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Abstract

A large literature finds that equity index options are overpriced in the historical

data (starting in the 1980s), earning low returns and strongly negative alphas. In a

representative agent framework, that fact implies that marginal utility is convex relative

to stock market wealth – risk aversion rises as wealth falls. This paper provides novel

evidence on risk aversion and the shape of marginal utility using nearly a century

of data on synthetic options, constructed from dynamic portfolios of the market and

the riskless asset. In contrast to exchange-traded options, synthetic options show no

evidence of overpricing (i.e., of negative alpha), and, therefore, no evidence of risk

aversion rising as wealth falls. The divergence in results between listed and synthetic

options can be explained by segmentation in the derivatives market, due to regulatory

constraints and illiquidity. As those constraints have relaxed in the past 10–20 years,

the returns on listed options have converged to those on synthetic options.

1 Introduction

A central empirical fact of financial markets is that equity index options have been overpriced

historically. Investors who purchase options have, on average, earned significant negative re-

turns and negative alphas, of a magnitude that is difficult to rationalize in structural models.

The high price of those options has been used to support two basic claims: that risk aversion

rises as wealth falls, so that investors are much more averse to large than small declines, and

that stock market volatility is priced. Those ideas, in turn, have driven theoretical research

on preferences that might explain aversion to large declines or to fluctuations in volatility.

∗Dew-Becker: Northwestern University and NBER. Giglio: Yale University and NBER. We appreciate
helpful comments from seminar participants at ITAM, Yale, and the University of Connecticut.
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At the same time, there is a well developed literature suggesting that the options market

– and those for derivatives more generally – may be segmented from the broader financial

market. Not all investors can trade options, and even those who can often face various

constraints on their participation, whereas participation in simple equity investments is easy

(and cheaper) for the vast majority of investors. If options markets are segmented, the price

of options may not measure the preferences of the average investor, but instead reflect those

of the relatively small number of agents trading options. In addition, options markets are

still, in a historical sense, relatively young, having existed in their current form for only

about 1/3 as long as we have data on equities.

Nevertheless, the questions that options have been used to address are important. A large

literature asks how risk aversion varies over time and with wealth because it determines not

just the behavior of asset prices (which then can affect the economy more broadly) but also

because the objectives of macroeconomic policy depend on agents’ utility functions. If utility

is quadratic – which would imply linear marginal utility – then the variance of wealth is a

sufficient statistic for welfare. But if marginal utility is convex in wealth, then policy should

focus more strongly on controlling large declines in the economy.

This paper develops a novel approach to measuring the average investor’s risk prefer-

ences by studying synthetic options. Our analysis focuses, like the almost entirety of the

existing literature, on monthly option returns. The monthly return on an option can be

well approximated (with an R2 of about 80%) by a dynamic trading strategy that holds the

underlying asset (in our case, the overall stock market) and the risk-free asset in amounts

that can change on a daily basis. As an example, to synthesize a put option, one would

initially hold a short position in the market, and a long position in the risk-free asset. If the

market falls, the short exposure will grow, while if the market rises, the short position will

shrink. In that way, holding a synthetic option is essentially a bet on mean reversion.

The paper’s theoretical contribution is to show how and when such a method is able to

measure features of marginal utility (and also, together with it, subjective probabilities).

The basic assumption is that agents all agree on the price of the stock market. That is,

agents may be heterogeneous, and markets may be incomplete, but under the assumption

that they can all freely trade the market, they will agree on its equilibrium price. That

assumption is in certain ways strong – especially in assuming that this condition holds every

day – and so we show how it can be relaxed. On the other hand, the idea of using the stock

market to measure the behavior of marginal utility is a foundational concept in asset pricing,

and the assumption that we impose is entirely standard in the literature.

If the market is fairly priced every day, then any strategy constructed from time-varying

2



loadings on the market is also necessarily priced fairly (even if an individual investor would

face high costs in implementing such a strategy in real time). That simple fact means that

returns on synthetic options can be used to measure the behavior of marginal utility (i.e.

state prices). Our key result is to show that by studying the properties of synthetic puts,

we can estimate the coefficients of a regression of marginal utility on the market return

(capturing the linear component marginal utility) and a nonlinear function of the market

return (capturing the nonlinear shape of marginal utility). We show that if options earn

a negative CAPM alpha – as is observed for exchange-traded options – that implies that

marginal utility is convex in the market. And the same result holds for the alpha of synthetic

options.

We then estimate it in the data. We begin by measuring the returns on synthetic op-

tions historically, using almost a hundred years of data (1926-2021). The first question we

investigate is simply the extent to which synthetic option returns are indeed a nonlinear

function of the market. We show that they do, and in fact that the part of their variation

that is independent of the market is relatively small – only about 20% of the total. That

nonlinearity is the core prerequisite for the analysis to be informative about nonlinearity in

marginal utility.

The paper’s key result is on the CAPM alphas for the synthetic puts, which directly

measure the degree of nonlinearity of marginal utility. Whereas exchange-traded puts have

historically earned highly negative alphas, synthetic puts actually earn statistically and eco-

nomically significant positive alphas, implying that, if anything, risk aversion falls as stock

market wealth declines. The empirical regularity driving the result is simple: the returns on

synthetic puts essentially meaure the presence of mean reversion or momentum, and within

months the stock market has historically displayed a small amount of momentum. If risk

aversion rose as the market fell (i.e. if marginal utility was convex in the market return) we

should instead see mean reversion in returns.

The results are robust to a wide range of modifications: they hold across strikes and

maturities for the synthetic options, across different time periods, using different methods

for choosing the weights used in the synthesis, and adjusting the strategy to account for

possible measurement error and certain liquidity problems. The theoretical analysis also

shows how drivers of marginal utility that are independent of the stock market can also

potentially affect premia for synthetic puts. We argue that this effect should likely be small,

and also provide quantitative evidence to support this, including a bound on its possible

effects.

Overall, the paper’s core finding is that, according to synthetic options measured over

3



the last hundred years, there is no evidence for convexity in marginal utility as a function

of stock market wealth – the pain associated with crashes does not rise faster than linearly.

And, again, that result is in conflict with evidence from exchange-traded options. But if

options markets are even partially segmented from broader financial markets, it need not be

surprising that option prices would disagree with implications of the behavior of stock prices.

That said, the barriers to trade have declined over time. Options markets have become more

liquid, exchanges now make it easier for retail investors to trade options, and hedge funds

act as vehicles allowing investors, such as endowments and pensions, to effectively get short

option exposure, even though they are otherwise barred from doing so.

If market segmentation has declined over time, then the difference in returns between

true and synthetic options should have also. And that is in fact precisely what we see in the

data. In the earlier part of the sample – 1987 up to about 2008 – exchange-traded options

earned significantly more negative returns than synthetic options, as has been found in past

work. Since 2008, though, that gap has shrunk to zero. There is now no difference in average

returns between true and synthetic puts, and also both have CAPM alphas of approximately

zero (again, consistent with linear marginal utility). To put it another way, in the last decade

it has not been true that index options are overpriced.

There is a large past literature estimating the shape of marginal utility as a function

of the market return, with Ait-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg

and Engle (2002) being key references.1 That work has exclusively used option prices to

measure state prices. But at the same time, it is well known that option prices have puzzling

implications that are difficult or impossible to represent with standard utility theory. While

they do imply convexity, with a significant premium for crash insurance, they also imply

in some regions actually negative risk aversion. Numerous papers, therefore, argue that the

evidence is much more in line with the view that options markets, for reasons of liquidity,

transactions costs, regulatory constraints, margin costs, etc. described above, are partially

segmented from the underlying equity market (Jackwerth (2000), Bollen and Whaley (2004),

Bates (2008), Han (2008), Garleanu, Pedersen, and Poteshman (2008), Jurek and Stafford

(2015), Frazzini and Pedersen (2022), among many others). That view implies that while

option prices still may reveal marginal utility, they reveal it at best for a particular subset

of investors, which will tend to change over time. By studying the entire equity market, we

argue that our results are much more likely to measure the attitudes of a typical investor.

An additional prediction of the view that option prices are distorted due to segmentation

is that when the limits to arbitrage such as trading costs and illiquidity shrink, option prices

1More recently, see Welch (2016) and Beason and Schreindorfer (2022).
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should move closer in line with the behavior (i.e. the lack of a put premium) that we observe

in the underlying equity market. Our final contribution is to show that the data points to

just that scenario playing out. The massive premium earned from selling put options has

shrunken significantly in the past 20 years, to the point that it is near zero in the most recent

decade of data. While confidence bands in such short samples are inevitably extremely wide,

the point estimates imply that the put premium has gone away.

