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Abstract

The empirical literature on dynamic option valuation typically does not specify a pricing kernel.

It specifies the kernel indirectly through the price of risk, or defines it implicitly as the ratio of

the risk-neutral and physical probabilities. We explicitly characterize pricing kernels that satisfy

absence of arbitrage. These kernels are volatility-dependent by construction and provide unique

insights on the impact of stock market volatility risk on state prices. We study the implications

of these kernels for pricing kernel anomalies and existing specifications of the price of risk.

Different affine price-of-risk specifications correspond to pricing kernels with radically different,

and sometimes implausible, economic implications. We find that it is difficult to statistically

distinguish between pricing kernels with widely different economic implications and risk premia.

We attribute this to the inherent statistical problem with the estimation of equity and variance

risk premia. This finding extends Merton’s (1980) observations on the estimation of the market

equity premium to joint estimation of equity and variance risk premia using the cross-section of

options and the underlying returns.
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1 Introduction

The pricing kernel is the most critical concept in asset pricing. It ensures absence of arbitrage

and governs the relationship between physical and risk-neutral probabilities at all times and for all

return horizons. One long-standing approach to learn about the properties of the pricing kernel

specifies its relation to aggregate consumption and estimates the resulting model using consumption

data and returns on various assets. This literature has made enormous progress in matching the

moments of asset returns, but there is as yet no consensus on the preferred model and the resulting

properties of the pricing kernel.1

An alternative approach to identifying the pricing kernel avoids the use of consumption data.

Building on the insights of Breeden and Litzenberger (1978), an extensive literature starting with

Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Lo (2000), Jackwerth and Rubinstein (1996), Jackw-

erth (2000) and Rosenberg and Engle (2002) estimates the pricing kernel using index returns and

index option prices. Whereas the pricing kernel prices all assets, and the insights of Breeden and

Litzenberger (1978) can be used to estimate the state price density for any asset, index options

are interesting from an empirical perspective because they identify the pricing kernel under the

assumption that the equity index level is equal to aggregate wealth.2 However, this literature

has given rise to puzzles of its own, most importantly the finding that the pricing kernel is not

monotonically decreasing as a function of aggregate wealth, but rather U-shaped.3

In light of the importance of the pricing kernel and these outstanding research questions, it

is surprising that the literature seems to have overlooked an alternative approach to learn about

pricing kernels. The existing empirical literature on parametric dynamic index option pricing mod-

els typically does not explicitly specify the pricing kernel. It characterizes the kernel indirectly by

1See Mehra and Prescott (1985) and Hansen and Jagannathan (1991) for problems with early consumption-based
models. See for instance Campbell and Cochrane (1999), Bansal and Yaron (2004), Gabaix (2012) and Wachter
(2013) for examples of consumption-based models that have been more successful in matching the data.

2See Chernov (2003) for an empirical study that estimates the pricing kernel using a cross-section of securities.
3For evidence on U-shaped pricing kernels, see for instance Jackwerth (2000), Aı̈t-Sahalia and Lo (2000), Rosenberg

and Engle (2002), Bakshi, Madan, and Panayotov (2010), Chabi-Yo (2012), Christoffersen, Heston, and Jacobs (2013),
Song and Xiu (2016), and Cuesdeanu and Jackwerth (2018). Linn, Shive, and Shumway (2018) and Barone-Adesi,
Fusari, Mira, and Sala (2020) on the other hand argue that the pricing kernel is well-behaved.

1



specifying prices of risk or defines it implicitly as the ratio of risk-neutral and physical probabili-

ties.4 The motivation for this approach is presumably that the explicit mapping from the prices of

risk to the pricing kernel is mechanical, and does not provide additional insights.5

This paper argues that the specification of the pricing kernel should be an integral part of the

specification of these models and shows that some existing approaches are equivalent to implausible

economic assumptions. We propose a class of pricing kernels that are consistent with the conven-

tional assumption of affine dynamics under the physical and risk-neutral measure in the square root

stochastic volatility model (Heston, 1993).6 These kernels are volatility-dependent by construction

and are therefore especially useful to analyze the impact of stock market volatility risk on state

prices and market risk. They can be path-dependent and nest path-independent kernels (Ross,

2015) as special cases.

The main advantage of explicitly specifying the pricing kernel is that the resulting parame-

terization provides economic content and can be restricted to ensure that the resulting underlying

returns and option prices are arbitrage-free and consistent with intuitively plausible loadings on the

model’s state variables. We show that small modifications to the affine price of risk specifications

used in the literature correspond to different pricing kernels with radically different economic impli-

cations. Some of these kernels, and the corresponding risk specifications, give rise to economically

implausible results, such as state prices that are S-shaped as a function of market returns. A kernel

consistent with the completely affine price of risk specification produces very plausible results.

We find that it is difficult to statistically distinguish between pricing kernels, even when they

embody very different economic assumptions and generate widely different equity and variance risk

premia and Sharpe ratios. We argue that existing tests have low power to statistically distinguish

different pricing kernels because the identification of the pricing kernel is equivalent to the estima-

4For examples of this approach, see the seminal papers in this literature by Chernov and Ghysels (2000), Pan
(2002), and Eraker (2004).

5This is all the more noteworthy because the term structure (Ang and Piazzesi, 2003; Ang, Bekaert, and Wei,
2008; Adrian, Crump, and Moench, 2013) and currency option literatures (Chernov, Graveline, and Zviadadze, 2018)
explicitly specify pricing kernels.

6We use the simplest possible option pricing model with a stochastic volatility factor to highlight the generality
of our theoretical and empirical observations.
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tion of conditional risk premia. We need a lot of data to estimate unconditional average returns

on stocks or options, and even more data to estimate conditional returns. Moreover, plain vanilla

option prices are sensitive to the probabilities at expiration, but are not very informative about

the path-dependent properties of the pricing kernel. Pricing kernels with widely different economic

implications can therefore produce similar values for European options.

These findings provide important insights into the estimation of risk premia, which constitutes

another important challenge in asset pricing. It is well known that estimating risk premia is difficult.

For instance, Merton (1980) convincingly argues that very long time series of returns are required

to obtain reliable estimates of the equity premium. Our findings extend the observation in Merton

(1980) to joint estimation of equity and variance risk premia using the cross-section of options

and the underlying returns. Our results are also consistent with Merton’s in the sense that in the

presence of these identification problems, we find that economic intuition and theory may be the

most useful tool to identify market risk premia. Specifically, Merton (1980) advocates imposing a

positivity restriction on the path of the conditional equity risk premium. Similarly, we find that

imposing a negativity restriction on the market variance risk premium leads to more plausible and

reliable estimates.

Our empirical analysis uses a joint likelihood based on index returns and a rich option data set,

using data for the January 1996 to June 2019 period.7 We explore the most popular specifications

of the price of risk in the option literature, where the equity (market) risk premium µ0 + µ1v(t)

and the variance risk premium λ0 + λ1v(t) are modeled as affine functions of the variance v(t).

We refer to this specification as “affine”. We also explore the important nested case with zero

intercepts (µ0 = λ0 = 0), which we refer to as “completely affine”, adopting the terminology in

Singleton (2006, p. 392) and the term structure literature. We specify pricing kernels that are

consistent with these risk premium specifications and derive the parameter restrictions consistent

with the martingale condition and no-arbitrage.

7Much of the modern option pricing literature jointly considers the time-series of observable returns and option
prices. See for instance Pan (2002), Eraker (2004), Bates (2006), Aı̈t-Sahalia and Kimmel (2007), Hurn, Lindsay, and
McClelland (2015), and Andersen, Fusari, and Todorov (2017).
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We find that the seemingly innocuous addition of an intercept in the affine specification of the

risk premium has important consequences. Including an intercept requires a different specification of

the pricing kernel and a different and more complex set of restrictions on the economic parameters

that characterize the pricing kernel. However, while part of the literature seems to imply that

µ0 = λ0 = 0 is a necessary condition for no-arbitrage, we show that it is merely a sufficient

condition and we characterize the no-arbitrage restrictions in the more general case.

We then study whether the restrictions on the intercept in the completely affine specification are

supported by the data. While the inclusion of an intercept improves the statistical fit, we find that

only the completely affine specification is strongly supported based on its economic implications.

The marginal pricing kernel that defines state prices as a function of market returns (aggregate

wealth) is well behaved for the completely affine specification, but the pricing kernel consistent

with the affine specification leads to adjacent state prices that are very different and state prices

as a function of wealth that defy economic intuition. The intuition for this finding is that the

intercepts in the affine price of risk specification lead to counter-intuitive Sharpe ratios and/or

implausible signs of the risk premia. We, therefore, recommend the use of the completely affine

price of risk specification and argue against the more general specification, not because it allows

for arbitrage but because of its unrealistic economic implications. We emphasize that this finding

cannot be uncovered without explicitly considering the pricing kernel implicit in the price of risk

specification.

Next we estimate the option pricing model subject to various restrictions on the parameters of

the pricing kernel that underlies the completely affine specification of the price of risk. We test

for the significance of the parameters that capture the pricing kernel’s dependence on variance and

market returns. Note that the hypothesis that the variance-aversion parameter equals zero amounts

to the absence of an independent variance risk premium, which amounts to logarithmic utility in the

Merton (1973) ICAPM. We find that imposing these strong economic restrictions lead to radically

different estimates of the equity and variance risk premia. This is also reflected in large differences

in the state prices embodied in the marginal pricing kernel as a function of wealth. We also use
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our estimates to emphasize the critical role of the volatility state variable by inspecting the realized

time series path of the pricing kernel, i.e., the path obtained by inserting the realizations of the

state variables. By comparing the path of the unrestricted pricing kernel with the paths of kernels

that restrict some of the state variables, we can gauge the importance of these state variables and

restrictions. We find that the kernel without volatility risk is substantially less variable compared

to the unrestricted kernel, especially in crisis periods. The path-independent kernel and the affine

price of risk specification result in kernels that are very implausible.

Surprisingly, however, when inspecting the likelihoods based on option prices and the underlying

returns, the strong economic implications of these parameter restrictions do not translate into large

decreases in the likelihood. It is difficult to statistically distinguish between pricing kernels, even

when they embody very different economic assumptions and generate widely different equity and

variance risk premia. This finding illustrates fundamental limitations faced by the option pricing

literature. Following Breeden and Litzenberger’s (1978) insight that the risk-neutral density can

be inferred from option prices, financial economists have emphasized fitting options and returns

jointly to identify risk premia. Our findings suggest that this approach yields risk premium esti-

mates that are not very precise, and that theoretical restrictions may enhance power. Our explicit

characterization of the pricing kernel is critical to arrive at these conclusions, because it shows

that the option data alone do not provide sufficient statistical power to distinguish economically

different risk premia.

Finally, our results suggest that U-shaped pricing kernels may not be anomalous nor constitute

an asset pricing puzzle. These shapes are implied by physical and risk-neutral stochastic volatility

dynamics in conjunction with pricing kernels that are entirely consistent with rational economic

behavior, and are due to the pricing of volatility risk in these models. Provided that the option

valuation model contains volatility as a state variable, a monotonic pricing kernel will only obtain

if volatility risk is close to zero or its price is very small, which is inconsistent with the existing

evidence. We conclude that the study of pricing kernels as a function of index returns is overly

restrictive when the variance is a relevant state variable.
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We emphasize that we are not the first to study the impact of the pricing kernel on option prices.

Several studies use consumption-based models to analyze how preferences and pricing kernels impact

index option prices.8 Some of these studies use the recursive preferences of Kreps and Porteus

(1978), Epstein and Zin (1989) and Duffie and Epstein (1992), which result in stochastic volatility

of index returns. Our proposed pricing kernels are extensions of the power utility of Rubinstein

(1976). The disadvantage of our approach is that it does not specify the theoretical relation

with consumption as a state variable, but the advantage is that it provides a direct relation with

existing empirical implementations of (reduced-form) parametric dynamic option pricing models.

It is therefore relatively straightforward to implement and estimate using option data, which allows

us to fully characterize and explore the impact of stock index volatility on the pricing kernel.

