistent

state variable that controls the volatility of returns. We show that, as in Bansal

and Yaron (2004), σm is approximately proportional to σr in these models and

E[M |R] is approximately time-invariant as a result. We also consider the model

of Bekaert and Engstrom (2017), which combines the utility function of Campbell

and Cochrane (1999) with exogenous variation in the volatility of consumption and

dividends in the spirit of Bansal and Yaron (2004). In this model, σm increases ap-

proximately linearly in σr, ρmr decreases approximately linearly in σr, and E[M |R]

is approximately time-invariant as a result. With regard to the pricing kernel, the

Bekaert-Engstrom model therefore behaves more like a long-run risks than an exter-

nal habit model. These results show that Proposition 1 is helpful for understanding

the time-variation of E[M |R] in models with non-normal shocks, despite the fact

that it was derived under the assumption of log-normality.

In sum, other models with habits and recursive utility have similarly counter-

factual implications about the projected pricing kernel as the original Campbell

and Cochrane (1999) and Bansal and Yaron (2004) models. In addition to fail-

ing to capture the time-variation of E[M |R], the appendix shows that all of the

aforementioned models fail to capture its steep slope. As a result, the models are

inconsistent with the four facts about stock market risk premia that we highlighted

in the introduction, as shown in the prior literature.
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III. Model

We propose a consumption-based asset pricing model to explain the shape and time-

variation of the projected pricing kernel. It is an extension of the disappointment

aversion model in Schreindorfer (2020), which can explain the steep slope of the

projection but implies time-invariance due to the model’s IID environment. We

augment the model with time-varying volatility in dividend growth rates. This

simple extension accounts for the observed variation in the projected pricing kernel

and allows the model to explain the four puzzling facts about risk premia that we

discussed in the introduction.

A. Economy

The environment is a representative-agent pure-exchange economy with a single

nonstorable consumption good. The agent trades a risk-free bond, which is in zero

net supply, and equity, which is a claim to the dividends in all future periods. Log

growth rates of aggregate consumption and dividends equal

∆ct+1 =g + σcεct+1,

∆dt+1 =g + σdt ε
d
t+1.

(11)

Innovations have a mean of zero, a standard deviation of one, and follow

εct+1 =
√

1− ω2ηct+1 + ω(ηet+1 − 1),

εdt+1 =
√

1− ω2ηdt+1 + ω(ηet+1 − 1),
(12)

where ηc and ηd are standard normal and ηe is exponentially distributed with a

unit rate parameter. The three shocks (ηc, ηd, ηe) are mutually independent and

IID over time. The joint distribution of εc and εd is therefore characterized by a

single free parameter, ω, which controls their correlation. For ω < 0, as assumed in

our calibration, consumption and dividend growth rates are left-skewed and posi-

tively correlated. Schreindorfer (2020) provides empirical support for the correlation

structure between consumption and dividends that is implied by (12).
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Whereas consumption growth is IID, the volatility of dividend growth evolves

stochastically as

lnσdt+1 = ν + ϱ(lnσdt − ν) + σsηst+1, (13)

where ηs is IID standard normal and independent of all other shocks. A possible

micro foundation for dividend heterogeneity is time-varying leverage. Specifically,

when firms’ sales decline, costs that are fixed in the short-term, such as rent and

wages (operating leverage) and coupon payments to debt holders (financial leverage)

increase relative to profits. As a result, dividends fall and become more exposed to

future shocks, i.e., their conditional volatility increases.11 Because the aforemen-

tioned costs are not dead weight, however, they do not affect the volatility of ag-

gregate consumption. Our setting is broadly consistent with the empirical evidence

in Jurado et al. (2015), who show that the volatility of stock market returns is only

weakly correlated with macroeconomic uncertainty. To keep things simple, we as-

sume that macroeconomic uncertainty (the conditional volatility of consumption) is

time-invariant, rather than weakly correlated with the volatility of cash flows and

returns. III.G discusses an extension that would make the model more realistic

along this dimension.