This paper is most directly related to work on crash risk, in terms of utility, policy, and

how it affects asset prices. There is a large literature on the effect of rare disasters (Ri-

etz (1988), Barro (2006)), with Gabaix (2012), Seo and Wachter (2019), and Beason and

Schreindorfer (2022) studying option prices specifically.2 Our contribution to that literature

is to explore what the time-series dynamics of returns can reveal about how marginal utility

is affected by crashes. There is also a literature on the sources of crashes themselves, includ-

ing Farmer (2012), Bacchetta and van Wincoop (2016), and Petrosky-Nadeau, Zhang, and

Kuehn (2018). In such models, there is potentially a role for policy, and knowing investor

attitudes over those events is valuable for quantifying the benefit from preventing crises.

As discussed above, this paper is also related to a large literature on estimating marginal

utility, or state price densities, as a function of the stock market return. Almost that entire

literature measures significant convexity, which follows from the well known fact that out-of-

the-money options earn significant market-adjusted returns, especially after delta hedging.3

There is also parallel work that develops no-arbitrage models to fit option prices (e.g. Pan

(2002)), but those models often have unstable parameters and their out-of-sample perfor-

mance can be weak (Bollen and Whaley (2004)). In general, that class of models implies

significant premia on jumps and shocks to volatility, again due directly to the fact that even

delta-hedged options earn significant returns (e.g. Bakshi and Kapadia (2003)).

The remainder of the paper is organized as follows. Section 2 discusses the theoretical

framework and how it is applied to the data in practice. Section 3 describes the data

and empirical methods and section 4 reports our main empirical results on the returns of

synthetic puts and the shape of marginal utility. In section 5 we study the different behavior

of exchange-traded put returns and synthetic put returns. Section 6 concludes.

2See also Schreindorfer (2020). Drechsler and Yaron (2011) study a consumption-based model with jumps,
though the jumps are smaller than in the daster literature.

3For a few examples in addition to the other work cited above, see Coval and Shumway (2001), Bakshi
and Kapadia (2003), Constantinides, Jackwerth, and Savov (2013), and Muravyev and Ni (2020).
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2 Theory

2.1 Definitions and notation

The market return between periods t and t + j is Rm
t,t+j. The change in marginal utility is

MUt,t+j (i.e. u′t+j/u
′
t, where u is utility over consumption). We also assume that agents may

price assets according to some set of subjective conditional probabilities P ∗t,t+j. We denote

the ratio of the subjective to the true probabilities by St,t+j.

Since MUt,t+j is a ratio of marginal utilities, we immediately have that MUt,t+2 =

MUt,t+1MUt+1,t+2, etc. Similarly, we assume that the subjective probabilities satisfy a basic

internal consistency condition on conditional probabilities: St,t+2 = St,t+1St+1,t+2.

We say that an investment is priced by subjective marginal utility (SMU) if

1 = Et [Mt,t+jRt,t+j] ∀ t, j (1)

where Mt,t+j ≡ MUt,t+jSt,t+j. (2)

Mt,t+j is the SMU and Et is the expectation operator conditional on information available

on date t (under the true probability measure).

We do not assume that markets are complete, meaning that marginal utility need not

be identical across agents. Rather, we just assume that all agents agree on equation (1)

for the market and risk-free asset, which will hold if they can trade those assets freely (this

assumption is discussed further and relaxed somewhat in section 2.6). That is, we might

say that each investor may have a different SMU, Mi,t,t+j, but that the Mi’s all satisfy

1 = Et [Mi,t,t+jRt,t+j] for all t and j for both the market and risk-free asset. In the rest of

the analysis we suppress the i notation.

We assume that the risk-free rate is equal to zero for simplicity (equivalently, all returns

can be interpreted as on forward contracts). That implies that EtMt,t+j = 1 for all t and j.

The analysis is straightforward to recapitulate in the case where the risk-free rate is nonzero,

and the empirical analysis accounts for nonzero interest rates.

2.2 What can we learn from returns on put options?

Suppose for the moment that returns on put options are priced by SMU. Define the gross

return on a put option with strike k percent below the initial level of the market to be

Rk
t,t+j ≡ max

{
k −

(
Rm
t,t+j − 1

)
, 0
}
− P k

t + 1 (3)
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where P k
t is the initial price of the option.4 For convenience, we define as R̃k

t,t+j the part of

Rk
t,t+j that is orthogonal to the market return along with the associated alpha:

R̃k
t,t+j ≡ Rk

t,t+j −
covt

(
Rk
t,t+j, R

m
t,t+j

)
vart

(
Rk
t,t+j, R

m
t,t+j

) (Rm
t,t+j − 1

)
(4)

αkt,t+j = Et

[
R̃k
t,t+j − 1

]
(5)

If the option is priced by SMU, the empirical validity of which we will discuss later, then

αkt,t+j = − covt

(
R̃k
t,t+j,Mt,t+j

)
(6)

And the same fact holds for the overall market. Since average returns reveal covariances

with SMU, they can be used to get a linear projection for SMU:

Mt,t+j = const.−
Et
[
Rm
t,t+j − 1

]
vart

[
Rm
t,t+j

] Rm
t,t+j −

αkt,t+j

vart

(
R̃k
t,t+j

)R̃k
t,t+j + resid. (7)

where the residual term is orthogonal to Rm
t,t+j and R̃k

t,t+j.

Equation (7) is a nonlinear regression for SMU in terms of the market return.
Et[Rm

t,t+j−1]
vart[Rm

t,t+j]
measures the average slope of SMU with respect to the market return. R̃k

t,t+j is a piecewise

linear function of the market return (with the typical kink at the strike k that put returns

feature). So its coefficient,
αk
t,t+j

vart(R̃k
t,t+j)

, measures how the slope of SMU changes across the

strike k.

Equation (7) shows what the alpha of puts implies for marginal utility. The well known

empirical result is that puts have negative alphas. Since R̃k
t,t+j is a convex function of the

market, if puts are priced by SMU, then αkt,t+j < 0 implies that SMU is convex in the market

return.

Figure 1 illustrates that idea, plotting SMU relative to the market return under various

models and assumption. Under the CAPM (black line), SMU is linear in the market return,

all alphas are zero, there is no convexity, and the slope is recovered simply as −Et[Rm
t,t+j−1]

vart[Rm
t,t+j]

.

If puts are priced by SMU and they have a negative alpha, then one concludes that SMU

is convex – in other words, crashes are especially painful, with marginal utility rising at

an increasing rate as the market declines. Figure 1 illustrates that (dashed blue line) by

4The lack of a denominator here (i.e. some sort of date-t price) is nonstandard but convenient. Since
max

{
k −

(
Rm

t,t+j − 1
)
, 0
}
− P k

t is an excess return, any scaling is also an excess return – i.e. including the
price on date t or not.
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Figure 1: SMU estimated using exchange-traded and synthetic puts
-2
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Actual puts Synth. puts, after 1987
Synth. puts, lagged delta

Note: The figure shows estimated SMU under different models and estimated in different samples. The

solid black line reports the estimated SMU as a function of the market alone (as in the CAPM). The other

lines model SMU as a function of the market and the orthogonalized returns on puts: listed puts (1987-

2021), synthetic puts (1926-2021), synthetic puts for the post-1987 sample, and synthetic puts computed

using one-day lagged beta.

plotting the SMU curve implied by the alphas observed for 5% out-of-the-money listed S&P

500 puts, during the period 1987–2021. The plot shows that put returns imply that effective

risk aversion – as measured by the slope of SMU – is significantly higher when the market

falls by a substantial amount.

2.3 What can we learn from returns on synthetic put options?

A simple summary of the previous section is that because the return on a put option is

a nonlinear function of the market return, its alpha relative to the market measures the

nonlinearity in SMU (the market itself captures the linear part).

It is well known that option returns can be approximated through dynamic trading in
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the underlying asset – the market return in this case. If the synthetic put also has returns

that are nonlinear in Rm, then it can also be used to measure nonlinearity in SMU.

Consider the following gross return on a synthetic put from t to t+ j,

RS
t,t+j ≡

j−1∑
s=0

βSt+s
(
Rm
t+s,t+s+1 − 1

)
+ 1 (8)

where βSt is a set of weights that can be a function of the values of Rm
s for s ≤ t. Since Rm

is priced by SMU, RS is also:

1 = Et
[
Mt,t+jR

S
t,t+j

]
(9)

Just like with true puts, we can also calculate the alpha for synthetic puts, yielding

Mt,t+j = const.−
Et
[
Rm
t,t+j − 1

]
vart

[
Rm
t,t+j

] Rm
t,t+j −

αSt,t+j

vart

(
R̃S
t,t+j

)R̃S
t,t+j + resid. (10)

(where, as before, R̃S is the part of RS orthogonal to the market). So we again have an

expression for SMU in terms of two returns, with coefficients depending on their means. In

addition, if R̃S
t,t+j is a nonlinear function of the market return, its coefficient again measures

nonlinearity in SMU.