From an empirical perspective, a closely related paper is Chernov (2003), who reverse engineers

the pricing kernel based on options on various securities. Chernov (2003) also studies the time path

of the realized pricing kernel to learn about state variables and the relation between the pricing

kernel and economic conditions. Our contribution is distinct because our empirical approach is

guided by the specification of a class of parametric pricing kernels that are consistent with a

specific option pricing model. Ghosh, Julliard, and Taylor (2017) also explore the relation between

the pricing kernel and business cycle fluctuations, but do not use options to estimate the kernel.

Beason and Schreindorfer (2020) analyze the implications of option data for macro-finance models.

The paper proceeds as follows. Section 2 discusses the data. Section 3 reviews the Heston

(1993) stochastic volatility model and discusses our estimation approach based on returns and

options data. Section 4 specifies the class of pricing kernels that connect the risk-neutral and

physical dynamics. Section 5 presents the estimation results and Section 6 discusses their economic

implications. Section 7 concludes.

8See for instance Garcia, Luger, and Renault (2003), Eraker and Shaliastovich (2008), Drechsler (2013), Shalias-
tovich (2015), Eraker and Yang (2019), and Seo and Wachter (2019). Liu, Pan, and Wang (2005) and Eraker and
Wu (2017) use related models with the dividend payout rate and cash flow respectively as the state variable.
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2 Data

Our empirical analysis uses out-of-the-money (OTM) S&P 500 call and put options with maturities

between 14 and 365 days for the January 1996 to June 2019 period. We obtain option data from

OptionMetrics. We apply the following filters:

1. Discard options with implied volatility smaller than 5% or greater than 150%.

2. Discard options with volume or open interest less than ten contracts.

3. Discard options with mid price less than $0.50 or bid price less than $0.375 to avoid low-valued
options.

4. Discard options with data errors – where bid price exceeds offer price, or a negative price is
implied through put-call parity.

Then we keep the six most actively traded strike prices for each available maturity. It is important

to use as long a time period as possible, in order to be able to identify key aspects of the model

including volatility persistence.9 On the other hand, estimation using large option panels and long

time series is very time-intensive. Rather than using a short time series of daily option data, we

use an extended time period, but we select option contracts for one day per week only. Following

several existing studies (see, e.g., Heston and Nandi, 2000; Christoffersen, Heston, and Jacobs,

2013), we use Wednesday data because it is the day of the week least likely to be a holiday. It is

also less likely than other days to be affected by day-of-the-week effects. These steps result in a

dataset with 62,483 option contracts. Table 1 presents descriptive statistics.

We obtain S&P 500 index returns from CRSP. We use data for the January 1990 to June 2019

period. This sample period is longer than the option sample to help with the identification of the

return parameters under the physical measure, as in Christoffersen, Heston, and Jacobs (2013).

We also use data on the VIX from January 1990 to June 2019, which we obtain from the Federal

Reserve Bank of St. Louis Economic Database. The time series for the risk-free rate is proxied

by the one-month Treasury Bill rates obtained from CRSP. Following existing work, options are

9See, for instance, Broadie, Chernov, and Johannes (2007) for a discussion.
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valued using a maturity-specific risk-free rate. We apply a cubic spline interpolation to the data

obtained from OptionMetrics.

3 Return-Based and Option-Based Parameter Estimates

We estimate the stylized affine Heston (1993) stochastic volatility model. We obtain parameter

estimates for this model under the physical measure, exclusively based on returns, and under the

risk-neutral measure, exclusively based on options. Then we compare the resulting estimates.

3.1 The Model

We focus on the simplest possible stochastic volatility model with a single diffusive volatility factor.

We recognize that the existing literature has clearly established that additional volatility factors,

jumps in returns and variance and/or tail factors are required to improve option fit and pricing

performance. However, we deliberately focus on the simplest possible model because it suffices for

our main argument and we want to avoid comparisons between models and factors. Our analysis

can be repeated using more general models, but at the cost of much greater complexity. Our prior

is that most of the issues we highlight here using a simple model are even more relevant in more

complex models, but we keep this analysis for future work.

We employ the Heston (1993) continuous-time stochastic square root volatility model to specify

stock price dynamics as well as option prices. For option valuation, the risk-neutral stock price

dynamic is sufficient. The square root stochastic volatility model specifies the risk-neutral dynamics

of the spot index S(t) and its stochastic variance v(t) as follows:

d logS(t) =

[
r − 1

2
v(t)

]
dt+

√
v(t)dz∗1(t), (1)

dv(t) = κ∗(θ∗ − v(t))dt+ σ
√
v(t)dz∗2(t),

where dz∗1 and dz∗2 are Wiener processes with correlation coefficient ρ. The risk-free rate r can be

either constant or time-varying; this has negligible implications for our results. It is also straight-
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forward to specify a stochastic model for the risk-free rate, but it is well-known from the existing

literature that this does not have a major impact on option valuation (Bakshi, Cao, and Chen,

1997). We therefore deliberately focus on the simplest possible model. Consistent with most of

the existing literature, we focus on a physical dynamic that has the same functional form as the

risk-neutral dynamic:

d logS(t) =

[
r +

(
µ− 1

2

)
v(t)

]
dt+

√
v(t)dz1(t), (2)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dz2(t),

where µ is the parameter that identifies the equity premium, and dz1 and dz2 are Wiener processes

under the physical measure. Note that σ, the variance of variance parameter, and ρ, the correlation

between z1 and z2, are assumed to be identical to the corresponding parameters in the risk-neutral

dynamics. However, the long-run physical variance θ and mean reversion κ differ from the long-run

risk-neutral variance θ∗ and mean reversion κ∗. This specification is consistent with the existing

literature. It represents the most general combination of physical and risk-neutral dynamics that

are consistent with the affine specification and Girsanov’s theorem. We analyze this mapping in

more detail below in our discussion of (the) pricing kernel(s).

3.2 The Instantaneous Stochastic Variance and the VIX

In the Heston (1993) model, as well as in its many generalizations studied in the literature, the

stochastic variance is unknown. This latency is typically addressed in estimation by using filtering-

or simulation-based techniques (see, e.g., Eraker, Johannes, and Polson, 2003; Eraker, 2004; Bates,

2006; Christoffersen, Jacobs, and Mimouni, 2010). It is well-known that the implementation of

such techniques is computationally very demanding, especially when using long time series and

large cross-sections of option prices in estimation.

To alleviate this computational burden, we follow a different approach.10 We use the fact that

10See Bates (2000) and Andersen, Fusari, and Todorov (2015) for alternative approaches.
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the stochastic variance v(t) can be represented as a linear function of VIX2(t). This directly follows

from the model specification: When v(t) follows a CIR process, VIX2(t) is a linear function of v(t).

Specifically, the model-implied VIX2(t) is given by:

VIX2(t) =
1

∆1m
E∗t

[∫ t+∆1m

t
v(u)du

]
= θ∗ +

e−κ
∗∆1m − 1

−κ∗∆1m
(v(t)− θ∗), (3)

in which ∆1m ≈ 30/365. Rearranging equation (3) yields

v(t) =
VIX2(t)− θ∗(1− w)

w
, (4)

where w = (1 − exp(−κ∗∆1m))/(κ∗∆1m). In implementation, we can add a measurement error

because equations (3) and (4) use the model-implied VIX2(t). Equation (3) in conjunction with

the measurement error yields a measurement equation which can be used to filter the latent state

variable. Jones (2003), Cheung (2008), and Chernov, Graveline, and Zviadadze (2018) use this

measurement equation and a Bayesian framework with Markov chain Monte Carlo methods to

estimate option pricing models. We further simplify the setup: We do not use the measurement

equation, but relax the restrictions on the coefficients in equation (4) and omit the measurement

error. Specifically, we assume:

v(t) = η0 + η1VIX2(t). (5)

We then use equation (5) in the valuation formula for all options in the sample. As a result, options

are a function not only of the stochastic v(t), but also of the observable VIX. This implementation

follows Aı̈t-Sahalia and Kimmel (2007), who use it in a sample which contains a single short-

maturity at-the-money option at each time t.

We next discuss the details of this estimation approach based on returns and the estimation

based on options. Our use of the VIX as a proxy for the stochastic variance has implications for

both estimation exercises.
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3.3 Return-Based Estimation

The main purpose of the assumption that the stochastic variance is an affine function of VIX is to

alleviate the computational burden when estimating the model using option data. However, this

assumption also has implications for the return-based estimation. Since we observe the total return

of the stock index and VIX at each time t, we can formulate the joint likelihood function of the

return and VIX2 to estimate the physical parameters. In most existing estimations, the variance is

instead filtered from the underlying returns, and the VIX is not used in estimation.

To characterize the likelihood function, we first apply the Euler discretization to equation (2),

which results in:

logR(t+ ∆) =

[
r −

(
µ− 1

2

)
v(t)

]
∆ + εR(t+ ∆), (6)

v(t+ ∆)− v(t) = κ(θ − v(t))∆ + εv(t+ ∆),

where R(t+∆) = S(t+∆)/S(t) represents the gross return and ∆ = 1/252.11 The errors ε(t+∆) =

(εR(t+ ∆), εv(t+ ∆))′ follow a joint normal distribution, and their mean and variance-covariance

matrix are respectively given by

0 =

0

0

 , Σ(t) =

 v(t) σρv(t)

σρv(t) σ2v(t)

∆.

The joint log-likelihood function is given by:

logLR =
T−1∑
t=1

log f
(
logR(t+ ∆),VIX2(t+ ∆)|VIX2(t)

)
=

T−1∑
t=1

log f(logR(t+ ∆), v(t+ ∆)|v(t))× J(t+ ∆)

=
T−1∑
t=1

− log(2π)− 1

2
log |Σ(t)| − 1

2
ε(t+ ∆)′Σ−1(t)ε(t+ ∆) + log η1,

11Note that logR(t+ ∆) is the daily log return between t and t+ ∆ while v(t) is the annualized variance at time t.
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where f(logR(t+∆), v(t+∆)|v(t)) is the conditional density of discretized logR(t+∆) and v(t+∆),

J(t+∆) is the Jacobian between VIX2(t+∆) and v(t+∆), which is given by η1 from equation (5),

and t represents time measured in days. Let Θ = {µ, κ, θ, σ, ρ, η0, η1} be the set of physical

parameters. To estimate Θ, we solve the following optimization problem:

max
Θ

logLR. (7)

3.4 Option-Based Estimation

The risk-neutral parameters for the dynamic in equation (1) can be estimated in various ways, but

each implementation requires an option valuation technique. We follow the fast Fourier implemen-

tation of Carr and Madan (1999). The price of a call option with its strike price K and maturity

τ is expressed by a quasi closed form up to a numerical integration, and it is given by

C(S(t), v(t), t) =
e−αk

π

∫ ∞
0

Re
[
e−iukψ(u)

]
du, (8)

where k is the natural log of K. The function ψ(u) is the Fourier transform of a modified call price,

which is the call price multiplied by eαk for α > 0. We found that α = 4 works well. The function

ψ(u) is calculated as follows:

ψ(u) =
e−rτfCHτ (u− i(α+ 1)|S(t), v(t))

(α+ iu)(α+ 1 + iu)
,

where i is the imaginary unit, and fCHτ (φ|S(t), v(t)) = E∗t
[
eiφ logS(t+τ)

]
is the risk-neutral condi-

tional characteristic function of logS(t+τ). The closed-form expression of fCHτ (φ|S(t), v(t)) follows

Heston (1993).12 The price of a put option with the same strike price and maturity can be obtained

through put-call parity.

12When logS(t) and v(t) are characterized by

d logS(t) = [r + uv(t)]dt+
√
v(t)dz1(t),

dv(t) = (a− bv(t))dt+ σ
√
v(t)dz2(t),
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Note that the option pricing formula in equation (8) does not account for dividends. We follow

the existing literature and use a future-dividend-adjusted index price. Specifically, we use S(t)e−qτ ,

where q is the dividend yield at time t.

We use vega-weighted option pricing errors. Let OMkt
i and OMod

i denote the market and the

model prices of the ith option, respectively. Both OMkt
i and OMod

i represent call option prices if

F/K < 1 and put option prices if F/K > 1. Define the vega-weighted option pricing errors as

εo,i =
OMkt
i −OMod

i

νMkt
i

,

where νMkt
i is the Black-Scholes vega of option i.13

Maximum likelihood estimation requires a distributional assumption. Following most of the

existing literature, we assume that εo,i follows a normal distribution, i.e. εo,i ∼ N(0, s2
o), where s2

o

is the sample variance of the errors. Option valuation errors are assumed to be independent and

identically distributed (i.i.d.).