B. Preferences

The representative agent is generalized disappointment averse (GDA), as in Rout-

ledge and Zin (2010). GDA belongs to the class of Epstein and Zin (1989) recursive

utility functions. As such, the pricing kernel involves a term for consumption risk,

a term for long-run risks, and a term for disappointments. Because our setting

assumes IID consumption growth, however, the long-run risks term collapses to a

time-invariant constant and the pricing kernel simplifies to

Mt+1 =

βv × e−γ∆ct+1 ∆ct+1 > xv

βv × e−γ∆ct+1 × (1 + θ) ∆ct+1 ≤ xv.

(14)

11Realistically, the shock to dividends (ηd) should therefore be negatively correlated with the
shock to conditional volatility (ηs). We abstract from this feature for tractability.
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Here, βv and xv are composite parameters that depend on both endowment and

preference parameters.12 We refer interested readers to Routledge and Zin (2010)

for additional details on the GDA utility function and to Schreindorfer (2020) for

the special case with IID consumption growth.

Because consumption growth is IID, the pricing kernel’s conditional distribution

is time-invariant by construction. It is therefore clear that any time variation in

the projected pricing kernel must result from the heteroscedasticity of dividends.

It is also worth noting that, for θ = 0, the pricing kernel simplifies to that of a

constant relative risk aversion (CRRA) utility function. Relative to this case, GDA

overweights left-tail outcomes in consumption (below the disappointment threshold

xv) by a factor of (1 + θ). Disappointment averse preferences were originally devel-

oped to address puzzling experimental results, such as the Allais (1979) paradox, but

their generalization can also be interpreted as capturing the value-at-risk constraints

of financial institutions. To illustrate the effect of disappointment aversion in the

clearest possible way, our benchmark calibration eliminates aversion against regular

consumption risk by setting γ = 0. The resulting pricing kernel is highly stylized.

It equals a step function with a value of βv(1 + θ) when consumption growth falls

below the disappointment threshold xv and value of βv otherwise. Nevertheless, as

we show below, the model makes quantitatively realistic predictions about the shape

of the projected pricing kernel and it matches a multitude of moments related to

returns, option prices, and stock market volatility.

C. Model Solution

We solve for asset prices based on the analytical formulas in Schreindorfer (2020),

with a slight modification to account for the heteroscedasticity of dividends. Specifi-

cally, we discretize the volatility process based on the method in Rouwenhorst (1995)

with 31 gridpoints. Next, we evaluate asset prices conditional on the current and

12The constants are given by βv ≡ β (v/m)1/ψ−γ

1+θδ1−γE[1{∆ct+1≤xv}]
and xv = ln

(
δm
v

)
, respectively, where

v and m are the equilibrium utility-to-consumption and certainty equivalent-to-consumption ratios
of the underlying Epstein and Zin (1989) utility function.
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future volatility state based on the formulas in Schreindorfer (2020). Lastly, for

each current volatility state, we integrate over future states based on the transition

matrix of the discretized process.

D. Calibration

We calibrate the model at a monthly frequency. Table II shows parameter values

in Panel A and targeted moments in Panel B. Because consumption data is noisy,

especially at higher frequencies, we calibrate the consumption process based on

the longest available annual dataset, which spans 1929-2019. To that end, we time-

aggregate simulated monthly consumption data in the model to an annual frequency.

All other parameters are calibrated based on moments of monthly returns in our

1990-2019 sample.

We measure consumption by the sum of real nondurables and services consump-

tion per capita from the Bureau of Economic Analysis (BEA) and impute nominal

dividends from cum- and ex-dividend market returns from the Center for Research

in Security Prices (CRSP). Dividends are converted to real terms using the per-

sonal consumption expenditure deflator from the BEA. We set g = 0.018/12 and

σc = 0.026/
√
12 to match the mean and standard deviation of annual log consump-

tion growth and ω = −0.75 to match its correlation with annual log dividend growth.

As noted above, ω also controls the skewness of consumption and dividend growth

rates and, as a result, the amount of tail risk in returns. Table II shows that our

calibration implies that monthly returns have an average conditional skewness of

-0.62 and kurtosis of 4.2, close to the empirical values of -0.61 and 4.4, despite the

fact that the model was not calibrated to match these moments.