2.4 Learning about SMU as a function of the market

Both R̃S and M can be decomposed into parts that are nonlinear functions of the market

return and residuals:

Mt,t+j = M̄t,t+j + M̂t,t+j, where M̄t,t+j ≡ E
[
Mt,t+j | Rm

t,t+j

]
(11)

R̃S
t,t+j = R̄S

t,t+j + R̂S
t,t+j, where R̄S

t,t+j ≡ E
[
R̃S
t,t+j | Rm

t,t+j

]
(12)

The components with overbars are those that are (in general nonlinear) functions of the

market, while the circumflexes denote (uncorrelated) residuals. The reason to perform this

decomposition is that it is the marked-related part (the one with overbar) that allows us to

learn about the part of SMU that is explicitly a function of the market return. Note that in

the case of listed puts, we would have R̃k
t,t+j = R̄k

t,t+j, and therefore R̂k
t,t+j = 0, since the put

return depends only on the market return over the period t to t+ j. This is not necessarily

true for synthetic puts: its return may depend on the market return from t to t + j as well

as the path the market takes during that period: the latter component will be captured by
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R̂S
t,t+j.

We now examine what synthetic puts tell us about SMU when residuals are potentially

nonzero. Suppose first that M̂t,t+j = 0, so that SMU is a function only of the market return

(as would hold under the CAPM, and more generally if the stock market return is a sufficient

statistic for SMU). Then

Mt,t+j = const.−
Et
[
Rm
t,t+j − 1

]
vart

[
Rm
t,t+j

] Rm
t,t+j −

αSt,t+j

vart
(
R̄S
t,t+j

)R̄S
t,t+j + resid. (13)

That is, in this simple case, we can interpret the alpha on a synthetic put in exactly

the same way as that on a true put: it measures nonlinearity in SMU as a function of

the market return. Note that it does not actually matter whether RS actually replicates the

return on a put. What we need is that RS yields nonlinear exposure to the market, so that

we can measure the premium for such exposure and hence the shape of SMU.

The difference between equations (10) and (13) is that (10) involves R̃S
t,t+j, while (10)

involves R̄S
t,t+j, meaning that the latter gives SMU purely as a function of the market return.

2.4.1 A conditional CAPM interpretation

When βSt (the dynamic loading on the market taken by the synthetic put) is a function of

the level of the market, αSt,t+j measures predictability in returns. Formally, one can derive

from results in Lewellen and Nagel (2006) that

αSt,t+j ≈ γ cov

(
βSt ,

γt − γ
γ
−
σ2
M,t − σ2

M

σ2
M

)
(14)

where γt ≡ EtR
m
t,t+1 − 1, γ ≡ E [γt] , σ2

M,t ≡ vart
(
Rm
t,t+1

)
, and σ2

M ≡ var
[
Rm
t,t+1

]
(15)

The first part of the covariance is the usual conditional CAPM intuition, which says that if

βSt covaries positively with the market risk premium, then αSt,t+j will be positive. The second

part is a contribution from the comovement of βSt with conditional volatility.

In our main analysis, we set βSt in order to build a replicating portfolio for puts – essen-

tially setting βSt to be the Black–Scholes delta of a particular put option. For a put option,

delta is negative, and becomes more negative as the market falls. So if γt rises when the

market falls, then for a synthetic put, we will have that cov
(
βSt , γt

)
< 0, which, all else

equal, would cause αSt,t+j to be negative. So that implies that when the market risk premium

is countercyclical (i.e. returns are mean reverting), synthetic puts will earn a negative alpha.

The equation can also be interpreted in the opposite direction: if synthetic puts earn

a negative alpha – implying that SMU is convex – then (holding volatility fixed) expected
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returns must be countercyclical. That is, convexity in SMU implies countercyclical risk

premia.5

One intuition for these results is the following. If marginal utility is convex, then a drop

in the market moves the agent to a more curved part of the utility function, where risk

premia γt are higher. This means that going forward expected returns should be higher, and

it therefore generates mean-reversion in returns; in turn, this induces a negative alpha for

synthetic puts. So the dynamics of returns and the alpha of synthetic puts can reveal the

shape of the SMU function.

It is worth noting that this result does not hold in the same way for true puts. True puts

can earn monthly alpha through the conditional CAPM mechanism, but they can also earn

potentially earn alpha at the daily frequency. A synthetic put, on the other hand, must earn

zero alpha at the daily frequency, because over each day the synthetic put just takes a static

position. So it is possible for true puts to earn alphas without any predictability in market

returns, simply due to being too expensive or too cheap, while a synthetic put can only earn

an alpha at the monthly frequency through a market-timing effect.

2.4.2 The effect of non-market risk

Equation (13) is derived under the assumption that the market return is a sufficient statistic

for SMU. Obviously that need not be true in general. In the fully general case, we can derive:

M̄t,t+j = const.−
Et
[
Rm
t,t+j − 1

]
vart

[
Rm
t,t+j

] Rm
t,t+j −

αSt,t+j + cov
(
R̂S
t,t+j, M̂t,t+j

)
vart

(
R̄S
t,t+j

) R̄S
t,t+j + resid. (16)

Since our objective is to understand how SMU is related – potentially nonlinearly – to the

return on the market, we focus on just M̄ (there is also a regression-type equation for M̂ ,

that we ignore here). Relative to the baseline case where M̂ = 0, in the fully general case

here, αSt,t+j must be adjusted when calculating the coefficient on the nonlinear part, R̄S.

That covariance just measures how the part of RS that is independent of the market is

priced. We address the potential presence of cov
(
R̂S
t,t+j, M̂t,t+j

)
in this equation in three

ways: through an intuitive argument that it should be small; by formally measuring the

covariance of R̂S with potential candidates for M̂ from the literature, and by bounding it in

5How does time-varying volatility affect this analysis? If the CAPM holds period-by-period with constant
risk aversion (in the sense of the pricing kernel being linear in Rm

t,t+1), then γt ∝ σ2
M,t, which would imply that

the covariance in (14) is zero. If risk aversion is countercyclical, as with a convex pricing kernel, then even if
volatility rises when the market falls, γt will rise by enough to offset that effect, so that the covariance term
is negative and αS

t,t+j < 0. In other words, if both volatility and risk aversion are countercyclical, equation

(14) implies that αS
t,t+j is negative.
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the style of Cochrane and Saa-Requejo (2000).

First, the intuitive argument. R̂S
t,t+j is the part of the return on the synthetic put that

cannot be explained by any nonlinear function of the market return. In addition, though,

RS is constructed as a dynamic strategy on the market, so it only contains information that

is in the path of the market return. That means, then, that R̂S
t,t+j contains information

about the path of the market return over the month, but no information about the total

return over that month. It can measure, for example, whether the path to get to a given

total monthly return was more versus less volatile.

There are many proposals in the literature for variables that might influence SMU be-

yond just the market itself, such as labor income risk, long-run growth, innovation, etc. It

is difficult to imagine a scenario in which the path that the stock market takes after con-

trolling for the total return over the month would somehow be related to labor income or

innovation. For a typical investor, even if the stock market itself is not a sufficient statistic

for SMU (i.e. M̂ 6= 0), it does seem as though the impact of the stock market on SMU

would be very well summarized by the total return over the month, which would imply that

cov
(
R̂S
t,t+j, M̂t,t+j

)
= 0.

To the extent that realized volatility during the month matters independently for pricing,

and beyond its correlation with the market, a common argument is that that is due to market

segmentation (e.g. Jurek and Stafford (2015)), where a relatively small number of dealers

are net short options and charge a premium for unhedgable risk they take, which is related to

volatility. That sort of premium is not due to the average investor being averse to volatility,

but rather due to the cost of purely cross-sectional effects – some investors demand insurance

and only a limited number of agents can supply it, driving up its equilibrium price. We argue

in section 5 that the degree of segmentation in the options market has likely declined, and

provide empirical evidence in support of that view.

All of that said, we will not ultimately rely on the assumption that cov
(
R̂S
t,t+j, M̂t,t+j

)
=

0 or M̂ = 0. The empirical analysis will explicitly try to measure or at least bound that

covariance, to help quantify the nonlinearity of SMU.