The set of risk-neutral parameters to be estimated is denoted by Θ∗ = {κ∗, θ∗, σ, ρ, η0, η1}. Let

N be the total number of options data. Θ∗ is then estimated by solving the following optimization

problem:

max
Θ∗

logLO,

the characteristic function solution is given by

fCHτ (φ|S(t), v(t)) = eC+Dv(t)+iφ log S(t), (9)

where

C = rφiτ + a
σ2

{
(b− ρσφi+ d)τ − 2 log

[
1−gedτ
1−g

]}
, D = b−ρσφi+d

σ2

[
1−edτ
1−gedτ

]
, (10)

g = b−ρσφi+d
b−ρσφi−d , and d =

√
(ρσφi− b)2 − σ2(2uφi− φ2).

13This approach is often used when the levels of asset prices are different but implied volatilities are comparable.
See for example Carr and Wu (2007), Trolle and Schwartz (2009), and Christoffersen, Heston, and Jacobs (2013).
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where the option log-likelihood function, logLO, is given by:

logLO = −N
2

log(2π)− N

2
log s2

o −
1

2s2
o

N∑
i=1

ε2o,i.

3.5 Parameter Estimates

Table 2 presents the estimation results. Panel A presents the (physical) parameters estimated from

returns, and Panel B presents the (risk-neutral) parameters estimated from options.

The physical parameter estimates are based on the stock index return and VIX data. The risk-

neutral parameters are estimated exclusively based on options data. Both physical and risk-neutral

parameter estimates are economically plausible. Consistent with findings in the existing literature,

κ is much larger than κ∗, while θ is much smaller than θ∗. The risk-neutral long-run variance

exceeds the physical long-run variance, and risk-neutral persistence exceeds physical persistence.

The option-based kurtosis parameter σ is larger than the return-based estimate of σ, and the

option-based skewness parameter ρ is more negative than the return-based ρ. The distribution

implied by the option data is thus more fat-tailed and skewed than the physical distribution. The

finding on σ is mostly consistent with the existing literature. Bakshi, Cao, and Chen (1997),

Eraker (2004), and Christoffersen, Jacobs, and Mimouni (2010) also obtain higher estimates of σ

when estimating on options. Existing findings on ρ are mixed. Typically the estimates from returns

are not very different from the option-based estimates.

The estimate of µ in Table 2 implies an average yearly equity premium µv(t) of 8.19% for the

January 1990 to June 2019 sample period, close to the sample average of 8.24%. It is not possible to

infer the path of the model-implied variance risk premium using the estimated parameters because

the physical and risk-neutral estimations do not constrain the parameter estimates of σ, ρ, η0,

and η1 to be the same. However, we can use the parameters θ and θ∗ to compare the long-run

means of the physical and risk-neutral stochastic variances. Taking the square root, we find that

the model-implied long-run expectation of the stock index physical (risk-neutral) yearly volatility

is 17.6% (31.4%). Figure 1 shows the time path of the option-based variance, as well as the time
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path of the difference between the return-based and option-based variance.

4 Pricing Kernels

In this section, we characterize the class of pricing kernels implied by the physical and risk-neutral

dynamics in equations (1) and (2). We first characterize a class of exponential-affine pricing kernels.

This exponential-affine form is a function of S(t) and the historical path of v(t). In special cases,

the exponential-affine kernel is path-independent (Ross, 2015), as it depends only on the current

value of v(t). We subsequently study a more general class of pricing kernels that is helpful to

understand commonly used specifications of the price of risk.

4.1 A Class of Exponential-Affine Pricing Kernels

Most of the existing literature is not explicit about the pricing kernel that links the risk-neutral and

physical dynamics in equations (1) and (2). Appendix A shows that the following class of pricing

kernels is consistent with these dynamics:

M(t) = M(0)

(
S(t)

S(0)

)γ
exp

(
βt+ η

∫ t

0
v(s)ds+ ξ(v(t)− v(0))

)
, (11)

where γ and ξ are the index level and variance preference parameters. We refer to β as the time-

preference parameter and to η as the path-dependence parameter, respectively. Note that the

dynamics (1) and (2) imply that return means and variances are linear in v(t). The logarithm of

the pricing kernel (11) is also linear in log(S(t)) and (the path of) v(t). Henceforth, we therefore

refer to this as the exponential-affine pricing kernel.

This pricing kernel nests several important special cases. First, if we set η equal to zero, then the

pricing kernel is a function of time t and the state variables S(t) and v(t), but does not depend on

the history of the state variables. Ross (2015) refers to this property as “transition-independence”

or “path-independence”.
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Another economically important special case occurs when setting ξ equal to zero. This gives:

M(t) = M(0)

(
S(t)

S(0)

)γ
exp

(
βt+

∫ t

0
ηv(s)ds

)
. (12)

In this case, the local fluctuations in the pricing kernel (11) come exclusively from changes in

the spot price S(t), and there is no additional variance premium. This case is a dynamic version

of Rubinstein’s (1976) power utility pricing kernel.14 The martingale condition implies that the

expected growth of the pricing kernel must equal the opposite of the interest rate. This restricts β

and η, effectively leaving only a single index level preference parameter γ to price risk.

The existing literature typically specifies that the risk-neutral and physical parameters in equa-

tions (1) and (2) are related as follows:

κ = κ∗ − λ, (13)

θ =
κ∗θ∗

κ
, (14)

where λ is the variance risk premium parameter. Assuming the pricing kernel in equation (11), the

structure of the variance risk premium parameter λ and the equity risk premium parameter µ can

be inferred by computing the instantaneous equity and variance risk premia. The risk premia can

be computed using −E [(dS/S)(dM/M)] and −E [dv(dM/M)], which results in:

Equity risk premium: (−γ − ξσρ)v(t), (15)

Variance risk premium: (−ρσγ − σ2ξ)v(t), (16)

14In equation (12), γ is usually interpreted as a risk aversion parameter. We use the terminology “index level pref-
erence parameter” because in the presence of additional state variables in equation (11), the risk aversion terminology
may cause confusion.
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or equivalently the following expressions for µ and λ:

µ = −γ − ξσρ, (17)

λ = −ρσγ − σ2ξ. (18)

Alternatively, rearranging equations (17) and (18) provides the expressions for the risk preference

parameters γ and ξ:

γ = −µ− ρσξ, (19)

ξ =
µσρ− λ
σ2(1− ρ2)

. (20)

This leaves two more parameters, β and η, to be determined in equation (11). Using the

fact that ertM(t) is a martingale, and that the drift term of a martingale process has to be zero,

Appendix A shows that β and η are given by:

β = −(1 + γ)r − ξκθ, (21)

η = −
(
µ− 1

2

)
γ + ξκ− 1

2

(
γ2 + 2γξσρ+ ξ2σ2

)
. (22)

In summary, the relation between the risk-neutral and physical parameters and the pricing

kernel is as follows. Recall that σ and ρ are restricted to be the same under both measures. Given

the remaining risk-neutral parameters and the risk preference parameters γ and ξ, we can obtain

the physical parameters κ and θ in conjunction with the risk premium parameters µ and λ by using

equations (13), (14), (17), and (18). The remaining pricing kernel parameters β and η can then be

obtained from equations (21) and (22).

What are our priors on the signs of these parameters? First consider the four pricing kernel

parameters, γ, ξ, β, and η. We have very clear priors regarding γ and ξ. Economies with higher

index returns and lower variance indicate good times, and marginal utility decreases in good times.

We therefore expect γ < 0 and ξ > 0. Economic intuition is not very informative on the sign (and
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by extension the magnitude) of η.

We also have priors and/or empirical evidence on the risk premium parameters µ and λ. It is well

known that it is difficult to measure the index equity premium µ precisely, especially over a short

horizon, but the evidence is overwhelming that the point estimates are positive over sufficiently

long horizons, and this is consistent with economic intuition. Estimates of the index variance risk

premium show that it is also highly time-varying, but existing measurements are almost exclusively

negative over long horizons.

Given this intuition on the risk premium parameters (µ and λ) and pricing kernel parameters (γ

and ξ), what do equations (17) and (18) imply? Recall that the ρ parameter captures the correlation

between index return and variance innovations. Our estimates in Table 2 are negative, and this

is consistent with extensive existing non-parametric and parametric evidence. The σ parameter

captures variance of variance and is positive by construction. Given these signs, equation (17)

implies that larger γ (more negative) and ξ (more positive) increase the index equity premium.

This simply captures that investors require higher risk compensation when they are more risk-

averse towards wealth and variance risk. Equation (18), on the other hand, shows that larger γ

and ξ also lead to a more negative λ. The higher investors’ risk aversion with respect to wealth

and variance, the more they are willing to pay to insure against high volatility.

One of the nested pricing kernels we consider in detail below is the “power utility” pricing

kernel in equation (11), which imposes ξ = 0. Note how this further restricts the risk premia

in equations (17) and (18), given our finding in Table 2 that σ > 0 and ρ < 0. Most critically,

while with nonzero ξ the equity and variance risk premia are positive and negative respectively if

γ and ξ are consistent with economic intuition, it is in principle possible for their signs to be the

same for some parameter combinations. However, when ξ = 0, the equity and variance risk premia

are mechanically restricted to have opposite signs. There are, of course, additional more subtle

restrictions incurred by restricting ξ = 0. We analyze those in detail below.
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4.2 Completely-Affine Prices of Risk

In the literature on the estimation of stochastic volatility option pricing models, the mapping

between the two measures is usually implemented by restrictions on risk premia, and most existing

implementations assume that risk premia are linear (affine) in the variance. Singleton (2006, pp.

392-396) provides a detailed discussion of this issue. Consistent with the terminology in the bond

pricing literature (Duffee, 2002), Singleton (2006) refers to π
√
v(t) as the “completely affine” form

of the price of risk. Note that in this model, this specification of the price of risk implies a risk

premium of π
√
v(t)

√
v(t) = πv(t).

For our purpose, note that when estimating using stock price dynamics and option prices, the

completely-affine price of risk specification is isomorphic to the exponential-affine pricing kernel

specification under certain implementation assumptions. To see this, note that given the parameters

characterizing the physical dynamics, the risk premium parameters µ and λ can be thought of as

being determined by the two parameters γ and ξ from equations (17) and (18). Therefore, the

exponential-affine kernel and the completely affine price of risk specification are isomorphic to each

other when these are the only restrictions imposed in estimation. However, this effectively ignores

the information in equations (21) and (22). These equations embody the observable implications

of the time-preference parameter β and the path-dependence parameter η, and are also obtained

from a martingale restriction and thus directly implied by theory.

In implementation, equation (21) depends on the risk-free rate. However, when pricing options,

typically a different risk-free rate is used for every option maturity. As for the risk-free rate used

in the physical dynamic, it does not restrict the risk premium parameters µ and λ. Effectively

therefore, the information in equation (21) is ignored when implementing a completely affine price

of risk. Equation (22) is also ignored; effectively the γ and ξ parameters that are isomorphic to µ

and λ imply an η parameter which is left free in the implementation.

Ideally the information in the risk-free rate and equation (21) can be exploited in estimation.

However, since one of our main purposes is to compare different specifications of the pricing kernel

and the price of risk, we follow existing implementations and do not incorporate this information.
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In most of our estimations, we also do not use equation (22) and therefore effectively leave η as a

free parameter. One exception is that we do investigate the case η = 0 case because of our interest

in the path-independent kernel of Ross (2015). In this case, we take into account the impact of the

η = 0 restriction on the γ and ξ parameters while also accounting for equations (17) and (18).

4.3 More General Pricing Kernels

We now consider pricing kernels outside the exponential-affine class in equation (11), while main-

taining compatibility with the risk-neutral and physical dynamics (1) and (2). Specifically, we

study the following class of pricing kernels:

M(t) = M(0)

(
S(t)

S(0)

)γ ( v(t)

v(0)

)α
exp

(
βt+

∫ t

0
η(v(s))ds+ ξ(v(t)− v(0))

)
. (23)

To facilitate comparisons with the exponential-affine kernel in equation (11), there is some abuse

of notation in equation (23). While η represents the coefficient of the path-dependent component

in equation (11), η(v(s)) indicates a path-dependent function of v(s) in equation (23).