We set ν, ϱ, and σs to match the mean, standard deviation, and first-order

autocorrelation of the conditional return volatility. This is a simplification, as the

heteroscedasticity of returns likely results from both cash flow and discount rate

volatility in reality.

In most models with recursive utility, the agent’s elasticity of intertemporal sub-
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Table II: Calibration and moments

Panel A reports parameters for two alternative monthly calibrations and indicates which moments
were used to calibrate them. The calibrations differ in the assumed risk preferences, which equal
either constant relative risk aversion (”CRRA”) or generalized disappointment aversion (”GDA”).
Panel B shows moments in the data and the two calibrations. ∆c denotes log growth rate of annual
consumption, ∆d the log growth rate of annual dividends, and R the monthly log ex-dividend
return. Quantity moments are based on annual data over 1929-2019. The Sharpe ratios (SR) of
variance swaps are from Dew-Becker et al. (2017) and the fraction of the equity premium due to
returns below x% from Beason and Schreindorfer (2022), abbreviated by EP (x). All other moments
are computed based on monthly returns and the corresponding density estimates ft and f∗

t in our
1990-2019 sample.

Panel A: Parameters

Parameter Description CRRA GDA Targeted Moment(s)

g Average growth rate 0.018/12 0.018/12 E[∆ct]

σc Consumption volatility 0.026/
√
12 0.026/

√
12 σ[∆ct]

ω Mixture parameter −0.75 −0.75 ρ[∆ct,∆dt]
ν Mean of lnσd

t −3.31 −3.31 E
[
σ2
t (Rt+1)

]
σs Conditional vol. of lnσd

t 0.225 0.225 σ
[
σ2
t (Rt+1)

]
ϱ Persistence of lnσd

t 0.845 0.845 AC1
[
σ2
t (Rt+1)

]
γ Risk aversion 10 – literature
θ Disappointment magnitude – 20 ERP/VRP
δ Disappointment threshold – 0.97 ERP/VRP
ψ EIS 1.5 1.5 literature

β Time discount rate 0.9841/12 0.9841/12 Rf

Panel B: Moments

Moment Data CRRA GDA Description

Targeted:

E[∆ct] 1.8 1.8 1.8 avg. consumption growth (%/year)
σ[∆ct] 2.1 2.1 2.1 std. consumption growth (%/year)
ρ[∆ct,∆dt] 0.52 0.52 0.52 corr. consumption/dividend growth
E [σt(Rt+1)] 13.8 13.6 13.8 avg. conditional vol (%/year)
σ [σt(Rt+1)] 5.9 5.9 5.9 std. conditional vol (%/year)
AC1 [σt(Rt+1)] 0.83 0.83 0.83 autocorr. conditional vol
E [Et(Rt+1)− E∗

t (Rt+1)] 8.1 2.1 8.3 equity premium (%/year)
E

[
σ2
t (Rt+1)− σ2∗

t (Rt+1)
]

-12.4 -1.1 -11.6 variance premium (%2/month)
Rf − 1 2.3 1.0 risk-free rate (%/year)

Not targeted:

1− Util/Utilno-risk 27.7 25.1 welfare costs (%)
E [skewt(Rt+1)] -0.61 -0.66 -0.62 avg. conditional skewness
E [kurtt(Rt+1)] 4.4 4.3 4.2 avg. conditional kurtosis
Volatility-managed alpha 3.5 2.2 3.2 Moreira and Muir (2017) (%/year)
SR, 1m variance swap -1.3 -0.1 -1.3 Dew-Becker et al. (2017) (annualized)
SR, 3m forward variance swap 0.1 0.0 0.0 Dew-Becker et al. (2017) (annualized)
SR, 6m forward variance swap 0.1 0.0 0.0 Dew-Becker et al. (2017) (annualized)
E[V IXt − SV IXt] 0.64 0.20 0.67 Martin (2017)
σ[V IXt − SV IXt] 0.56 0.18 0.56 Martin (2017)
EP(-10%) 0.80 0.32 0.84 Beason and Schreindorfer (2022)
EP(-30%) 0.13 0.01 0.09 Beason and Schreindorfer (2022)
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stitution (EIS) plays a crucial role for risk premia via its interaction with persistent

state variables. That is not the case in our model because consumption growth is

IID, so that the EIS gets absorbed into the time-invariant constant βv (see Footnote