2.4.3 What do we want in RS?

The analysis in this section helps show what we ideally need in RS. First, in order to measure

nonlinearity in M , we want RS to be a nonlinear function of the market return – and ideally

a nonlinear function that is economically interpretable (e.g. piecewise linear, like a put). On

the contrary, if RS were linear in the market (e.g. a static position), then it would contain

exactly zero extra information compared to the market itself. At the same time, we want RS

12



to depend as much as possible on the market, so that var
(
R̂S
)

is small relative to var
(
R̄S
)
,

which minimizes the potential error discussed in the previous section.

2.5 Listed puts versus synthetic puts

Given the above considerations for an ideal RS, and given that the previous section discusses

the behavior of a synthetic put, it seems natural to study the returns on traded options.

Options have returns that are nonlinear in Rm and also fully spanned by it. There are two

major drawbacks to options that have been raised in past work, though, that lead us to take

the novel perspective of learning about the SMU by studying the dynamics of the market

return instead.

The first problem is that data for options with monthly maturity only begins in 1987,

whereas synthetic puts can be constructed as long as we have daily data on market returns,

so at least to 1926.

The second potential concern with options is that even if the overall stock market is

priced by the marginal utility of some hypothetical representative agent – which is all that

is required for synthetic puts – that assumption may be far less reasonable for options.

In much of the sample, retail investors could not easily trade options, when they can the

options are also often illiquid, with wide bid/ask spreads and little volume and open interest,

especially for relatively deep out-of-the-money strikes. Last, there is also substantial evidence

that option prices are heavily influenced by intermediary frictions, implying that their prices

reveal more about the marginal utility of a subset of investors (the retail investors demanding

options and the dealers selling them).6

So while puts are theoretically ideal, characteristics of their market, segmentation in

particular, lead us to study synthetic puts as an alternative. Synthetic puts have drawbacks

of their own, which we discuss in the next section, but they nevertheless provide a novel

perspective on investor risk attitudes. We analyze the relationship between returns on true

and synthetic puts empirically in section 5, showing that they have converged over the last

10–15 years.

2.6 Transaction costs

A natural concern if we are studying the return on a synthetic put is that this is the return

on a strategy that may be very expensive or simply impossible to implement, especially for a

6See, e.g., Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2008), and Frazzini and
Pedersen (2022)
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retail investor. But recall, though, that the analysis only relies on the simple (and standard)

premise that 1 = Et
[
Mt,t+1R

m
t,t+1

]
. If that is true, then any linear combination of market

returns is also priced by SMU, which is what RS
t,t+j is (equations (8) and (9)). Since we want

to know about covariances with SMU, in order to obtain theoretical regression coefficients,

we are using that pricing fact, which explicitly does not include any transaction costs (which

is also why transaction costs are typically not included in empirical asset pricing studies).

The assumption that 1 = Et
[
Mt,t+1R

m
t,t+1

]
is the statement that the market is correctly

priced – by investors’ SMU – every day. One could imagine situations under which that may

fail to hold in the data. As a simple example, suppose that in the data, on any given date,

the prices of some stocks are stale due to a lack of trading. Then the market prices that are

observed, and hence also the returns, have what is essentially a form of measurement error,

which will be most severe at high frequencies.

A second example is the case where there are transaction costs on the market itself.

Then at any given time, the market can deviate from its fair price (according to SMU) by

the magnitude of the transaction cost, giving a window of potentially valid prices.

In standard applications, this issue would be often addressed by studying lower-frequency

returns, like at the weekly or monthly level. For this paper’s analysis, though, daily returns

are necessary in order to effectively create the synthetic puts. So suppose that while the

pricing equation holds for Rm, we observe a contaminated return Rm∗, with

Rm∗
t,t+1 = Rm

t,t+1 + εt+1 (17)

where εt+1 is the error. In the two examples above, εt+1 would either come from the fact

that some of the prices used in constructing Rm∗
t,t+1 are stale, or that they deviate from the

values implied by SMU due to transaction costs.

Recall that our core results are about how mean returns reveal covariances with SMU. So

how does the presence of an error εt+1 affect those means and their relation to the covariance

wiht SMU? First, clearly, in order for our main results to hold, we need E [εt+1] = 0, so that

when we estimate E
[
Rm∗
t,t+1

]
from the data it is also a valid estimator for E

[
Rm
t,t+1

]
. This

simply requires that the stock market is not observed in a systematically biased way.

Second, in order for E
[
RS
t,t+1

]
to be equal to E

[
RS∗
t,t+j

]
(where RS∗ is calculated using

Rm∗ in place of Rm), it must be the case that

cov
(
βSt , εt+1

)
= 0 (18)

In our application, variation in βSt is driven by variation in past returns on the market,
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so there is a bias if εt+1 is correlated with lagged values of Rm∗
t−1,t (i.e. with lagged values of

either Rm
t−1,t of εt). A prime example is stale prices. Suppose in a given day, only half of the

prices observed in the market are updated. Then if fundamentals (i.e. the “true” return,

Rm
t−1,t) improve by 1% on day t, we would observe a return Rm∗

t,t+1 of 0.5% on day t and then

another 0.5% on day t + 1 as the remaining stock prices are updated. That is, stale prices

create positive one-day serial correlation in returns (but nothing at longer lags).

Under such a scenario, (18) being true would require βSt to be orthogonal to news on

date t (since that predicts returns on date t+ 1). An easy way to address that is to make βSt

a function only of information available on day t− 1 or earlier, which we do in section 4.3.

More generally, this section shows what types of assumptions about pricing are required

for the main results to hold. If the market is correctly priced relative to SMU at the end of

every day (which is more reasonable in recent decades), then the baseline results are valid.

If, on the other hand, the observed market price is not always correct and has some noise,

then that noise needs to be orthogonal to the portfolio weights. Given a specification of that

noise – e.g. single-day persistence due to stale prices – one can construct a βSt rule that is

robust to those errors and will still measure the curvature of SMU correctly.

An alternative interpretation of the effect of transaction costs is that they might create

a time-varying liquidity premium for the market. For example, perhaps when the market

falls, transaction costs (e.g. through bid/ask spreads) become larger. That might cause

a liquidity premium on the market to rise in bad times. Such an effect would mean that

expected returns on the market would be high in bad times and we would observe mean

reversion. As discussed in section 2.4.1, mean reversion will cause us to observe negative

alphas for synthetic puts, and it therefore biases the analysis towards finding convexity in

SMU.

3 Data and methods

3.1 Choosing time-series weights, βSt

We select the weights βSt on a daily basis to try to replicate option returns at horizons

between a month and a year. Our main analysis follows the method of Hull and White

(2017), which modifies the standard Black–Scholes hedging method to account for certain

types of stochastic volatility. Intuitively, the weight βSt is equal to the delta of the option –

the partial derivative of the value with respect to the price of the underlying. For puts, as

the market falls, βSt becomes progressively more negative, but it is always bounded between

0 and -1.
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In choosing which put to synthesize, we can vary both the strike and maturity. The strike

price determines the point at which the slope of RS
t,t+j with respect to Rm

t,t+j changes. So by

varying the strike we can examine convexity at different levels of market returns.

Following past work, we focus on returns to maturity on one-month options, but we also

examine results for alternative maturities. Since we are not studying traded options, we can

calculate returns for overlapping periods. That is, with the convention that there are 21

trading days in every month, we calculate RS
t,t+21 for every day t. Standard errors are then

always corrected for this overlap with the Hansen-Hodrick method using 21 lags.

3.2 Synthetic options and the market return

Since we want to understand how SMU varies as a function of the market return, what

matters for our results is how RS varies with the market return. Specifically, we need to

estimate the general nonlinear function E
[
RS
t,t+j | Rm

t,t+j

]
. To implement that empirically,

we draw on the large literature on nonparametric regression to fit the equivalent equation

RS
t,t+j = g

(
Rm
t,t+j

)
+ ηt,t+j (19)

where g is an arbitrary unknown function that is uncorrelated with the mean-zero residual

ηt,t+j. g is estimated from a local linear regression with a Gaussian kernel and the bandwidth

set to 0.01 (corresponding to a one-percentage point window in the market return).

3.3 Data

To implement the analysis described in section 2, we just need a time series for the market

return, Rm
t,t+1, and the risk-free rate. We use the daily data from Kenneth French’s website,

and throughout the analysis t is taken to be a day.

4 Results

4.1 The relationship between RS and Rm

The top panel of Figure 2 plots our benchmark RS
t,t+j against Rm

t,t+j, where j = 21 days

and the strike used to construct βSt is 95% of the initial level of the market (corresponding

to approximately a unit standard deviation decline). There is clearly significant nonlinear-

ity – for values of the market return above the strike (-5%), the slope is near zero, while

for values below it the slope is approximately -1, consistent with the fact that RS
t,t+j is
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Figure 2: Synthetic put returns as a function of the market

(a) RS vs. Rm

(b) Residuals and their s.d.