We specify this kernel as a generalization of the exponential-affine kernel in equation (11). As a

result, it is overparameterized because both the α and ξ parameters capture variance risk aversion.

When the variance risk aversion parameter α is equal to zero, it corresponds to the exponential-

affine kernel in equation (11).

The martingale property shows that under the kernel in equation (23), the model-implied equity

and variance risk premia are still linear, but not necessarilly proportional to v(t):

Equity risk premium: −ασρ− (γ + ρσξ)v(t), (24)

Variance risk premium: −ασ2 − (γρσ + ξσ2)v(t). (25)

Note how the variance aversion parameter α is scaled by σρ in equation (24) and by σ2 in equa-

tion (25). Due to the parameterization of the pricing kernel, these are also the scaling factors on

ξv(t).
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d logS(t) =

[
r − 1

2
vt + µ0 + µ1v(t)

]
dt+

√
v(t)dz1(t), (26)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dz2(t),

where

κ = κ∗ − λ1, θ = (κ∗θ∗ + λ0)/κ, (27)

µ0 = −ασρ, µ1 = −γ − ρσξ, λ0 = −ασ2, λ1 = −γρσ − ξσ2. (28)

The time-preference parameter and the path-dependence function η(v(t)) are given by:

β = −(1 + γ)r − γµ0 − ξκθ + ακ− γασρ− ξασ2,

η(v(t)) = −
[(
µ1 −

1

2

)
γ − ξκ+

1

2

(
γ2 + 2γξσρ+ ξ2σ2

)]
v(t)

−
[
ακθ − 1

2
ασ2 +

1

2
α2σ2

]
1

v(t)
.

Note that for the exponential-affine pricing kernels in Section 4.1, the instantaneous equity risk

premium in equation (15) can be written as µv(t) and the instantaneous variance risk premium in

equation (16) as λv(t). In the case of the pricing kernel in equation (23), the equity and variance

risk premia in equation (24) and (25) conform to µ0 + µ1v(t) and λ0 + λ1v(t), respectively. Also

note that for the kernels in equation (23), the path-dependent component η(v(s)) is a function of

v(s) which is not necessarily linear.

Finally, similar to the terminology used in Section 4.2, we can also express these equity and

variance risk premia per unit of risk, which we previously referred to as the prices of risk. We

refer to π0√
v(t)

+ π1

√
v(t) as the “affine” specification of the price of risk, corresponding to affine

risk premia, namely µ0 + µ1v(t) for the equity risk premium and λ0 + λ1v(t) for the variance risk

premium.
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We conclude that just as the completely-affine specification of the risk premia is intimately

related to the pricing kernel in equations (11), the affine specification of the risk premia is related

to the kernel in equation (23). These kernels can therefore be used to provide economic content for

these assumptions on the price of risk used in risk neutralization. In Section 5.4 below, we compare

the results of an implementation with affine risk premia to implementations that explicitly use the

parameters characterizing the pricing kernel.

4.4 An Alternative Representation of the Pricing Kernel

We now discuss a related setup used by the existing literature. For expositional clarity we rewrite

the physical dynamic in equation (2) as follows:

d logS(t) =

[
r +

(
µ− 1

2

)
v(t)

]
dt+

√
v(t)dzs(t), (29)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)(ρdzs(t) +

√
1− ρ2dzv(t)),

where dzs and dzv are independent Wiener processes. The risk-neutral dynamic has the same

functional form:

d logS(t) =

[
r − 1

2
v(t)

]
dt+

√
v(t)dz∗s (t), (30)

dv(t) = κ∗(θ∗ − v(t))dt+ σ
√
v(t)(ρdz∗s (t) +

√
1− ρ2dz∗v(t)),

where dz∗s and dz∗v are also independent Wiener processes. Now consider the following pricing

kernel:

dM

M
= −rdt−Πs,tdzs,t −Πv,tdzv,t, (31)
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where Πt = (πs,t, πv,t)
′ are usually referred to as the market prices of risk. The risk premiums then

have the form Σ
√

ΩtΠt (Singleton, 2006), where

Σ =

 1 0

ρσ σ
√

1− ρ2

 , Ωt =

vt 0

0 vt

 , Πt =

πs√vt
πv
√
vt

 , (32)

Note that this follows directly from the Euler equation and that the structure of Σ follows from

the dynamic in (2). However, the structure of Πt in (32) embodies an additional assumption, and

is equivalent to the completely affine price of risk assumption in Section 4.2. Indeed, from (32) the

equity and variance risk premia are given by:

ERP = πsvt, VRP = (ρσπs + σ
√

1− ρ2πv)vt, (33)

equivalent to the completely affine prices ERP = µvt and VRP = λvt. If instead we assume

Πt = (
πs,0√
vt

+ πs,1
√
vt,

πv,0√
vt

+ πv,1
√
vt)
′, we obtain affine equity and variance risk premia ERP =

µ0 + µ1vt and VRP = λ0 + λ1vt, where µ0 = πs,0, µ1 = πs,1, λ0 = ρσπs,0 + σ
√

1− ρ2πv,0, and

λ1 = ρσπs,1 + σ
√

1− ρ2πv,1.

We conclude that while the setup in this section specifies a pricing kernel, it does not capture

any additional economic intuition above and beyond affine restrictions on the price of risk. Our

approach differs because it specifies the pricing kernel as a function of the state variables and

thereby clarifies the interactions between the economic magnitudes of index level and index variance

aversion and the parameters of the stochastic volatility dynamic in determining the risk premia. It

also highlights the role of path dependence in an economy with stochastic volatility. Moreover, the

approach outlined in this section also ignores the relation between the magnitudes of the equity

and variance risk premia and the riskless rate embodied in equation (21), as well as the information

in equation (22).15

15This information in the riskfree rate can of course be combined with the specification in equation (32), see
Chernov (2003) for an example.
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5 Pricing Kernels: Parameter Estimates

We estimate the stochastic volatility model subject to the restrictions imposed by the pricing

kernels in Sections 4.1 and 4.3. Our results are based on the joint likelihood composed of returns

and options. We use the empirical fit for different sets of restrictions to test the more general

pricing kernels against more parsimonious versions. We also compare and analyze the risk premia

and other economic implications for different restricted and unrestricted pricing kernels.

5.1 Joint Maximum Likelihood Estimation with No-Arbitrage Restrictions

Rather than separately estimating the physical and risk-neutral dynamics as in Table 2, we now

jointly estimate both dynamics subject to various specifications of the pricing kernels. In our

implementation, we either use a no-arbitrage condition based on a specific structure of the pricing

kernel, as in equation (11) for example, or we directly impose a structure on the parameters µ and

λ that characterize the risk premia.

For kernels nested in the exponential-affine specification in equation (11), given a set of pa-

rameters ΘPK1 = {γ, ξ, κ, θ, σ, ρ, η0, η1}, we can obtain the risk premium parameters µ

and λ via equations (17) and (18). Likewise, for the more general kernel in equation (23), given

ΘPK2 = {γ, ξ, α, κ, θ, σ, ρ, η0, η1}, the risk premium parameters µ0, µ1, λ0, and λ1 can be ob-

tained from equation (28). The risk-neutral parameters κ∗ and θ∗ are then implied by equations (13)

and (14) for the exponential-affine case and by equation (27) for the more general specification in

equation (23).

We also investigate specifications that cannot be implemented by explicitly considering the pric-

ing kernel parameters. In these cases, we restrict the risk premium parameters instead. Specifically,

for the affine price of risk specification, given the parameters ΘPR = {µ0, µ1, λ0, λ1, κ, θ, σ, ρ, η0, η1},

equations (27) and (28) provide the risk-neutral parameters.

Regardless of the parameterization, estimation is based on the sum of the return and option
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log-likelihoods. That is, we solve the following optimization problem:

max
Θ

logLR + logLO,

where Θ can refer to ΘPK1, ΘPK2, or ΘPR.

Table 3 presents estimation results for eight different cases, which we now discuss. Column (1)

reports on the unrestricted exponential-affine pricing kernel in equation (11). In columns (2) and

(3) we have two restricted estimation exercises based on risk premium restrictions: µ = 0 and λ = 0.

Next, we have several interesting cases based on preference parameter restrictions. In column (4)

we have γ = 0 and in column (5) we have ξ = 0. The restriction of ξ = 0 corresponds to the power

utility pricing kernel in equation (12). We also test the joint restrictions γ = ξ = 0 in column (6).16

Finally, we also test η = 0 in column (7), as well as η = ξ = 0 in column (8). These latter two cases

provide insight into the literature on recovery theory (see, e.g., Ross, 2015; Borovička, Hansen,

and Scheinkman, 2016; Qin and Linetsky, 2016). It is worthwhile to note that we do not impose

any restrictions on the time-preference component β, which is required to describe the discounting

factor.

Column (9) in Table 4 reports on the more general kernel in equation (23) and column (10)

on the special case of this kernel with ξ = 0. In the latter case, the free parameters are γ and α.

Finally, column (11) in Table 4 reports on the implementation with the affine price of risk.

The following table summarizes the restrictions for columns (2)-(10) in Tables 3 and 4. As

mentioned above, for the case in column (11) there are no restrictions. We implement these cases

by letting either γ or ξ be a free parameter, while the other one is implied by the restriction(s).

The resulting mapping between γ and ξ is reported in the last column.

16Note that from equations (17) and (18), the joint restriction µ = λ = 0 is equivalent to the joint restriction
γ = ξ = 0.
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Pricing Kernel Restriction Free parameter Fixed parameter

(2) µ = 0 ξ γ = −ξσρ

(3) λ = 0 ξ γ = −σξ/ρ

(4) γ = 0 ξ γ = 0

(5) ξ = 0 γ ξ = 0

(6) γ = ξ = 0 None γ = ξ = 0

(7) η = 0 ξ γ =
−(1+2ρσξ)±

√
(1+2ρσξ)2−4((σξ)2+2κ∗ξ)

2

(8) η = ξ = 0 None γ = −1, ξ = 0

(10) ξ = 0 γ, α ξ = 0

5.2 The Exponential-Affine Pricing Kernel

Panel A of Table 3 reports the results of the joint MLE estimation. We report robust standard

errors for the parameters in ΘPK1, ΘPK2, or ΘPR except for the parameter that is fixed according

to the last column in the table above. Column (1) presents the estimates for the MLE estimation of

the exponential-affine pricing kernel in equation (11). We can compare the risk-neutral estimates

in column (1) with the option-based estimates in Table 2. The risk-neutral mean-reversion κ∗ from

joint estimation in Table 3 is 1.114, somewhat higher than the 0.986 estimate in Table 2. The

risk-neutral long-run variance θ∗ in Table 3 is 0.0877, somewhat lower than the 0.0986 estimate in

Table 2. These findings are not surprising, because the option-implied variance typically exceeds

the average variance implied by returns. Recall that the ρ and σ parameters are the same under

both measures. The estimate of ρ from joint estimation is a bit larger in absolute value compared

to the one in Panel B of Table 2, and the estimate of σ is a bit smaller, but the differences are

relatively minor.

We can also compare the physical parameters in column (1) of Table 3 with the return-based

estimates in Table 2. The physical mean reversion κ in Table 3 is 2.926, substantially smaller than

the 4.146 estimate in Table 2. The physical long-run variance θ in Table 3 is 0.033, similar to 0.031

in Table 2. The most important difference is that the return-based estimates of ρ and σ in Table 2

26



are substantially smaller (in absolute value) compared to Table 3. Recall that they are also smaller

than the option-based estimates in Table 2.

The estimate of the index level preference parameter (“risk aversion”) γ in column (1) is -1.393

and the estimate of the variance preference parameter ξ is 1.947. Both signs are consistent with

economic intuition. The point estimate of µ in column (1) of Table 3 is similar but slightly lower

than the estimate in Table 2. The variance risk premium parameter λ is estimated to be negative

in column (1) of Table 3, which is also intuitively plausible. The negative λ implies κ > κ∗ and

θ < θ∗. These ordinal relations between the physical and risk-neutral parameters are the same as

in Table 2, although the values of the physical parameters differ somewhat.