12). We set the EIS to ψ = 1.5, the value used in Bansal and Yaron (2004), and use

a time discount rate of β = 0.9841/2 to generate a risk-free rate of 1% per year. We

eliminate curvature in the utility function by setting γ = 0. The disappointment

magnitude θ = 20 and disappointment threshold δ = 0.97 (which enters the compos-

ite parameter xv; see Footnote 12) are set to jointly match the equity premium and

the variance premium. The fact that preferences can be calibrated to match both

risk premia jointly is a unique feature of GDA. Specifically, when the disappoint-

ment threshold δ is lowered so that fewer and more extreme consumption events are

disappointing, the disappointment magnitude θ can be increased to keep the equity

premium constant. This change increases the variance premium because tail events

play a disproportionately big role for the variance, compared to the mean. A similar

calibration is not feasible based on standard utility functions because they rely on

a single parameter to control agents’ aversion against all risks.

To illustrate the model’s mechanism, we also show results for a second cali-

bration that changes risk preferences but assumes otherwise identical parameters.

Specifically, the ”CRRA” columns in Table II eliminate disappointment aversion by

setting θ = 0 and instead assume a relative risk aversion coefficient of γ = 10.

An important question is whether our GDA calibration implies a “reasonable”

degree of risk aversion. To provide an assessment, we compute the welfare costs of

risk for both calibrations, i.e., the fraction of consumption that the agent would give

up (today and at every future date and state) in order to exchange her endowment

for an alternative endowment with the same mean consumption growth rate but no

risk. As shown in Table II, we find costs of 27.7% for the CRRA agent and 25.1% for

the GDA agent. Since both calibrations assume an identical amount of endowment

risk, this comparison shows that our GDA calibration implies less risk aversion than

a CRRA calibration with a relative risk aversion coefficient of γ = 10. The model
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Figure VII: E[M |R] in the CRRA and GDA models. We plot the projected pricing kernel for
the 10th and 90th percentile of conditional stock market volatility. Model calibrations are shown
in Table II.

therefore resolves the equity premium puzzle of Mehra and Prescott (1985).

E. The Projected Pricing Kernel

Figure VII shows the projected pricing kernel for both model calibrations. As in

the data, the projection becomes steeper in times of low volatility. Since the pric-
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Figure VIII: Sources of E[M |R]’s time-variation in the CRRA and GDA models. This
figure is the analogue to Figure V for our model. It shows how the conditional volatility of the log
pricing kernel (σm, left y-axis, dotted line) and the conditional correlation between log returns and
the log pricing kernel (ρmr, right y-axis, solid line) move in relation to the conditional volatility of
log returns (σr, x-axis). Model calibrations are shown in Table II.

ing kernel’s distribution is time-invariant by constriction, it is clear that the time-

variation in its projection onto returns results exclusively from the heteroscedasticity

of dividends. However, the CRRA calibration in the bottom-left panel shows that

heteroscedasticity alone can only qualitatively account for the variation in E[M |R],

because the CRRA pricing kernel is considerably too flat. The bottom-right panel

shows that this shortcoming can be addressed by adding GDA risk preferences to

the model. Because GDA implies very high aversion against tail events in consump-

tion, which tend to coincide with tail events in cash flows, it generates a projected

pricing kernel that is very steep in the left tail. Furthermore, despite the fact that

the pricing kernel itself is a discontinuous function of consumption growth (see equa-

tion 14), the model implies that its projection onto returns is a smooth function of

returns. The reason is that consumption and dividend growth rates are imperfectly

correlated. In particular, the more negative the realized dividend growth rate (and

return), the more likely it is to coincide with a disappointing consumption event.