Note: Panel (a) shows the scatterplot of the returns to the syntethic put, RS , against the returns of the

market, Rm. The red line is a kernel estimate of the local mean. Panel (b) shows the residuals of the

nonlinear fit from panel (a) against the market, and, in red, the local standard deviation of the residuals.
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constructed to mimic a put option. The red points plot the nonparametric estimates of

R̄S
t,t+j = E

[
RS
t,t+j | Rm

t,t+j

]
. They formally quantify the relevant nonlinearity.

In addition, note that R̄S
t,t+j rises with a consistent slope as Rm

t,t+j falls, regardless of

how large the decline is. If one thought that it was not possible to span large declines in

the market with time-varying weights, e.g. due to large jumps, that fact would be revealed

as R̄S
t,t+j flattening out for the very negative values of Rm

t,t+j. There is no evidence of such

a pattern, though. In the months with the most negative returns, the dynamic strategy

continues to deliver positive returns, even including major events like the crashes in 1929

and 1987 (again, the claim here is not necessarily that an investor could have followed this

strategy in real time to avoid crashes).

Figures A.1 and A.2 in the appendix replicate the top panel of Figure 2, but for the range

of other strikes and maturities that we study. It shows that the pattern in Figure 2 is shared

by the other synthetic puts we study.

The bottom panel of Figure 2 plots the residuals R̂S
t,t+j ≡ RS

t,t+j − E
[
RS
t,t+j | Rm

t,t+j

]
against Rm

t,t+j along with their local standard deviation.7 Due to the way the residuals are

constructed, they are guaranteed to have a local mean, weighted by the kernel, equal to

zero (and thus also a global mean of approximately zero). The residuals have relatively less

volatility when the market return is close to zero and at its most extreme values, and greater

volatility at intermediate values.

4.2 Risk premia

Table 1 reports our key results for risk premia. The risk premia – the alphas for synthetic

puts – are really the central objects of interest since they measure, up to a scaling factor,

the nonlinearity in SMU from equation (13). Recall that the well known empirical result for

true puts is that the alphas are negative.

The top panel holds the maturity, j fixed at 21 days (one month) and varies the strike

between 90% and 110% of the initial level of the market. The bottom panel varies the

maturity between 21 and 252 days. The strike in those cases is set to -5%×
√
j/21, so that it

is equivalent in standard deviation terms across maturities. All returns, Sharpe ratios, and

information ratios are annualized.

7The local volatility is estimated from a second kernel regression,

η2t,t+j = h
(
Rm

t,t+j

)
+ residual (20)

where for the function h we set the bandwidth to 0.05 due to there being greater variation in the squared
residuals around the fitted value.
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Table 1: Risk premia of synthetic puts

M K Mean SR beta alpha IR
21 Market 0.08 0.44

(0.02) (0.10)

21 0.9 0.00 -0.10 -0.08 0.00 0.07
(0.00) (0.07) (0.02) (0.00) (0.10)

21 0.95 0.00 0.00 -0.22 0.02 0.34
(0.01) (0.09) (0.02) (0.01) (0.10)

21 1 -0.01 -0.09 -0.52 0.03 0.56
(0.01) (0.10) (0.03) (0.00) (0.08)

21 1.05 -0.06 -0.38 -0.81 0.00 0.09
(0.02) (0.10) (0.04) (0.00) (0.06)

21 1.1 -0.07 -0.43 -0.91 0.00 -0.04
(0.02) (0.10) (0.04) (0.00) (0.05)

M K Mean SR beta alpha IR
21 0.95 0.00 0.00 -0.22 0.02 0.34

(0.01) (0.09) (0.02) (0.01) (0.10)

63 0.91 0.00 -0.03 -0.16 0.01 0.26
(0.00) (0.07) (0.02) (0.00) (0.10)

126 0.88 0.00 -0.08 -0.14 0.01 0.19
(0.00) (0.05) (0.02) (0.00) (0.08)

252 0.83 0.00 -0.07 -0.11 0.01 0.18
(0.00) (0.04) (0.02) (0.00) (0.07)

Note: Table reports characteristics of the market return (top row) and, in the other rows, returns on

synthetic puts with a variety of maturities M and strikes K (as a fraction of spot). For each combination

of M and K, the table reports the average return, Sharpe ratio, market beta, alpha, and information ratio,

all annualized. Standard errors in parenthesis. Sample is 1926-2021.
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The top row reports results for the market return, giving a measure of the average slope

of SMU. The Sharpe ratio in the sample is +0.44, with a standard error of 0.10. That

value is a useful benchmark that will help interpret the magnitude of the premia on other

investments, and it also will be relevant in calculating the projection for SMU.

4.2.1 Varying strikes at the monthly maturity

The remaining rows of table 1 report results for synthetic puts for varying strikes and ma-

turities. For the monthly maturity, looking across strikes, the betas are all negative and

become more negative as the strike price rises, as one would expect for synthetic option

returns. The average returns and Sharpe ratios for the RS portfolios are all negative except

for one, but since the betas are negative, the portfolios actually have significantly positive

alphas and information ratios (the ratio of αSt,t+j to std
(
R̃S
t,t+j

)
), with the exception of the

strike of +10%.

The information ratios (IRs) vary in terms of statistical and economic significance across

the strikes. The largest IR is for at-the-money options, where it is 0.56, with a t-statistic

of about 7. That information ratio means that the independent part of the synthetic put

actually earns a larger (positive) premium than the market itself. That said, we are not

actually claiming that an investor could have earned such a premium in practice for most

of the sample. Rather, this shows that there has historically been significant positive se-

rial correlation in market returns, since the at-the-money put option has a relatively more

negative exposure to the market following declines and a relatively more positive exposure

following increases. In turn, this implies that SMU should be concave rather than convex

(as the market drops, expected return drop as well, and vice versa).

As the strike moves away from zero in either direction, the magnitude of the IRs fall. The

only other IR that is statistically significant is for the -5% strike. That having been said, in

all cases but one, the point estimates are positive, and the (Hasnen-Hodrick) standard errors

are small enough that we can rule out large negative values (such as those for traded puts).

So whereas traded puts in the period 1987–2021 have negative alphas, synthetic puts over the

long sample 1926–2021 have positive alphas in general, and in some cases with statistically

and economically large magnitudes.

It is also worth noting that the long sample for synthetic puts gives significantly more

precision than the sample for traded options – the standard error of a Sharpe ratio in a

35-year sample is 0.17, and in the post-1996 Optionmetrics sample often used for options it

would be 0.20. So we get as much as double the precision compared to more recent samples.
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4.2.2 Varying maturities at a fixed strike

The bottom panel of table 1 reports results for different maturities between one month

and one year, holding the strike fixed in standard deviation terms equivalent to -5% at

the monthly horizon. The information ratios decline, though not severely, as the maturity

increases. In all cases they remain statistically significantly positive, meaning that we can

rule out, at the 5% confidence level, any convexity in SMU around the -5% strike across

horizons.

4.2.3 Interpretation

In the simple case where the market return is a sufficient statistic for SMU, the alphas here

immediately imply that SMU is actually concave in the market return. That is, the prima

facie evidence here is that rather than investors being especially strongly averse to large

declines in the market, if anything they find large declines to be less than proportionately

painful in terms of how they raise marginal utility compared to small declines.

Figure 1 plots, in red, the shape of SMU implied by the synthetic option returns for the

strike of -5% and maturity of one month. Whereas the SMU curve estimated from traded

options is convex, SMU based on synthetic options is significantly concave, implying that

effective risk aversion actually declines as the market falls.

To help understand the implications of the pricing results, the last column of table 1

reports the R2 from the nonlinear regression of RS
t,t+j on Rm

t,t+j. For a traded option return,

that R2 would be 1. Here, the values range between 0.73 and 0.92, depending on the strike.

In other words, consistent with Figure 1, the vast majority of the variation in R̃S
t,t+j, across

all strikes and maturities, is explained by the market return. The smaller is that residual,

the smaller is the potential bias identified in section 2.4.2. The question is just whether that

residual is priced (i.e. whether cov
(
R̂S
t,t+j, M̂t,t+j

)
6= 0), and the potential magnitude of

that effect, which is the focus of the next section.

To see how the returns have varied over time, Figure 3 plots cumulative excess returns

of R̃S
t,t+j over the sample (for a strike of −5% and j = 21). R̃S has, by construction, zero

exposure to the market return, so under the CAPM, i.e. if the pricing kernel is linear in the

market return, R̃S would have zero average excess return. The cumulative return over the

sample is positive, consistent with the results in Table 1. In the time series, that positive

return is driven primarily by the period between 1940 and 1980. Prior to 1940, R̃S earned

negative returns due to the fact that the market was falling over much of that period during

the Great Depression. More interesting is the fact that the returns change sign on average

after about 1987. That fact is well known for exchange traded options, but it is notable that
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Figure 3: Log cumulative returns on R̃S
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Note: Log cumulative returns on R̃S , for the period 1926-2021. Green line is the synthetic put, red line

is the synthetic put with one-day lagged beta.
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it also holds in R̃S, which is a synthetic option return (see section 5).