5.3 Restrictions on the Exponential-Affine Pricing Kernel

Columns (2)-(8) in Table 3 report on estimation subject to various restrictions on the exponential-

affine pricing kernel. When we impose restrictions on the risk premium parameters µ and λ in

columns (2) and (3), the resulting estimates of the risk preference parameters are inconsistent

with economic intuition. We observe either a positive γ or a negative ξ. The implied risk premium

parameters µ and λ and the physical parameters also strongly deviate from the estimates in column

(1). Columns (4) and (5) present the results when risk preferences are restricted. In these cases,

the remaining unrestricted risk preference estimates have the same sign as in column (1), but they

are larger in absolute value. The other parameters are very similar to the parameters in column

(1). Column (6) imposes the joint restriction γ = ξ = 0, which is equivalent to setting the risk

premium parameters equal to zero (µ = λ = 0). These restrictions seem to impact the estimates

of the drift parameters κ and θ, but not the parameters ρ and σ, which determine skewness and

kurtosis.

Column (7) tests the path-independence restriction, characterized by η = 0. The resulting

estimate of the variance preference parameter ξ is negative, which is not economically plausible. In

columns (1)-(6) and the other restricted estimations, the martingale property implies the value of

η, and the resulting estimates are different from zero.
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Column (8) imposes η = ξ = 0. This is another very strong restriction, which implies that

γ = −1 from equations (19) and (22), or equivalently µ = 1. Similar to the results in column (6),

these strong joint restrictions impact the estimates of the drift parameters κ and θ.

Note that while the parameters characterizing the pricing kernel are very different in columns

(1)-(8), the risk-neutral parameter estimates κ∗, θ∗, σ, and ρ remain remarkably similar across

columns. The remaining physical parameters κ and θ differ, which explains the large differences in

the pricing kernel parameters γ, ξ, and η, or equivalently the risk premium parameters µ and λ.

The bottom rows present the log-likelihood, as well as the p-values for tests of the restricted

pricing kernels against the unrestricted exponential-affine kernel in column (1). Surprisingly, while

imposing restrictions on the exponential-affine kernel results in very different implied risk premia

and preference parameters, the resulting differences in the log-likelihoods are small, and in some

cases, the likelihood ratio tests do not indicate rejection at conventional significance levels. Even

for the double restriction γ = ξ = 0 in column (6), which is extreme from an economic perspective,

the likelihood does not change by a large amount. We discuss the implications of these findings in

more detail in Section 6.

5.4 More General Pricing Kernels and Affine Prices of Risk

In this section, we discuss results based on the more general kernel in equation (23), as well as

results based on the completely affine and affine specifications of the price of risk. Columns (9)-

(10) in Table 4 present results for the pricing kernel in equation (23). The physical mean reversion

in column (9) in Table 4 is larger compared to that for the exponential-affine kernel in columns

(1)-(8) in Table 3, and the risk-neutral mean-reversion is similar. The other parameters are very

similar. The log-likelihoods are again very similar to column (1).

Now consider the completely affine specification of the price of risk with an equity premium

µv(t) and a variance risk premium λv(t). It turns out that the estimation results are identical to

the results of the exponential-affine specification in column (1). This finding obtains mechanically

because the specifications are isomorphic due to the number of (free) parameters in both specifica-
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tions. For the exponential-affine kernel in column (1), the free parameters are γ, ξ, and the physical

parameters. For the completely affine price of risk specification, the free parameters are µ, λ, and

the physical parameters. But recall that γ and ξ are restricted by µ and λ through equations (19)

and (20) and vice versa. In summary, we use the same number of free parameters in estimation

and the parameters are subject to the same restrictions (19) and (20). This may seem confusing

because the pricing kernel contains two extra parameters, β and η. However, these parameters are

calibrated from the risk-free rate under the martingale condition and do not affect MLE estimation.

We now turn to the affine specification of the price of risk with an equity premium µ0 + µ1v(t)

and a variance risk premium λ0 + λ1v(t). The results are presented in column (11) in Table 4.

Note that the risk-neutral parameter estimates κ∗, θ∗, σ, and ρ are once again very similar to the

estimates in Table 3. The most important difference is that the risk-neutral mean reversion (κ∗) is

slightly smaller. The physical mean reversion is also larger, indicating that this specification allows

for a larger wedge between the physical and risk-neutral mean reversion.

The joint log-likelihood in column (11) exceeds the log-likelihood in column (1). While the

improvement in log-likelihood may seem relatively small, the difference is statistically significant

using a likelihood ratio test. Moreover, the improvement in likelihood is relevant given the small

differences in columns (1)-(10). It seems that including an (unrestricted) intercept in the risk

premium specification provides a better fit to the data. This improvement in fit mainly derives

from a better fit of the return data, as the option log likelihood is not very different from the one

in column (1). The results for the more general kernel in equation (23) in columns (9) and (10)

also imply an intercept in the risk premiums, but the likelihood in column (11) is higher than the

one in columns (9) and (10).

We conclude that the affine risk premium specification has important implications for model

fit. To the best of our knowledge, while this specification is frequently used in the option valuation

literature, the implications of relaxing these restrictions are not documented or discussed in detail.

Our results are consistent with findings in the bond pricing literature, where the affine specification

can outperform the completely affine specification. However, the improvement in fit in column (11)
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compared to column (1) ignores the no-arbitrage restrictions imposed in columns (9) and (10).

Finally, while the estimates in column (9) impose the no-arbitrage restrictions emanating from

the martingale condition in Section 4.3, they ignore that the more general kernel in equation (23)

may also lead to zero state prices if the variance process reaches zero. Another necessary condition

for no-arbitrage in this case is therefore that the Feller (1951) no-arbitrage condition holds under

both measures, so 2κθ = 2κ∗θ∗ > σ2. Singleton (2006, p. 326) and Heston, Loewenstein, and

Willard (2006) discuss how this same issue arises due to the presence of the intercept in the price

of risk, which we show is equivalent to the specification of the kernel in equation (23). Column

(12) shows that this additional no-arbitrage restriction clearly affects model fit and it also affects

the parameter estimates, most notably the estimate of ξ.

We next proceed by investigating the economic implications of these no-arbitrage restrictions.

We show that the economic implications of (relaxing) this restriction are critical. We also show

that while some pricing kernels are difficult to distinguish statistically, they may have very different

economic implications.

6 Pricing Kernels: Economic Implications

We first show that while model fit for most columns in Tables 3 and 4 is similar, risk premia

and Sharpe ratios greatly vary with the specification of the pricing kernel. We then show how to

estimate the marginal pricing kernel that plots the pricing kernel as a function of log index returns.

We show that this marginal pricing kernel is typically not downward sloping, which means that

existing findings of non-monotonic kernels do not constitute puzzles.

We show how to construct the time series path of the pricing kernel and find that it also widely

varies, dependent on the restrictions we impose on the pricing kernel. The path associated with the

affine price of risk specification is not plausible. Lastly, we offer some observations on the relative

importance of the pricing kernel components associated with the return and variance.
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6.1 Risk Premia

The most striking finding from Tables 3 and 4 is that the risk-neutral parameters are very similar

across columns and that the differences in the log likelihoods are also small and sometimes statisti-

cally insignificant. It is well known that in joint estimation, the option sample dominates the joint

log likelihood because there are many options each day and only one return. Tables 3 and 4 show

that this is not a problem in our sample because the component of the likelihood due to returns

is large enough to create meaningful differences in the joint log likelihood. Recall that our return

likelihood differs from most existing approaches because we exploit the model implication that the

latent variance is a function of the VIX.17

We now turn to the economic implications of the different pricing kernel restrictions rather than

the statistical fit. We find a diametrically opposite result, namely that the different pricing kernels

result in widely different economic implications. Panel B of Tables 3 and 4 present descriptive

statistics for the equity and variance risk premia. Recall from equations (15), (16), (24), and (25)

that these risk premia are linear functions of the variance. This implies that the higher moments

are the same across columns. However, the first two moments are very different. The annualized

equity premium for the exponential-affine kernel in column (1) is 8.32%, which is very reasonable

given the sample estimate of 8.24%. The average equity risk premium for the more general kernel

in column (9) is very similar.

The restrictions in columns (2) and (6) imply that the equity premium is zero. However, some

of the other strong economic restrictions such as λ = 0 in column (3) and γ = 0 in column (4)

also lead to substantially lower equity premia. Setting the variance preference parameter ξ equal

to zero in column (5) and setting the path dependence parameter η equal to zero in column (7)

results in higher equity risk premia.

The variance risk premium for the exponential-affine pricing kernel in column (1) of Panel

B is equal to −0.0605, which amounts to -24.60% in annual standard deviation terms. Rather

17We also repeated the estimation in Tables 3 and 4 with an option likelihood that is scaled back by the number of
options so that the sample on each day effectively consists of one option and one return. Results for this estimation
exercise are very similar.
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than compare this to a sample estimate of the variance risk premium, which requires additional

assumptions, note that for the 1990 to 2019 period, the sample mean of the estimated volatility is

18.28%, and for the VIX it is 20.73% per year. The implied variance risk premium in the estimation

indicates that its size is as large as or slightly larger than the size of the index variance itself. This

finding is similar to the one in Bollerslev, Tauchen, and Zhou (2009). The results on the more

general kernel in column (9) of Table 4 and the affine price of risk specification in column (11) yield

similar estimates. The other restrictions result in smaller (in absolute value) variance risk premia.

We conclude that while different pricing kernels lead to nearly identical option fit and risk-

neutral parameters, as well as small differences in the joint log likelihood, they result in very different

economic implications and risk premia. Bates (2003) argued that it is difficult to distinguish

between option models based on option fit because misspecified models can fit options relatively

well at the cost of overfitting and unreasonable out-of-sample implications. He therefore advocates

joint estimation, which makes it easier to differentiate between models.

While our estimation exercise in Tables 3 and 4 does not compare models with different dynamics

and/or state variables, it does compare the specification of the pricing kernel, which is part of the

model specification. Our results show that even based on a joint likelihood based on returns and

options, it is difficult to statistically distinguish models. They are consistent with Bates’ observation

in the sense that misspecification instead shows up in implausible economic implications.

We conclude that the unrestricted exponential-affine pricing kernel in column (1) of Table 3 has

economic implications that are intuitively plausible. Restricted versions of this kernel often result

in implausible economic implications, as measured by risk premia and preference parameters. The

restrictions do not result in a much worse fit as measured by statistical criteria, but this may be

due to the fact that these tests lack power.

An equivalent way to characterize our findings is that option pricing models can imply very

different economic implications and risk premia, which cannot be distinguished statistically even

when using returns and options in estimation. This finding is, to the best of our knowledge, novel

and surprising. Next we explore the implications of our findings for the literature that characterizes
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the shape of the pricing kernel.

6.2 Sharpe Ratios

The parameter estimates allow us to retrieve the conditional mean and standard deviation of the

daily market return. For exponential-affine pricing kernels, they are given by

Et(R(t+ ∆)) = 1 + [r + µv(t)]∆, (34)

σt(R(t+ ∆)) =
√
v(t)∆. (35)

For the more general pricing kernels in equation (23) and the affine price of risk specification, the

conditional mean of the daily market return is given by

Et(R(t+ ∆)) = 1 + [r + µ0 + µ1v(t)]∆. (36)

We calculate the time series of the daily Sharpe ratios for the various kernel specifications based

on these model-implied conditional means and standard deviations. The last row in Panel B of

Tables 3 and 4 reports the time-series averages of these daily Sharpe ratios. The unrestricted

exponential-affine pricing kernel in column (1) implies an average daily Sharpe ratio of 0.0259,

which is equivalent to a yearly Sharpe ratio of 0.411. This is close to the sample average of 0.439.

The more general kernel in column (9) also yields an average Sharpe ratio that is close to the

market average, and the Sharpe ratio remains plausible when setting ξ = 0 in columns (5) and

(10). However, the average Sharpe ratios are not plausible when imposing some of the other

restrictions. Importantly, the affine price of risk specification in column (11), which is successful

in matching the average equity premium (see the discussion in Section 6.1), yields a Sharpe ratio

which is too high. Moreover, the time series of the Sharpe ratio in this case (not reported) is very

different from the time series associated with columns (1) and (9). The time variation in the Sharpe

ratio is much smaller in the case of the affine specification. Moreover, due to the intercept in the

risk premium, the lowest yearly Sharpe ratio in our sample is 0.449, which is unrealistic and much
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higher compared to the kernels in columns (1) and (9).