As a result, the projected pricing kernel rises continuously when moving further into

the left tail of the return distribution.
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While the model is not conditionally log-normal, the intuition we derived from

Proposition 1 applies, as Figure VIII shows. When dividends become more volatile,

returns become more volatile as well (↑ σr). However, the pricing kernel’s conditional

distribution, including its volatility (σm) and correlation with returns (ρmr), does

not change because dividend volatility evolves independently from consumption and

the pricing kernel. As a result, a return of, e.g. -10%, is more likely to coincide with

a bad consumption draw when volatility is high than when it is low.

F. Four Related Puzzles

The model’s consistency with the projected pricing kernel allows it to explain four

additional facts about stock market risk premia that have been highlighted as puz-

zling in prior work.

First, it is well-known that it is difficult to detect a linear risk-return trade-off

in the time series of stock market returns (Glosten et al. 1993). Moreira and Muir

(2017) show that, as a result, a “volatility-managed portfolio” that is invested in

the market and a risk-free asset, with a market weight that is inversely proportional

to the market’s conditional variance, earns a significantly positive CAPM alpha.

The authors show that, in contrast, existing asset pricing models generate alphas

that are insignificantly different from zero because they imply an unrealistically

strong risk-return trade-off. We use the volatility-managed alpha to quantify the

risk-return trade-off in our model. For consistency with our other results, we use

the cum-dividend return of the S&P 500 (rather than the CRSP market index) and

the conditional volatility estimate implied by ft to measure the volatility-managed

alpha in our 1990-2019 sample.13 Our empirical estimate of 3.5% (annualized) is

slightly lower than Moreira and Muir’s estimate of 4.9% over 1926-2015, but it is

comparable to the model-implied value of 3.2%. Based on this metric, our model is

therefore consistent with the weak risk-return trade-off in the data. This prediction

13We otherwise follow the approach of Moreira and Muir (2017). Specifically, let X =

Rcum-div
t+1 − Rf

t , let Y = X/σ2
t , and c = σ[X]/σ[Y ]. The volatility-managed alpha is the intercept

of a linear regression of c× Y on X.
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originates in the assumption that volatility involves independently from the pricing

kernel, so that the model implies little variation in expected stock market returns.

Second, Dew-Becker et al. (2017) show that variance swaps – claims to realized

stock market variance between now and sometime in the future – earn very negative

returns and Sharpe ratios. In contrast, forward variance swaps – claims to realized

stock market variance in a future month – have holding period returns and Sharpe

ratios that are insignificantly different from zero. This finding implies that investors

are not concerned about shocks to future volatility in aggregate stock returns. Be-

cause our model assumes that volatility evolves independent from the pricing kernel,

it naturally matches this fact. Specifically, the model implies that forward variance

swaps of any maturity earn expected excess returns and Sharpe ratios of zero, as

shown in Table II.

Third, Martin (2017) uses the difference between the VIX index and a related

simple VIX (SVIX) to quantify deviations from lognormality in the risk-neutral

distribution. He shows that existing consumption-based models are far removed

from capturing the properties of VIX−SVIX, because they either imply too little or

way too much (in the case of rare disaster models) tail risk in the option-implied

distribution. We compute VIX and SVIX based on the estimates of f∗t in our 1990-

2019 sample and find that their difference has an average of 0.64 and standard

deviation of 0.56, close to Martin’s estimates of 0.77 and 0.75 over 1996-2012.14

The model provides an excellent match for these metrics with an average of 0.67

and a standard deviation of 0.56. In contrast, the CRRA calibration implies a much

smaller average of 0.20. Because the two calibrations imply very similar return

distributions under the physical measure, as indicated by the conditional moments

in Table II, the value of VIX−SVIX in the GDA calibration predominantly reflects a

risk adjustment. This adjustment reflects investors’ large aversion against tail risk.