4.3 Robustness

As discussed in section 2.6, if there is noise in the observed market return that is correlated

with βSt , that can cause a bias in the results. We focus on stale prices as the most likely

candidate that could cause a bias due to one-day serial correlation in returns.

The simple way to handle that scenario is to choose βSt to depend only on information

available at date t− 1 or earlier. Formally, we do that by choosing βSt to be the hedge ratio

for a synthetic option based on the level of the market on date t − 1. Results for that case

along with the benchmark are reported in table 2. Interestingly, the alphas do generally

shrink towards zero. That is due to the fact that there is in fact positive serial correlation

in returns at the one-day lag in the early part of the sample (of about 10%). By lagging βSt ,

we eliminate the effect of that serial correlation. We still see no sign of a negative alpha,

though, and many of the point estimates remain positive, if much smaller.8

Figure 3 plots the cumulative returns from this strategy. They are clearly significantly

lower than the baseline in the first part of the sample, but subsequent to 1980 the two series

move in parallel. Figure A.4 in the appendix also reports results lagging information by an

additional day to date t − 2 and shows that the results are highly similar to those for the

single-day lag.

Intuitively, the positive alphas are due to some persistence at the daily level, but we do

not see evidence of negative serial correlation at any horizon out to one month, which is

what would be necessary in order for the synthetic puts to earn negative alphas, as would

be predicted if SMU were convex. To see that, figure 4 (panel a) plots the autocorrelation

function for stock market returns from 1 to 21 days for the full sample along with the first

and second halves (splitting in 1973), where we take the latter period as where it becomes

easier to trade the market (especially as index futures appear in the 1980’s).

The figure shows that there is a surprisingly large one-day autocorrelation in market

returns, especially in the first half of the sample, but no notable negative autocorrelation.

For context, the standard errors are approximately equal to 0.029 for the full sample and

0.042 in the two halves (under the null that returns are white noise, the standard error is

1/
√
T ). The bottom panel of the figure plots cumulative autocorrelations and also finds no

evidence for reversals.

Figure 1 plots an estimate of SMU based on this alternative measure of the premium on

8Figure A.3 replicates figure 2 for this alternative version of βS
t and shows the behavior is highly similar

to the baseline case.
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Table 2: Robustness of risk premia estimates

TABLE 2

c1 c2 c3 c4 c5 c6 c7 M K Baseline Lagged Beta Constant IV Before 1973 After 1973
r1 21 0.9 0.07152446 0.03406511 0.00384664 0.16100152 -0.0718031 21 0.9 0.07 0.03 0.00 0.16 -0.07
r2 . . 0.10189107 0.1036506 0.09361816 0.14171434 0.13349587 (0.10) (0.10) (0.09) (0.14) (0.13)
r3 21 0.95 0.34379993 0.17152549 0.30320501 0.48236126 0.16002395
r4 . . 0.10101 0.10103181 0.09499957 0.13857337 0.14376747 21 0.95 0.34 0.17 0.30 0.48 0.16
r5 21 1 0.55710848 0.19840515 0.47439559 0.81145522 0.24834022 (0.10) (0.10) (0.09) (0.14) (0.14)
r6 . . 0.08420475 0.08385566 0.08250406 0.11583326 0.12081182
r7 21 1.05 0.09389774 -0.0232444 0.12721372 0.14445535 0.05939577 21 1 0.56 0.20 0.47 0.81 0.25
r8 . . 0.06220195 0.06185684 0.05913612 0.09376154 0.09292509 (0.08) (0.08) (0.08) (0.12) (0.12)
r9 21 1.1 -0.0385062 -0.0516773 -0.0201671 0.00823242 -0.1045502
r10 . . 0.04773464 0.04749784 0.04243189 0.07913815 0.08376534 21 1.05 0.09 -0.02 0.13 0.14 0.06
r11 21 0.95 0.34379993 0.17152549 0.30320501 0.48236126 0.16002395 (0.06) (0.06) (0.06) (0.09) (0.09)
r12 . . 0.10101 0.10103181 0.09499957 0.13857337 0.14376747
r13 63 0.91 0.25700137 0.15788229 0.19885403 0.40397551 0.0201944 21 1.1 -0.04 -0.05 -0.02 0.01 -0.10
r14 . . 0.09869728 0.09829531 0.09726331 0.12944611 0.14821507 (0.05) (0.05) (0.04) (0.08) (0.08)
r15 126 0.88 0.19314006 0.11944302 0.11819767 0.35773719 -0.045689
r16 . . 0.08164715 0.08268924 0.08122466 0.10532175 0.13049349
r17 252 0.83 0.17514922 0.12328251 0.09845712 0.27498381 -0.0185758 M K Baseline Lagged Beta Constant IV Before 1973 After 1973
r18 . . 0.07330136 0.07362751 0.07303791 0.09524049 0.10483374 21 0.95 0.34 0.17 0.30 0.48 0.16

(0.10) (0.10) (0.09) (0.14) (0.14)

63 0.91 0.26 0.16 0.20 0.40 0.02
(0.10) (0.10) (0.10) (0.13) (0.15)

126 0.88 0.19 0.12 0.12 0.36 -0.05
(0.08) (0.08) (0.08) (0.11) (0.13)

252 0.83 0.18 0.12 0.10 0.27 -0.02
(0.07) (0.07) (0.07) (0.10) (0.10)

Information Ratio

Information Ratio

Note: Table reports the annualized information ratio of synthetic puts of various maturities M and strikes

K (as fraction of spot). Each column represents a variation in the way synthetic puts are constructed. The

first column is the baseline as in table 1. The second column lags the beta by one day. The third column

uses a constant IV of 0.15. The sample for the first three columns is 1926-2021. The last two columns

split the sample in two halves: before and after 1973. Standard errors in parenthesis.
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Figure 4: Daily autocorrelation of returns
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Note: Panel (a) shows the autocorrelations of daily returns up to 21 lags. Panel (b) shows the cumulation

of those autocorrelations. Each panel shows autocorrelations using the full sample (1926-2021), and using

the pre- and post-1973 data separately.
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synthetic options (light brown line). We view this is the most reasonable of the estimates,

and it implies that SMU is close to linear, consistent with the CAPM.

As a second robustness test, we change the volatility model used in selecting βSt . The

baseline results in this paper use a HAR model to forecast volatility (which is a simple and

widely-use model for forecasting volatility). Table 2, though, shows that the alphas are

essentially identical to those in the baseline if we simply set the volatility used to calculate

the hedge weights to 0.15 on all dates (central column). That shows that the results are

driven by how βSt depends on the level of the market, rather than its volatility.

The last two columns of table 2 split the sample in half (again in 1973).

4.4 The effect of unspanned variation – R̂S
t,t+j and M̂t,t+j

The theoretical analysis shows that the alphas estimated for RS
t,t+j will be biased estimates

of nonlinearity in SMU if there is a nonzero correlation between R̂S
t,t+j and M̂t,t+j – that is,

if the part of RS
t,t+j not related to the market return (in any way, even nonlinearly) is related

to some component of marginal utility that is also not related to market returns. that bias

term, since it is unobservable, effectively represents another form of uncertainty that we

must account for, in addition to standard sampling uncertainty accounted for by the usual

statistical standard errors. This section examines two ways of addressing that term. First,

it asks whether the residuals are correlated with any other known pricing factors. Second, it

uses an analysis similar to that of Cochrane and Saa-Requejo (2000) to bound the magnitude

of the premium on the unspanned component.