6.3 The Pricing Kernel Puzzle

Following Jackwerth and Rubinstein (1996) and Jackwerth (2000), an extensive literature has

investigated the shape of the pricing kernel. This literature is mainly motivated by the power

utility pricing kernel in equation (12). Based on the kernel in equation (12), we expect a downward

sloping log pricing kernel as a function of the log index return.

Starting with Jackwerth (2000), several studies document that both the conditional and the

unconditional pricing kernel are not downward sloping as a function of index returns (aggregate

wealth), but instead are U-shaped or characterized by an even more nonlinear function (see, for

example, the literature review in Cuesdeanu and Jackwerth, 2018). This finding is often referred

to as a puzzle or an anomaly.

The literature has proposed several potential explanations for this anomaly. For instance, Bak-

shi, Madan, and Panayotov (2010) argue that a U-shaped kernel naturally arises from heterogeneous

expectations. We instead propose that the pricing kernel will not generally be downward sloping

when viewed as a function of aggregate wealth. Instead, given our knowledge of option prices, a

sensible pricing kernel should contain several state variables. To the extent that these state vari-

ables are correlated with the index return, graphing state prices as a function of the log return may

not result in a downward sloping function even if the kernel in equation (11) conforms to economic

theory with respect to aggregate wealth, that is, if γ < 0 in equation (11). A U-shaped pricing

kernel, therefore, arises naturally and should not be thought of as an anomaly. We now investigate

this empirically by characterizing the shape of the pricing kernel in the aggregate wealth dimension

under different restrictions on the pricing kernel, i.e., for the different columns in Tables 3 and 4.

6.4 A Multivariate Representation of the Estimated Pricing Kernel

We start our empirical investigation in the simplest possible way, by depicting the pricing kernel

as a function of the index return and variance innovations. Figure 2 provides a scatterplot of the
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estimated exponential-affine kernel in equation (11), based on the MLE estimates in column (1) of

Table 3, as a function of the log stock return logR(t) and the daily change in variance v(t)−v(t−1).

The two bottom pictures illustrate the univariate relations. Figure 2 illustrates that the log return

and the change in variance are negatively and positively correlated respectively with the log pricing

kernel. This is, of course, due to the negative estimate of the index return preference γ and

the positive estimate of the variance preference ξ. The implied correlation coefficient ρ between

the log return and the change in variance is clearly highly negative. Stock price increases or log

return increases, therefore, reduce the pricing kernel directly through the channel of the negative

γ and indirectly through the channel of the positive ξ combined with the negative ρ. An increase

of the (change in) variance increases the pricing kernel directly and indirectly through the same

mechanism.

Note that the univariate scatterplot on the left does not illustrate the marginal or the conditional

distribution of the pricing kernel as a function of (log) returns. At each point in time, the relation

between the pricing kernel and returns is captured for a different level of volatility. We now proceed

to a more formal analysis of the relation between the pricing kernel and the state variables.

6.5 The Marginal Distribution of the Pricing Kernel

It is well-known that it is not straightforward to reliably estimate the pricing kernel. We need

to characterize both the physical and risk-neutral distribution. Characterizing the risk-neutral

distribution is relatively straightforward because of the abundance of option data on a given day,

but characterizing the physical distribution is more challenging. The literature contains several

non-parametric and parametric approaches. We proceed parametrically based on the estimates in

Tables 2, 3, and 4.

Specifically, we proceed as follows. Given the parametric stock return dynamics in equations (1)

and (2), we can generate the probability densities of returns under both the physical and risk-neutral

measures. For simplicity, we let the initial stock price S(0) = 1 or equivalently logS(0) = 0.

Following Heston (1993), the cumulative distribution function of log returns can be calculated as
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follows:

Pr(logR(τ) ≤ x) =
1

2
− 1

π

∫ ∞
0

Re

[
e−iφxfCHτ (φ | S(0) = 1, v(0) = v)

iφ

]
dφ,

where the characteristic function fCHτ follows equation (9). We can calculate this characteristic

function under both the physical and risk-neutral dynamics. By taking the first derivative of the

cumulative distribution function with respect to x, we get the probability distribution function:

Pr(logR(τ) = x) =
dPr(logR(τ) ≤ x)

dx

= − 1

π

∫ ∞
0

Re
[
−e−iφx+C+Dv

]
dφ, (37)

where C and D are given in equation (10).

We calculate the numerical integral in equation (37) with the physical and risk-neutral dynamics

of log returns to find the probability densities P (logR(τ)|v(0) = θ) and Q (logR(τ)|v(0) = θ),

respectively. We set v(0) at its unconditional mean level θ and fix the risk-free rate at r̄ = 0.0261

(2.61%), the sample mean for our 1990-2019 sample.

The pricing kernel is, by definition, the ratio of risk-neutral density to physical density, mul-

tiplied by the risk-free discount factor. We thus express the τ−maturity log pricing kernel as

follows:

logM(τ)− logM(0) = −r̄τ + logQ (logR(τ)|v(0) = θ)− logP (logR(τ)|v(0) = θ) . (38)

By changing the values of logR(τ), we can therefore generate the log pricing kernel as a function

of the log index return. We repeat this process for various physical and risk-neutral parameter

vectors, corresponding to the estimates for various restrictions on the pricing kernel in Tables 3

and 4. The right column of Figures 3 and 4 reports the results. For convenience, we express

the x-axis in standard deviations of the log return from the expected log return.18 Results are

18Since we already have the physical probability density, we can calculate the expectation and variance of the log
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qualitatively similar across maturities, but not surprisingly the results are more pronounced for

longer maturities. Figures 3 and 4 present the results for the implied six-month pricing kernels. For

comparison, Figure A.1 in the appendix presents additional results for one-month pricing kernels.

6.6 Recovering Pricing Kernel Dynamics

Most of the literature studies (differences in) pricing kernels using the equivalent of the right-side

graphs in Figures 3 and 4, that is, as a univariate function of the log return (aggregate wealth).

However, our proposed pricing kernels (11) and (23) contain additional state variables. We now

provide additional perspective on (differences between) pricing kernels by illustrating the impact

of these state variables on the path of the pricing kernels.

The left column in Figures 3 and 4 is obtained by inserting the observed realized returns and

variances at each time t into the expression for the pricing kernel. These figures can be thought of

as the (daily) time series path of the realized pricing kernel conditional on the realized values of the

state variables. It is straightforward to generate this time path for all unrestricted and restricted

specifications of the pricing kernel. See Chernov (2003) for a related exercise.

Unfortunately it is not straightforward to perform a similar exercise for the case where the

physical and risk-neutral parameters are independently estimated or when the affine price of risk

specification is employed in the joint estimation. The pricing kernel can obviously not be computed

directly for these two cases. Instead we calculate the daily log pricing kernel every day as follows:

logM(t+∆)−logM(t) = −r∆+logQ(logR(t+∆), v(t+∆)|v(t))−logP (logR(t+∆), v(t+∆)|v(t)),

(39)

where ∆ = 1/252. Note that Q(logR(t+ ∆), v(t+ ∆)|v(t)) and P (logR(t+ ∆), v(t+ ∆)|v(t)) are

return as:

E(logR(τ)|v(0) = θ) =

∫ ∞
−∞

logR× P (logR(τ)|v(0) = θ) d logR

V ar(logR(τ)|v(0) = θ) =

∫ ∞
−∞

(logR)2 × P (logR(τ)|v(0) = θ) d logR− E2(logR(τ)|v(0) = θ).
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the risk-neutral and physical joint probability distributions of logR(t+∆) and v(t+∆) conditional

on v(t). In this implementation, we have to use the joint probability rather than the marginal

probability of the log return described in equation (37), because we need to use the realization of

both logR(t+∆) and v(t+∆).19 We can also find a quasi closed form expression (up to numerically

computing double integrals for the joint probability). Appendix C provides the details.

6.7 Pricing Kernel Dynamics: Empirical Results

Figure 3 presents results for five pricing kernels. The time path of the pricing kernel is on the left,

and the marginal kernel is on the right. Panel A of Figure 3 is based on the estimates in column (1)

of Table 3, i.e., the exponential-affine pricing kernel. Recall that the completely affine price of risk

specification is isomorphic to the unrestricted exponentially-affine pricing kernel. Panels C and D

report on two special cases of column (1). Panel C imposes γ = 0 and Panel D imposes ξ = 0, i.e.

the power utility pricing kernel in equation (12).

The differences between the results for these three kernels are striking. Consider the marginal

pricing kernels in the right column. By definition, the kernel in Panel D is linear in the log return

space, and because the estimate of γ in column (5) of Table 3 is negative, it is downward sloping,

consistent with the intuition of decreasing marginal utility of wealth. For the exponential-affine

kernel in Panel A, state prices are no longer linearly downward sloping as a function of log aggregate

wealth. Because the estimate of ξ is positive (and ρ is negative), we now have a convex function.

However, the estimate of ξ does not seem to be high enough to generate a U-shaped pricing kernel.

In Panel C on the other hand, column (4) of Table 3 indicates that we get a higher estimate of ξ,

and we obtain a U-shaped pricing kernel.20

The dynamics of the time paths of the kernel (left column) for Panels C and D display some

similarities with the exponential-affine kernel in Panel A. The realized kernels fluctuate a lot over

19The marginal probability of the log return is the expectation of the joint probability with respect to the variance
v(t+ ∆).

20Song and Xiu (2016) also emphasize how volatility risk can explain U-shaped pricing kernels. They use data on
S&P 500 and VIX options and nonparametric estimation techniques.
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time, especially in the 2008-2009 financial crisis period. There is also substantial variation around

the 1998 LTCM crisis and the early 2000 recession. The most important difference between Panels

A and D is that the time variation in the pricing kernel in Panel A is more pronounced in the

second half of the sample. This is due to the fact that this time period contains more volatility

outliers, as can be seen from Figure 1. Comparing Panels A and C, the outliers in Panel C are

more pronounced due to the larger estimate of ξ.

Panel B of Figure 3 reports on the pricing kernel implied by the estimates in Table 2, i.e.,

using physical estimates obtained from returns and risk-neutral estimates obtained (separately)

from options. Both sets of estimates do not impose restrictions on the pricing kernel, but they

do of course impose a parametric structure on the probability distributions. The resulting pricing

kernel has a W-shape. This is consistent with some existing findings (Cuesdeanu and Jackwerth,

2018), although a U-shape is more common.21

The dramatic differences between the marginal pricing kernel in Panel B and the ones in Panels

A, C and D are confirmed by the time path of the pricing kernel.22 The only thing the path in Panel

B has in common with the two others is that it varies most during the financial crisis. However,

the differences between the financial crisis and the rest of the sample are much less pronounced

in Panel B. More importantly, the outliers in the pricing kernel are of an entirely different order

of magnitude compared to the exponential-affine pricing kernel. We conclude that the time-series

patterns in Panel B are implausible. This is due to the fact that the underlying P and Q estimates

are not linked by economic assumptions.

Figure 4 reports on the kernels corresponding to the affine specification. Panel A reports on

the pricing kernel in equation (23), corresponding to the estimates in column (9) of Table 4. Panel

B imposes ξ = 0, as in column (10) of Table 4. Panel C corresponds to the affine price of risk

specification in column (11) of Table 4. Recall that these estimates are obtained under the affine

21It is important to note that the estimation of the pricing kernel is much more precise for low returns. For high
returns, confidence intervals are typically much larger due to more limited option information, and to some extent,
this is obscured in Figure 3 because we do not report confidence intervals, and we impose a parametric structure.

22Note that the y−axis in Panel B is scaled differently.

39



restriction that the equity premium is equal to µ0 + µ1v(t) and the variance risk premium is equal to

λ0 + λ1v(t). Existing results often impose these restrictions instead of the no-arbitrage restrictions,

presumably because different no-arbitrage restrictions all result in the risk premia being linear in

the variance. Our results suggest that this assumption is not innocuous. The marginal pricing

kernel in Panel C of Figure 4 is very different from the ones in Panels A and B. Note also the

difference with the exponentially-affine kernel in Panel A of Figure 3; the shape is actually more

similar to the unrestricted pricing kernel in Panel B of Figure 3. This finding is surprising given

that Panel B of Figure 3 does not impose any restrictions across measures, while Panel C of Figure 4

does.