Martin’s metric therefore highlights the importance of capturing the steep slope of

14The squared VIX equals V IX2
t = 2 (lnE∗

t [Rt+1]− E∗
t [lnRt+1]), whereas the squared SVIX

equals SV IX2
t = 1

(R
f
t )

2
var∗t [Rt+1] – see Martin (2017). We evaluate these moments based on our

daily estimates of f∗
t (Rt+1) and convert both indices to the usual annualized percentage units.
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the projected pricing kernel.

Fourth, Beason and Schreindorfer (2022) use option prices and realized returns to

quantify the importance of tail risk for the equity premium. They find that monthly

returns below -10% account for 80/100 of the equity premium in the data, whereas

returns below -30% account for only 13/100. In contrast, existing consumption- and

intermediary-based models either attribute almost none of the equity premium to

returns below -10% or they counterfactually attribute it mostly to returns below

-30% (in the case of rare disaster models). Table II shows that our model attributes

84/100 of the equity premium to monthly returns below -10% and 9/100 to returns

below -30%, both close to Beason and Schreindorfer’s estimates over 1990-2019.

This implication results directly from the steep projected pricing kernel: Because

returns below -10% tend to coincide with very high levels of marginal utility, they

play a disproportionately large role for the equity premium. Returns below -30%

coincide with even higher values of the pricing kernel, but the fact that they occur

so rarely makes them negligible for the equity premium. In the CRRA calibration

of our model, returns below -10% occur with roughly the same frequency as in the

GDA calibration. Because the CRRA pricing kernel is substantially flatter, however,

they only contribute 33/100 to the equity premium. Hence, a realistic account of

the equity premium relies crucially on capturing the steep slope of the projected

pricing kernel.

G. A Model Shortcoming

Our model is kept deliberately parsimonious to illustrate the role of two channels –

a lack of comovement between return volatility and the pricing kernel, and agents’

attitudes towards tail risks – driving properties of the projected pricing kernel. A

limitation of this simple setting is that it fails to explain the long-horizon predictabil-

ity and excess volatility of stock market returns. In particular, because expected

dividend growth is time-invariant, apart from a small Jensen’s effect15, expected

15Expected dividend growth equals E[e∆d] =
exp{g−ωσdt+(1−ω2)(σdt )

2/2}
1−ωσdt

.
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returns and the dividend yield display only small amounts of variation we well.

One way to overcome this issue would be to add a second, more persistent and

less volatile volatility component to the model that affects both consumption and

dividends. As long as a less persistent and more volatile volatility component con-

tinues to affect only dividends, as in our baseline specification, most variation in the

volatility of returns would continue to be independent from the pricing kernel over

short horizons, such as a month. As a result, the model’s implications about time-

variation in E[M |R] would likely not change substantially. An attractive feature

of this alternative setting is that the conditional volatility of consumption growth

(“macroeconomic uncertainty”) is more persistent and only weakly correlated with

the conditional volatility of cash flows and returns, which is in line with the empir-

ical evidence in Jurado et al. (2015). In addition, GDA preferences endogenously

generate countercyclical variation in agents’ effective risk aversion when paired with

a persistent state variable, such as the volatility of consumption growth, because dis-

appointments events are more likely to occur when volatility is high (Routledge and

Zin 2010). This feature allows models with GDA preferences to generate more return

predictability than models with standard Epstein and Zin (1989) utility based on

the same amount of variation in consumption risk. We did not add a second volatil-

ity component to our model in order to highlight its mechanism for time-variation

in E[M |R] in the clearest possible way.

IV. Conclusion

Option markets provide us with valuable information to assess how the pricing of

stock market risks varies over time. We show that negative returns are substantially

more painful to investors when they occur in periods of low stock market volatility,

which is reflected in a steeper projected pricing kernel. This evidence provides a

useful diagnostic test for asset pricing models, which routinely assume difficult-

to-measure dynamics in preferences and fundamentals to rationalize asset prices.

We show that many popular models require counterfactual dynamics of the pricing
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kernel in order to explain the mean and predictability of stock market returns.