4.4.1 Relationship with known risk factors

A wide range of variables have been proposed that could be related to marginal utility beyond

market returns. Table 3 reports correlations between R̂S and different variables. For R̂S
t,t+j

we take the value over each calendar month – i.e. the return from the beginning to the end

of a month. For the variables that are measured at a fixed point in time – the Fed Funds

rate, term spread, default spread, VIX, and VXO, we take the statistical innovation in the

value at the end of the month relative to the lags of the variable (information available at the

beginning of the month). For the other variables, which are either flows or measured over

the course of each month, we take the statistical innovation in the monthly value relative

to data available in the previous month. We are thus measuring the extent to which shocks

to the unspanned part of returns are correlated with shocks to other variables. Given that

the different time series are available for different time periods, each correlation is computed

using the longest period available for that variable.
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Table 3: Correlation of residuals with macro variables

All data Excluding 2020
Unemployment -0.13 -0.05
Ind. Pro. Growth 0.12 0.11
Employment growth 0.13 0.09
FFR 0.04 0.02
Term Spread -0.01 0.00
Default Spread -0.09 -0.07
EBP -0.21 -0.18
VIX -0.28 -0.28
VXO -0.16 -0.17
rv -0.44 -0.42
Maximal corr 0.50 0.47

Note: Table reports the correlations between the residuals of the nonlinear fit of RS onto the market and

various macroeconomic variables: unemployment, industrial production growth, employment growth, the

federal funds rate, the term spread (10 year minus 1 year), the default spread (BAA-AAA spread), the

excess bond premium (EBP) from Gilchrist et al. (2021), the VIX, the VXO, and realized volatility. All

variables are orthogonalized to the market. The last row reports the maximal correlation between any

linear combination of these variables and the residuals. The second column replicates the results excluding

2020.

Since R̂S
t,t+j is orthogonal to the market return by construction, we also orthogonalize

the innovations in all of the other macro and financial time series with respect to the market

return. So the correlation between R̂S
t,t+j with innovations in the default spread represent

changes in the default spread that are separate from the stock market return, and the same

as true for all the other time series considered here.

Among the macro time series, the correlations are all economically small and statistically

insignificant. The only notable correlations are for price series: the expected bond premium

(EBP), the VIX, and realized volatility. In months in which shocks to these price series,

after orthogonalizing with respect to the market return, are unexpectedly high, R̂S
t,t+j tends

to be low. If those are bad states of the world, that would make R̂S
t,t+j risky, which we will

show below would imply more convexity in SMU than our point estimates above.

It is important to emphasize again, though, that the correlations here are for series

orthogonal to the market. For example, the correlation with realized volatility says that,

holding the return on the market fixed, months in which the path to get to that return is

more volatile are months in which R̂S
t,t+j is lower. In order for that to affect pricing, it must

be that investors’ marginal utility does not depend only on some function of the market

return, but also on the path within the month that the market takes to get to that point.
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That fact therefore rules out simple models in which utility is a function of current wealth

(as measured by the stock market).

The fact that realized volatility is related to R̂S
t,t+j is well known in the literature. R̂S

t,t+j

is closely related to the delta-hedged gain on an option, which has been studied in numerous

papers. While one interpretation of those results has been that marginal utility must depend

on the path that returns take, we discuss an alternative below.

The bottom row of table 3 reports the maximum correlation of R̂S
t,t+j with any linear

combination of the innovations (just
√

R2 from a linear regression). It is only 0.5. We take

that as an upper end for a reasonable estimate of the correlation of R̂S
t,t+j with M̂t,t+j (though

we will also explore the extreme case where the correlation is 1).

4.5 Robust uncertainty bands

Our basic goal is to fit a theoretical regression for SMU of the form

M̄t,t+j = cons+ a1R
m
t,t+j + a2R̄

S
t,t+j + residual (21)

Since RS
t,t+j is the return on a synthetic option, its shape is, in theory, approximately piece-

wise linear, and figure 1 shows that holds reasonably accurately in practice. The parameter

a1 – which, recall, is estimated from the mean and variance of the market return – mea-

sures the average slope of SMU with respect to Rm
t,t+j. The parameter a2 (which depends on

αSt,t+j/ var

(
R̃
S

t,t+j

)
and the bias term, cov

(
R̂S
t,t+j, M̂t,t+j

)
) measures essentially the change

in the slope across the strike used in constructing RS
t,t+j.

Table 4 reports estimates of a1 and a2 for a variety of strikes for the synthetic puts (across

columns), and using different methods to account for the uncertainty in these parameters.

It begins by reporting the average slope a1, equal to −Et
[
Rm
t,t+j − 1

]
/ var

(
Rm
t,t+j

)
. Since

that depends only on the market return, it is invariant to the choices about the construction

of RS
t,t+j. Naturally, since the market return has historically been positive, we find that the

slope is negative. The second row of table 4 reports a 95-percent confidence band (using

Hansen-Hodrick (1980) standard errors).

The third row of table 4 reports the implied change in the slope of SMU above versus

below the strike price for RS
t,t+j, taking a2 = −αSt,t+j/ var

(
R̄S
t,t+j

)
as our “point estimate”,

where, in addition to the usual statistical sampling uncertainty, we will also need to account

for the cov
(
R̂S
t,t+j, M̂t,t+j

)
term.

Since in table 2 we find that αSt,t+j is consistently positive, we naturally also find that a2

consistently implies that if anything the slope of SMU is smaller for below the strike price:
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Table 4: Robust uncertainty bands

Estimate
CI (95%) -3.54 -1.26 -3.54 -1.26 -3.54 -1.26 -3.54 -1.26 -3.54 -1.26

Estimate
CI (statistical, 95%) -9.10 3.11 -13.41 -5.04 -18.27 -10.03 -7.14 2.41 -4.91 7.22
CI (bias, corr=0.5) -12.81 6.82 -14.95 -3.50 -19.92 -8.38 -6.59 1.86 -2.54 4.85
CI (bias, corr=1) -22.62 16.63 -20.67 2.22 -25.69 -2.61 -10.82 6.09 -6.24 8.54
CI (both, corr=0.5) -14.55 8.56 -16.32 -2.14 -21.24 -7.06 -8.74 4.01 -5.95 8.26

COPY HERE
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1 0.9 . 0.95 . 1 . 1.05 . 1.1 .
r2 -2.402106 . -2.402106 . -2.402106 . -2.402106 . -2.4021 .
r3 -3.5397492 -1.2644629 -3.5397492 -1.2644629 -3.5397492 -1.2644629 -3.5397492 -1.2644629 -3.5397 -1.2645
r4 -2.9935278 . -9.2256255 . -14.147621 . -2.3655401 . 1.15299 .
r5 -9.0984529 3.1113972 -13.41135 -5.0399014 -18.269885 -10.025358 -7.1412477 2.4101675 -4.9136 7.21953
r6 -12.805635 6.8185796 -14.948536 -3.5027153 -19.918897 -8.3763451 -6.5943661 1.8632859 -2.5421 4.84807
r7 -22.617743 16.630687 -20.671446 2.220195 -25.690173 -2.6050691 -10.823192 6.0921118 -6.2372 8.54316
r8 -14.549806 8.5627502 -16.3159 -2.1353513 -21.239919 -7.0553236 -8.7444391 4.0133589 -5.9503 8.25627

a1 -2.40 -2.40

a2

-2.99 -9.23

-2.40 -2.40 -2.40

-14.15 -2.37 1.15

K=0.9 K=0.95 K=1 K=1.05 K=1.1

Note: Table reports the estimated coefficients a1 (top panel) and a2 (bottom panel) from equation (21),

using data on synthetic puts with maturity of 21 days. Each column corresponds to a different strike K

(as fraction of spot). The top panel also reports statistical 95% confidence intervals for a1. The bottom

panel reports various confidence intervals for a2, accounting for statistical uncertainty (95% confidence

level); accounting for half the maximum potential bias (i.e. assuming correlation between M̂ and R̂S of

0.5); accounting for the maximum potential bias (i.e. assuming correlation between M̂ and R̂S of 1); and

accounting for both statistical uncertainty and half the maximum potential bias. Sample is 1926-2021.

SMU is estimated to be concave. In fact, that effect is so strong that in some cases it implies

that SMU is actually increasing with the market return. That sort of “locally negative risk

aversion” has also been found previously in studies of option returns, for example Rosenberg

and Engle (2002).

The remaining rows in table 4 report various possible “uncertainty intervals” for the

change in the slope above and below the strike. The first case just looks at the usual 95-

percent confidence band, measuring statistical sampling uncertainty. In any case where the

alpha is statistically significantly positive, the confidence band for the change in the slope

will also only include negative values (i.e. implying concavity).

The next two rows incorporate potential effects of the cov
(
R̂S
t,t+j, M̂t,t+j

)
adjustment.

We use the following simple bound,∣∣∣cov
(
R̂S
t,t+j, M̂t,t+j

)∣∣∣ ≤ corr
(
R̂S
t,t+j, M̂t,t+j

)
std
(
R̂S
t,t+j

)
std
(
M̂t,t+j

)
(22)

For the correlation, we assume either
∣∣∣corr (R̂S

t,t+j, M̂t,t+j

)∣∣∣ < 0.5, based on the evidence

from the previous section, or the weakest possible bound of
∣∣∣corr (R̂S

t,t+j, M̂t,t+j

)∣∣∣ < 1.

std
(
R̂S
t,t+j

)
can be measured directly from the time series, where R̂S

t,t+j is simply the

residual from the kernel regression studied above.