While the implied six-month pricing kernels as a function of the index returns are similar in

Panel B of Figure 3 and Panel C of Figure 4, this is not the case for the corresponding time paths on

the left. Panel B of Figure 3 displays many more extreme positive and negative outliers throughout

the sample. However, the time-series pattern in Panel C of Figure 4 also does not seem plausible.

For instance, it is volatile during 1993-1996 and 2004-2007, whereas the fluctuations for pricing

kernel in Panel A of Figure 3 occur mainly in the financial crisis.

Finally, we discuss two more technical cases. First, Panel D of Figure 4 corresponds to column

(12) in Table 4. It imposes the Feller condition on the kernel in equation (23). A comparison

with Panel A of Figure 4 indicates that this restriction strongly affects the economic implications,

consistent with the differences in parameter estimates reported in Table 4. Second, kernels that

incorporate path-dependence (i.e. nonzero η) generate very different paths compared to the path

independent case (η = 0) in Panel E of Figure 3 and strongly differ during periods when the stock

variance abruptly increases or decreases. Under path-independence, the pricing kernel is not highly

sensitive to changes in variance.23

Our main conclusions from Figures 3 and 4 are as follows: 1) We confirm that the unrestricted

pricing kernel (based on the estimates in Table 2) is (highly) nonlinear as a function of aggregate

wealth; 2) It is straightforward to write down economically meaningful pricing kernels (models)

23This implication results from the zero η in conjunction with the negative estimate of ξ.
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that can generate log pricing kernels that are U-shaped or non-monotonic in log aggregate wealth;

3) The exponential-affine pricing kernel has very plausible economic implications; 4) The affine

price of risk specification provides a better fit to the option data, but its time path and other

economic implications are implausible; 5) Imposing no-arbitrage restrictions is critically important,

as evidenced for instance by the differences between Panels A and C of Figure 4; 6) Even when the

log likelihoods in Tables 3 and 4 are similar, the time paths of the pricing kernels and the marginal

kernels can be very different. While it seems to be difficult to statistically distinguish between

models and/or pricing kernels, it may be easier to do so on economic grounds.

6.8 Time-Variation in Pricing Kernel Components

In our final empirical exercise, we decompose the pricing kernel into its different components: the

one related to the stock return (γ logR(t)) and to the change in variance (ξ[v(t) − v(t − 1)]).

We present results for the exponential-affine specification in column (1) of Table 3. We omit the

path-dependent component for convenience. It is small and very persistent. Figure 5 shows how

the different components of the pricing kernel account for the overall variation of the unrestricted

exponential-affine pricing kernel. We plot the cumulative log pricing kernel and its components over

the sample period to emphasize the difference in the means of the components. Both the return

and variance components are large at some points in time, due to their large standard deviations.

However, Figure 5 shows that the cumulative index return component is much larger than the

cumulative variance component, due to the fact that the mean of the return component is much

larger than the mean of the variance component.

7 Conclusion

The pricing kernel is the most critical concept in asset pricing. It governs the relationship between

physical and risk-neutral probabilities at all times and for all return horizons, and ensures absence

of arbitrage. Economic intuition specifies how pricing kernels relate to relevant state variables and

suggests that kernels should be well-behaved and smooth as a function of these state variables.
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Options play an important role in the empirical analysis of pricing kernels, because they can be

used to estimate the risk-neutral probabilities that are required to identify the pricing kernel. Equity

index options are particularly valuable, because the return on the underlying can be thought of as an

approximation to the return on aggregate wealth. These insights therefore provide a motivation for

the study of index option pricing that transcends the more narrow question of derivatives pricing.

They highlight the importance of derivatives pricing for asset pricing and for macro-finance and

economics more in general.

In light of this, it is surprising that the existing literature on parametric dynamic index option

pricing models typically does not explicitly specify the pricing kernel. It characterizes the kernel

indirectly by specifying prices of risk or defines it implicitly as the ratio of risk-neutral and physical

probabilities. We propose a class of pricing kernels that are consistent with the conventional

assumption of affine dynamics under the physical and risk-neutral measure in the square root

stochastic volatility model. These kernels are volatility-dependent by construction and are therefore

especially useful to analyze the impact of stock market volatility risk on state prices and market

risk.

We estimate the resulting models subject to various restrictions on the pricing kernel, using

index returns and option prices. We show that affine risk premia can produce kernels with counter-

intuitive economic properties and that pricing kernels that are non-monotonic in index returns are

not anomalous. A kernel consistent with the completely affine price of risk specification produces

very plausible results.

We find that it is difficult to statistically distinguish between pricing kernels, even when they

embody very different economic assumptions and generate widely different equity and variance risk

premia and Sharpe ratios. Existing tests have low power to statistically distinguish different pricing

kernels because the identification of the pricing kernel is equivalent to the estimation of conditional

risk premia. These findings extend Merton’s (1980) observations on the estimation of the market

equity premium to joint estimation of equity and variance risk premia using the cross-section of

options and the underlying returns. We need a lot of data to estimate unconditional average returns
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on stocks or options, and even more data to estimate conditional returns. Moreover, plain vanilla

option prices are sensitive to the probabilities at expiration, but are not very informative about

the path-dependent properties of the pricing kernel. Pricing kernels with widely different economic

implications can therefore produce similar values for European options.

The analysis in this paper is based on a single-factor diffusion model. State-of-the-art models

in the option valuation literature contain multiple volatility factors, as well as jumps in returns and

volatility. It would be interesting to characterize and analyze the pricing kernels that are consistent

with these models and no-arbitrage. One important question for future research is whether these

models facilitate identification of risk premia, and whether pricing kernels in high-dimensional

models are meaningfully different from pricing kernels in simpler models. A related question is

whether other factors such as tail factors or factors related to intermediary risk can help identify

risk premia. Finally, our empirical analysis uses a large cross-section of options, but it is limited

to plain-vanilla index option contracts. This leaves open the possibility that other option contracts

may facilitate the estimation and identification of pricing kernels and equity and variance risk

premia.
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Table 2: Return-Based and Option-Based Parameter Estimates

Panel A: Return-Based Physical Parameters

µ κ θ σ ρ η0 η1 logLR

2.6367 4.1457 0.0310 0.5309 -0.6877 -0.0068 0.8815 55,409

(1.0624) (1.2397) (0.0070) (0.0242) (0.0114) (0.0003) (0.0219)

Panel B: Option-Based Risk-Neutral Parameters

µ∗ κ∗ θ∗ σ ρ η0 η1 logLO

0 0.9860 0.0986 0.7916 -0.7452 -0.0042 0.8740 156,831

(0.0712) (0.0050) (0.0059) (0.0021) (0.0002) (0.0072)

Notes: Panel A presents the physical parameters estimated using index returns and the VIX. Panel
B presents the risk-neutral parameters estimated using option prices and the VIX. Robust standard
errors are in parentheses.

52



Table 3: Joint MLE Estimation 1990-2019: Exponential-Affine Specifications

Panel A. Parameter Estimates

Exponential-Affine

No Restr. µ = 0 λ = 0 γ = 0 ξ = 0 γ = ξ = 0 η = 0 η = ξ = 0

(1) (2) (3) (4) (5) (6) (7) (8)

Risk Preference Parameters

γ -1.3929 1.0921 -1.3940 0 -2.4850 0 -2.2311 -1

(0.2266) (0.2182)

ξ 1.9474 1.9472 -1.4776 3.4244 0 0 -0.6242 0

(0.4037) (0.2034) (0.8098) (0.5430) (0.0511)

(Implied Average) β -0.1800 -0.2448 0.1546 -0.3606 0.0387 -0.0261 0.0931 0

(Implied) η 4.9671 3.1214 -1.9492 6.9151 1.8451 0 0 0

Implied Risk Premia Parameters

µ 2.4852 0 0.5652 1.9206 2.4850 0 1.8810 1.0000

λ -1.8115 -0.4177 0 -1.8116 -1.3937 0 -0.9211 -0.5609

P-Parameters

κ 2.9252 1.5314 1.1141 2.9252 2.5076 1.1139 2.0352 1.6748

(0.2082) (0.0727) (0.0558) (0.2933) (0.1255) (0.0558) (0.0855) (0.0574)

θ 0.0334 0.0638 0.0877 0.0334 0.0390 0.0877 0.0480 0.0583

(0.0024) (0.0023) (0.0030) (0.0033) (0.0019) (0.0030) (0.0012) (0.0011)

σ 0.7274 0.7274 0.7274 0.7273 0.7274 0.7274 0.7274 0.7274

(0.0082) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083)

ρ -0.7711 -0.7711 -0.7711 -0.7711 -0.7711 -0.7711 -0.7711 -0.7711

(0.0039) (0.0039) (0.0039) (0.0039) (0.0039) (0.0039) (0.0039) (0.0039)

η0 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

η1 0.8881 0.8881 0.8881 0.8880 0.8881 0.8881 0.8881 0.8881

(0.0059) (0.0060) (0.0060) (0.0059) (0.0060) (0.0060) (0.0060) (0.0060)

Q-Parameters

κ∗ 1.1137 1.1137 1.1141 1.1135 1.1139 1.1139 1.1141 1.1139

θ∗ 0.0877 0.0877 0.0877 0.0877 0.0877 0.0877 0.0877 0.0877

Likelihood

logLR 54,443.42 54,440.38 54,440.30 54,443.11 54,443.02 54,439.98 54,442.60 54,441.93

logLO 156,578.03 156,578.03 156,578.10 156,577.96 156,578.04 156,578.03 156,577.97 156,578.03

logLR + logLO 211,021.45 211,018.41 211,018.40 211,021.07 211,021.05 211,018.01 211,020.58 211,019.96

P-Value for the LR Test with (1) 0.0137 0.0135 0.3833 0.3739 0.0321 0.1862 0.2254

Panel B. Economic Implications

Instantaneous Equity Premium 0.0832 0 0.0189 0.0643 0.0832 0 0.0629 0.0335

Instantaneous Variance Premium -0.0606 -0.0140 0 -0.0606 -0.0466 0 -0.0308 -0.0188

Daily Sharpe Ratio 0.0259 0 0.0059 0.0200 0.0259 0 0.0196 0.0104

Notes: Panel A reports the results of joint maximum likelihood estimation. The risk preference
parameters γ and ξ as well as the P-parameters are estimated; the other parameters are implied
by the respective restrictions in columns (1) to (8). Robust standard errors are in parentheses.
We estimate the model for eight different specifications. We report the log likelihood for each
specification and the P-values for the LR test against the specification in column (1). Panel B
presents the sample means for the implied instantaneous equity and variance risk premia and the
daily Sharpe ratio.
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Table 4: Joint MLE Estimation 1990-2019: Other Specifications

Panel A. Parameter Estimates

PK in Eq. (23) Affine POR Feller Condition Imposed

No Restr. ξ = 0 No Restr. PK POR

(9) (10) (11) (12) (13)

Risk Preference Parameters

γ -1.4059 -2.5693 -1.4786

(0.2282) (0.1980) (0.8652)

ξ 2.9002 0 11.2114

(0.2599) (4.3118)

α -0.0324 -0.0050 -0.3150

(0.0048) (0.0004) (0.0424)

Implied Risk Premia Parameters

µ0 -0.0182 -0.0028 0.0485 -0.1764 -0.1094

(0.0202) (0.0385)

µ1 3.0324 2.5693 1.0393 7.7565 5.6322

(1.2862) (4.4872)

λ0 0.0172 0.0027 0.0172 0.1660 0.1659

(0.0054) (0.0204)

λ1 -2.3227 -1.4410 -2.3297 -6.7342 -6.6525

(0.5833) (3.7376)

P-Parameters

κ 3.4361 2.5549 3.4423 7.8438 7.7613

(0.1714) (0.1165) (0.5790) (1.8485) (3.7376)

θ 0.0334 0.0393 0.0334 0.0336 0.0339

(0.0015) (0.0018) (0.0072) (0.0058) (0.0139)