Our Proposition 1 shows that the observed variation in the projected pricing

kernel is consistent with return volatility evolving close to independently from the

pricing kernel. This theoretical finding is supported by prior empirical evidence. In

particular, Jurado et al. (2015) show that macroeconomic uncertainty is considerably

more persistent and only weakly correlated with return volatility. Additionally, they

show that an increase in macroeconomic uncertainty is associated with a decline in

future economic activity, whereas Berger et al. (2020) show that the same is not

true for an increase in expected stock market volatility. It therefore makes sense

that market volatility is not related to investors’ marginal utility.

We propose a consumption-based model to explain the empirical dynamics of

the pricing kernel, and show that it provides a unified explanation for four puzzles

about stock market risk premia that have been documented in prior work. In retro-

spect, this is perhaps unsurprising, because the projected pricing kernel contains all

pricing-relevant information for claims on the stock market, including options. In

our view, properties of the projected pricing kernel should therefore be a primary

empirical target of any theory for stock market returns.
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Appendix

This appendix explains how we extract risk-neutral distributions from option prices

and details the time series model for conditional volatility.

A. Extracting Risk-neutral Densities from Options

We follow the methodology in Beason and Schreindorfer (2022) to extract risk-

neutral densities from option prices. Breeden and Litzenberger (1978) show that

the risk-neutral PDF of the future price level St+1 is given by

f∗t (St+1) = Rft ×
∂2Pt(K)

∂K2

∣∣∣∣
K=St+1

, (A.1)

where P is the price of a put option and K the associated strike price. The risk-

neutral PDF of ex-dividend returns follows from the change of variables Rt+1 =
St+1

St

as f∗t (Rt+1) = St × f∗t (St+1). To recover risk-neutral densities from options based

on (A.1), it is necessary to observe option prices for the desired maturity and a

continuum of strikes. We generate these prices via interpolation and extrapolation

of observed quotes as follows. For each day in the sample, we use Black’s formula

(a version of Black and Scholes 1973) to convert observed option prices to implied

volatility (IV) units, fit an interpolant to them, evaluate the interpolant at a ma-

turity of 30 calendar days and a fine grid of strike prices, map interpolated IVs

back to option prices, and finally compute f∗t via finite differences based on (A.1).

Importantly, this approach does not assume the validity of the Black-Scholes model

because Black’s formula is merely used to map back-and-forth between two spaces.

The mapping relies on LIBOR rates that are linearly interpolated to the options’

maturities and forward prices for the underlying. The remainder of this appendix

details the interpolation of IVs.
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The SVI Method

We interpolate IVs based on Jim Gatheral’s SVI method.16 SVI describes implied

variance (the square of IV) for a given maturity τ with the function

σ2BSM (x) = a+ b
(
ρ(x−m) +

√
(x−m)2 + σ2

)
, (A.2)

where x = log(K/Ft,τ ) is the option’s log-moneyness, Ft,τ the forward price for ma-

turity τ , and a, b, ρ,m, σ are parameters. The method is widely used in financial

institutions because it is parsimonious, yet known to provide a very good approxi-

mation to IVs, both in the data and in fully-specified option pricing models.

We make two modifications to the basic SVI method to allow for interpolation

in the maturity, in addition to the moneyness dimension. First, we parameterize

σ2BSM as a function of standardized moneyness, κ ≡ log(K/Ft,τ )
V IXt/100×

√
τ
, rather than x, to

limit the extent to which the shape of the IV curve varies with maturity. Second,

we specify linear functions of τ for the five coefficients, e.g.,

a = a0 + a1τ, (A.3)

and similarly for (b, ρ,m, σ). Jointly, (A.2) and (A.3) describe IVs as a bivariate

function of κ and τ that is parameterized by θ ≡ (a0, a1, b0, b1, ρ0, ρ1,m0,m1, σ0, σ1).

An important criterion for the successful interpolation and extrapolation of IVs

is that the corresponding option prices respect theoretical no arbitrage restrictions,

i.e. that they are (i) non-negative, (ii) monotonic in K, (iii) convex in K, and (iv)

imply (via Equation A.1) a density f∗t (R) that integrates to one. We impose these

constraints in the estimation as further described below.