Finally, to get std
(
M̂t,t+j

)
we assume that the volatility of the unspanned part of SMU

is no greater than that from the part of SMU linearly spanned by the market. That is,
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std
(
M̂t,t+j

)
≤ E

[
Rm
t,t+j − 1

]
. Intuitively, that restriction says that the Sharpe ratio avail-

able from any investment independent of the market return can be no greater than that of

the market itself.

The next two rows report bounds for the change in the slope of SMU across the strike for

the two bounds on
∣∣∣corr (R̂S

t,t+j, M̂t,t+j

)∣∣∣. In general they continue to imply that we can rule

out the possibility SMU is convex. And in any case, the uncertainty intervals themselves do

not change the point estimates, which imply concavity.

Finally, the bottom row of table 4 constructs uncertainty intervals combining the sta-

tistical uncertainty – the usual standard error – with the uncertainty due to the pricing of

unspanned risk. Rather than sum those two sources of uncertainty linearly, we take the

square root of the sum of their squares, which can be thought of as capturing the idea that

the bound on the price of unspanned risk is really encoding a ±2 standard deviation range,

like a prior.

5 The convergence of true and synthetic put returns

The theoretical analysis in section 2 shows that in theory options are the ideal security for

estimating the shape of SMU. That fact is well known – with a full set of strikes, one can in

principle measure the entire SMU curve with respect to the market return, getting measures

of local risk aversion at each point (e.g. Rosenberg and Engle (2002)). Section 2 along

with the introduction also discussed why options may not be the best vehicle for doing so in

practice: they have a short sample, have not always been liquid, and are not easily traded

by all investors. Trading frictions and market segmentation can potentially explain why true

and synthetic options would have different returns over time (or, equivalently, why we would

observe large gains on delta-hedged options).

But trading frictions and market segmentation have declined over time. Volume in the

S&P 500 futures market, for example, is orders of magnitude larger than it was 30 years

ago. Bid/ask spreads in futures are now on the order of 0.01 basis points. In addition, while

endowments and pensions are legally not allowed to sell options in the US, the hedge fund

sector has grown enormously – by an order of magnitude just between the years 2000 and

2007 – giving those investors a vehicle through which to get exposures that are highly similar

to short options positions (Jurek and Stafford (2015)).

There are two basic explanations for why there might be a gap between returns on true

and synthetic options: either the difference in their returns is a priced source of risk, or

markets are segmented, so that they are not priced by the same SMU. If the latter is true,
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then as segmentation has declined over time, we should also expect to see the gap between

returns on true and synthetic options shrink. This section provides evidence on that point.

The top panel of Figure 5 plots 10-year moving averages of the returns from selling

monthly 5% out-of-the-money true and synthetic puts, both market hedged (i.e. subtracting

their beta times the market return). The solid blue line shows the well known result that

selling puts was profitable for much of the sample, but those profits have actually declined

significantly over time, to the point that following the crash in 2020 due to Covid, selling

puts had a negative 10-year return for the first time.

The solid red line shows the behavior of synthetic puts. The returns have fluctuated

around zero – sometimes positive, and sometimes negative, but with no consistent sign.

The returns on the synthetic puts are, as one would expect from the results in the previous

sections, highly correlated month-by-month with those on true puts, but the means are very

different.

All of this can also be stated in terms of alphas. Since the returns are all market-hedged,

rolling mean returns represent alphas over the same ten-year windows.

The convergence of the returns of true puts to those on synthetic puts is immediately

clear from the figure. The black dashed line plots the difference between the two series, which

is equivalently to the return on delta-hedged puts (e.g. Bakshi and Kapadia (2003)). That

difference has fallen progressively through the sample, until by the last ten-year window it

is almost exactly equal to zero.

The bottom panel of figure 5 plots the Sharpe ratios of the series in the top panel

(which are information ratios for the options themselves). The information ratios from selling

exchange-traded puts are economically very large – about equal to the size of the market

risk premium itself. That is, a mean-variance investor would be approximately indifferent

between holding the market or writing market-hedged puts in the early part of the sample.

By the end of the sample, the information ratios are approximately equal, consistent with

the top panel, and there is no longer any evidence for outperformance.

We consider two formal tests of whether the gap between traded and synthetic option

returns has shrunk over time. First, we simply regress the gap between the true and synthetic

option returns on a time trend. Using Newey–West standard errors with 12 monthly lags,

the coefficient on the time trend is -0.011 percent per month with a standard error of 0.004

percent (and hence significant at the 1-percent level). To put that value in context, the

average value of the gap was 1.75 percent per year prior to 2000. -0.11 percent per month

is enough to erase that over a period of about 13 years, consistent with what is observed in

figure 5.
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Figure 5: Moving average of alphas and information ratios for selling puts
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Note: Panel (a) shows the 10-year moving average of alphas to a strategy that sells puts, either traded

or synthetic. The dashed line reports the difference of the two. Panel (b) reports the analogous results for

information ratios. 32



Alternatively, we estimate a test for a structural break in the value of the gap between

the two series under the null that it has a constant mean. Using the optimal exponential

Wald statistic of Andrews and Ploberger (1994), we obtain a p-value of 0.0275, implying we

can strongly reject the null of no break. The estimated break date (maximizing the Wald

statistic) is January, 2008. This test trims the first and last 20 percent of the sample, so the

value of the statistic is not affected by either the 2020 or 1987 crash.

Overall, then, this section shows that returns on exchange-listed options have converged

to those on synthetic options. Over time the positive deviation of the listed puts has shrunk

until by the end of the sample there is no significant difference between the two, and their

alphas are approximately equal to zero. These results are consistent with the idea that in

the earlier part of the sample, up to the mid-2000’s, perhaps, exchange-traded options were

segmented from the overall equity market and hence priced differently. As that segmentation

has shrunk, the results from the two methods have converged and now both agree on the

proposition that there is no particular premium for left tail risk.

6 Conclusion

The fact that options can reveal state prices is a foundational result in asset pricing, and

it is well known that in the data equity index option prices imply that state prices are

particularly high (relative to the associated physical probabilities) for states in which the

market has significant declines. This paper takes an alternative approach to measuring the

characteristics of state prices, showing that they can be recovered from the dynamics of stock

market returns. The results of that method contrast starkly with those from options, with

index returns implying that there is nothing particularly special about the left tail of the

return distribution.

The core question one must ask in evaluating this paper’s results, then, is which method is

more trustworthy. Options have the advantage of giving a very direct measure, which requires

only minimal assumptions, but they come with a relatively short data sample, and there is

evidence that the options market is somewhat segmented from the broader equity market.

Inference from the dynamics of market returns, on the other hand, requires somewhat more

(though still fairly weak) assumptions, but comes with a sample three times longer than the

options sample, and is one of the only markets (along with perhaps bonds) that essentially

all investors participate in.

It is almost inevitable that there will be a difference in implications between the two

methods, but standard models of intermediary constraints and market segmentation would
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imply that as liquidity increases in the options market and it becomes better integrated and

accessible, the returns in the options and equity markets should converge. We provide initial

evidence that the convergence seems to be going in the direction of equities – the tail risk

premium in options has been shrinking and approaching the values recovered from equity

returns. One version of the question is, if delta hedging worked perfectly, would option

returns converge to those implied by equity dynamics, or would equity dynamics converge

to those implied by option returns?
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Figure A.1: Synthetic put returns as a function of the market, various strikes

(a) Maturity: 1 month, strike: spot - 10% (b) Maturity: 1 month, strike: spot - 5%

(c) Maturity: 1 month, strike: spot (d) Maturity: 1 month, strike: spot + 5%

(e) Maturity: 1 month, strike: spot + 10%

Note: The figure replicates the top panel of figure 2, using different strikes, from 10% below the spot to

10% above the spot.
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Figure A.2: Synthetic put returns as a function of the market, various maturities

(a) Maturity: 1 month, strike: spot - 5% (b) Maturity: 3 months, strike: spot -9%

(c) Maturity: 6 months, strike: spot -12% (d) Maturity: 12 months, strike: spot -17%

Note: The figure replicates the top panel of figure 2, using different maturities. The strike scales with

the square root of time to maturity (as volatility does).
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Figure A.3: Synthetic put returns as a function of the market

(a) RS vs. Rm

(b) Residuals and their s.d.

Note: Same as figure 2, but using one-day lagged beta to build the synthetic put.
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Figure A.4: Log cumulative returns on R̃S
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Note: Log cumulative returns on R̃S , for the period 1926-2021. Green line is the synthetic put, red line

is the synthetic put with one-day lagged beta, blue line is the synthetic put with two-day lagged beta.
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