Data and Implementation

We clean the options data by removing observations that (i) violate the static no-

arbitrage bounds P ≤ K/Rf or C ≤ S, (ii) have a bthbid quote of zero, (iii) have the

16SVI was devised at Merrill Lynch and disseminated publicly by Gatheral (2004). See Gatheral
(2006) for a textbook treatment and Berger et al. (2020) for a recent application in economics.
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CBOE’s error code 999 for ask quotes or 998 for bid quotes, (iv) have non-positive

bid-ask spreads, (v) have midquotes less than $0.50, (vi) are singles (a call quote

without a matching put quote or vice versa), (vii) are PM settled, or (viii) have

IVs less than 2% or more than 200%. To detect any additional outliers, we fit a

linear function κ and τ to IVs on each date, and remove observations that are highly

influential based on their Cook’s distance (a common statistical metric for detecting

outliers). Finally, we restrict the sample to puts with a standardized moneyness

below 0.5, calls with a standardized moneyness above -0.5, and maturities between

8 and 120 calendar days, i.e. we exclude long-term and in-the-money options.

For each day in the sample, we estimate the SVI parameter vector θ by mini-

mizing the root mean squared error between observed IVs and the SVI interpolant,

θ̂t = argmin
θ

√√√√ 1

Nt

Nt∑
i=1

[σBSM,t,i − σBSM (κt,i, τt,i; θ)]
2, (A.4)

where Nt is the number of observations on day t. We use a particle swarm algorithm

to minimize the objective function and discard parameters for which SVI-implied

prices violate no arbitrage constraints. The positivity, monotonicity, and convexity

of option prices are checked on a bivariate grid for κ and τ .17 At every maturity in

the τ -grid, we integrate f∗t over the κ-region and discard parameters for which these

integrals do not fall within (a numerical error tolerance of) 1 basis point of one.

The fit to IVs results in an average (median) R2 of 98.8% (99.6%) across the

7,556 trading days in our sample.

B. Conditional Volatility Estimation

Our implementation of the HAR (Heterogeneous AR) model of Corsi (2009) is:

RV
(21)
t = α+ βmRV

(21)
t−21 + βwRV

(5)
t−21 + βdRV

(1)
t−21 + ϵt, (B.1)

17The κ-grid includes the integers from -20 to -11, 61 equally-spaced points between -10 and 5,
and the integers from 6 to 10, for a total of 76 points. The width of this grid ensures that even
extrapolated option prices are arbitrage free. The τ -grid is equally-spaced with 12 points between
10 and 120 days to maturity.
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where the realized volatility RV
(1)
t = (

∑N
i=1 r

2
i )

0.5 denotes the square root of the sum

of N squared intra-day log returns of day t, and RV
(h)
t = ( 1h

∑h
j=0RV

(1)
t−j)

0.5. In the

model, the past week RV
(5)
t and the past month RV

(21)
t represent the long-memory

feature of the volatility model. We calculate RV based on squared five-minute log

returns, which is a popular choice, as it presents a good trade-off between reducing

noise (high sampling frequency) and reducing bias due to micro-structure effects (low

sampling frequency). We sub-sample our estimator every minute, which reduces the

noise without any bias, and add the squared log overnight return to each intra-daily

variance estimate.

The intra-day returns are based on high frequency future prices for the S&P 500

index obtained from Tick Data Inc. In 1997, the CME introduced the so-called mini

future (symbol: ES). Over time, the standard “large” futures contract (symbol: SP)

lost market share to the mini, and eventually was discontinued in 2021. Since the

trading volume of the mini (adjusted for the smaller multiplier) overtook the large

contract during the year 2002, we switch our RV calculation from the large contract

to the mini in 2003.

Our σt volatility forecasts are all out-of-sample. For this, on day t, we use all

information available up to date t− 21 trading days, estimate the model with OLS,

and then forecast volatility using day t information only. This is done daily in an

expanding window fashion. We start the sample in 1988, in order to have at least

two years as burn-in for the first forecast on Jan 02, 1990. We note that our model

forecasts volatility very well with an out-of-sample R2
OOS = 60.4%.
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