σ 0.7273 0.7274 0.7272 0.7258 0.7256

(0.0083) (0.0083) (0.0083) (0.0083) (0.0083)

ρ -0.7711 -0.7711 -0.7711 -0.7715 -0.7716

(0.0039) (0.0039) (0.0039) (0.0039) (0.0039)

η0 -0.0047 -0.0047 -0.0047 -0.0047 -0.0047

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

η1 0.8880 0.8881 0.8880 0.8874 0.8874

(0.0060) (0.0059) (0.0059) (0.0060) (0.0059)

Q-Parameters

κ∗ 1.1134 1.1139 1.1126 1.1096 1.1089

θ∗ 0.0877 0.0877 0.0878 0.0878 0.0878

Likelihood

logLR 54,443.71 54,443.03 54,449.61 54,430.16 54,436.11

logLO 156,578.00 156,578.03 156,577.08 156,572.56 156,571.61

logLR + logLO 211,021.71 211,021.06 211,026.69 211,002.72 211,007.71

P-Value for the LR Test with (11) 0.0016 0.0036

Panel B. Economic Implications

Instantaneous Equity Premium 0.0833 0.0832 0.0833 0.0831 0.0791

Instantaneous Variance Premium -0.0606 -0.0456 -0.0607 -0.0594 -0.0567

Daily Sharpe Ratio 0.0236 0.0255 0.0329 0.0536 0.0364

Notes: Panel A reports the results of joint maximum likelihood estimation. The risk preference
parameters γ, ξ, and α as well as the P-parameters are estimated; the other parameters are implied
by the respective restrictions. Robust standard errors are in parentheses. We report on the more
general pricing kernel (PK) from equation (23) in column (9), the more general PK subject to ξ = 0
in column (10), and the affine price of risk (POR) specification in column (11). Columns (12) and
(13) report on the specifications in (9) and (11) with the Feller condition imposed. For columns (9)
and (10), we report the P-values for the LR test against the specification in column (11). Panel B
presents the sample means for the implied instantaneous equity and variance risk premia and the
daily Sharpe ratio. 54



Figure 1: Instantaneous Variance, 1990 - 2019

Notes: We plot the time series of the stochastic variance from the option-based estimation and the
difference between the return-based and the option-based variance. The return-based variance is
computed as v(t) = η0+η1VIX2(t), the option-based variance is computed as v∗(t) = η∗0+η∗1VIX2(t),
and the difference is computed as v(t)− v∗(t), where η0, η1, η

∗
0, and η∗1 are from Table 2.
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Figure 2: The Log Pricing Kernel as a Function of Log Return and Variance

Notes: We plot the multivariate and univariate relation between the log pricing kernel, the log
stock return (logR(t)), and the daily change in variance (v(t)− v(t− 1)). The results are based on
the exponential-affine pricing kernel, using the parameters in column (1) of Table 3.
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Figure 3: Exponentially-Affine Log Pricing Kernels

Daily (Realized) Log Pricing Kernels 1990-2019 Implied Six-Month Log Pricing Kernels

Panel A: Unrestricted Exponential-Affine

Panel B: Independent P & Q Estimates

Panel C: Exponential-Affine with γ = 0

Panel D: Exponential-Affine with ξ = 0

Panel E: Exponential-Affine with η = 0

Notes: We plot the time series of the daily log pricing kernels and the implied 6-month log pricing
kernels for the following five specifications: unrestricted exponential-affine (Panel A), independent
estimation of the P- and Q-parameters (Panel B), the exponential-affine specifications with a re-
striction γ = 0 (Panel C), ξ = 0 (Panel D), and η = 0 (Panel E). Parameter values for Panels A,
C, D, and E are from Table 3 and those for Panel B are from Table 2. For the implied 6-month
kernels, the x-axis represents the standard deviations of log return from the expected 6-month log
return. 57



Figure 4: Other Log Pricing Kernels

Daily (Realized) Log Pricing Kernels 1990-2019 Implied Six-Month Log Pricing Kernels

Panel A: Unrestricted PK from Eq. (23)

Panel B: PK from Eq. (23) with ξ = 0

Panel C: Affine Price of Risk

Panel D: PK from Eq. (23) with the Feller No-Arbitrage Condition

Notes: We plot the time series of the daily log pricing kernels and the implied 6-month log pricing
kernels for the following four specifications: the unrestricted pricing kernel from equation (23)
(Panel A), the kernel from equation (23) with restriction ξ = 0 (Panel B), the affine price of
risk specification (Panel C), and the pricing kernel from equation (23) with the Feller condition
imposed (Panel D). Parameter values are from Table 4. For the implied 6-month kernels, the x-axis
represents the standard deviations of log return from the expected 6-month log return.
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Figure 5: Cumulative Log Pricing Kernel Components 1990 - 2019

Notes: We plot the cumulative (over time) logarithm of the exponential-affine pricing kernel based
on the estimates in column (1) of Table 3. This figure contains the entire pricing kernel and the
components of the pricing kernel associated with the index price and its instantaneous volatility.
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Appendix

A No-Arbitrage Restrictions for the Exponential-Affine Pricing Kernel

Applying Ito’s lemma to equation (11) gives

d logM = γd logS + βdt+ ηvdt+ ξdv

=

[
γ

(
r + µv − 1

2
v

)
+ β + ηv + ξκ(θ − v)

]
dt+ γ

√
vdz1 + ξσ

√
vdz2,

where we drop the time-t dependence (t) of M , S, v, z1, and z2 for notational convenience. Again

by Ito’s lemma, we get

dM

M
=

[
γ

(
r + µv − 1

2
v

)
+ β + ηv + ξκ(θ − v) +

1

2
γ2v + γξσρv +

1

2
ξ2σ2v

]
dt

+ γ
√
vdz1 + ξσ

√
vdz2. (A.1)

In order to find the restrictions on β and η, we use the fact that ertM(t) is a martingale – the drift

term of d
(
ertM(t)

)
must be zero. That is, from equation (A.1),

r + γ

(
r + µv − 1

2
v

)
+ β + ηv + ξκ(θ − v) +

1

2
γ2v + γξσρv +

1

2
ξ2σ2v = 0.

By rearranging this equation,

[β + (1 + γ)r + ξκθ]︸ ︷︷ ︸
(A)

+

[
η + γµ− 1

2
γ − ξκ+

1

2

(
γ2 + 2γξσρ+ ξ2σ2

)]
︸ ︷︷ ︸

(B)

v = 0. (A.2)

Since equation (A.2) must hold for any values of v, it implies that (A) and (B) must be zero.

Therefore, we have the following restrictions on β and η:

β = −(1 + γ)r − ξκθ

η = −γµ+
1

2
γ + ξκ− 1

2

(
γ2 + 2γξσρ+ ξ2σ2

)
.
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Furthermore, to find the expression for the equity risk premium parameter µ as a function of the

preference parameters, we employ the fact that S(t)M(t) is a martingale and calculate the equity

risk premium. Since d(SM)
SM = dS

S + dM
M + dS

S
dM
M and E

[
d(SM)
SM

]
must be zero, the equity risk premium

follows

E

[
dS

S

]
− rdt = −E

[
dS

S

dM

M

]
.

Note that we have used the fact that the drift of M is equal to −rMdt. Then, we finally obtain

E

[
dS

S

]
− rdt = (−γ − ρσξ)v.

Since the equity risk premium should be equal to µv under the physical process of equation (2), we

have

µ = −γ − ρσξ.

Likewise, we find the expression for the variance risk premium as −E
[
dv dMM

]
= (−γρσ − ξσ2)v.

When the variance risk premium is an affine function of v, say λv, we have

λ = −γρσ − ξσ2.

We can now deduce the relations between the physical and risk-neutral parameters of the variance

dynamics. With the variance risk premium λv, the risk-neutral dynamics of variance should be

dv(t) = [κ(θ − v(t))− λv(t)]dt+ σ
√
v(t)dz∗2(t). (A.3)

Comparing equation (1) with (A.3) implies the following restrictions:

κ = κ∗ − λ,

θ =
κ∗θ∗

κ
.

61



B No-Arbitrage Restrictions for the More General Pricing Kernel

We follow the same step as in Appendix A to find the no-arbitrage restrictions between the risk-

neutral dynamics in equation (1) and physical dynamics in equation (26) under the more general

pricing kernel. Applying Ito’s lemma to equation (23) gives

d logM = γd logS + αd log v + βdt+ η(v)dt+ ξdv

=

[
γ

(
r + µ0 + µ1v −

1

2
v

)
+ β + η(v) + ξκ(θ − v) +

α

v

(
κ(θ − v)− 1

2
σ2

)]
dt

+ γ
√
vdz1 +

(
ξσ
√
v +

ασ√
v

)
dz2,

where we use the fact that d log v = 1
v

(
κ(θ − v)− 1

2σ
2
)
dt+ σ√

v
dz2. Again by Ito’s lemma, we have

dM

M
=

[
γ

(
r + µ0 + µ1v −

1

2
v

)
+ β + η(v) + ξκ(θ − v) +

α

v

(
κ(θ − v)− 1

2
σ2

)
+

1

2

(
γ2v + ξ2σ2v +

α2σ2

v

)
+ γξσρv + γασρ+ ξασ2

]
dt

+ γ
√
vdz1 +

(
ξσ
√
v +

ασ√
v

)
dz2. (B.1)

The drift of M should be equal to −rMdt. By rearranging the drift term in equation (B.1),

[r + γ(r + µ0) + ξκθ − ακ+ γασρ+ ξασ2] + β

+

[
γ

(
µ1 −

1

2

)
− ξκ+

1

2

(
γ2 + ξ2σ2 + 2γξσρ

)]
v +

[
ακθ − 1

2
ασ2 +

1

2
α2σ2

]
1

v
+ η(v) = 0.

Thus, the time-preference and the stochastic path-dependence terms are expressed as

β = −(1 + γ)r − γµ0 − ξκθ + ακ− γασρ− ξασ2

η(v) = −
[(
µ1 −

1

2

)
γ − ξκ+

1

2

(
γ2 + 2γξσρ+ ξ2σ2

)]
v

−
[
ακθ − 1

2
ασ2 +

1

2
α2σ2

]
1

v
.
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Moreover, by calculating −E
[
dS
S
dM
M

]
and −E

[
dv dMM

]
for the equity and variance risk premia,

respectively, we obtain the risk premia expressed as µ0 + µ1v(t) and λ0 + λ1v(t), where

µ0 = −ασρ, µ1 = −γ − ρσξ,

λ0 = −ασ2, λ1 = −γρσ − ξσ2.

The physical dynamics in equation (26) are restricted according to

κ = κ∗ − λ1, and θ = (κ∗θ∗ + λ0)/κ.

C A Closed-Form Expression for the Joint Probability Distribution

To find the expression for the joint probability distribution of the log stock return and variance,

we first find the joint characteristic function and then apply the inverse Fourier transform. Let

gCHτ (φx, φv|x(t), v(t)) denote the joint characteristic function of the log stock price (here denoted

by x) and the variance (v).

When x and v evolve according to

dx(t) = [r + uv(t)]dt+
√
v(t)dz1(t),

dv(t) = (a− bv)dt+ σ
√
v(t)dz2(t),

with corr(z1, z2) = ρ, the characteristic function gCHτ (φx, φv|x, v) must satisfy the following partial

differential equation:

1

2
v
∂2g

∂g2
+ ρσv

∂2g

∂x∂v
+

1

2
σ2v

∂2g

∂v2
+ (r + uv)

∂g

∂x
+ (a− bv)

∂g

∂v
+
∂g

∂t
= 0. (C.1)

See Heston (1993) for more details. Since g is the joint characteristic function, the terminal condi-

tion of the PDE is

gCH0 (φx, φv|x, v) = eiφxx+iφvv. (C.2)
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Suppose g has the following functional form:

gCHτ (φx, φv|x, v) = eG(τ)+H(τ)v+iφxx. (C.3)

By substituting equation (C.3) into equation (C.1), we get the following ordinary differential equa-

tions (ODEs) for G(τ) and H(τ):

G′(τ) = rφxi+ aH(τ),

H ′(τ) = −1

2
φ2
x + ρσφxiH(τ) +

1

2
σ2H(τ)2 + uφxi− bH(τ), (C.4)

and the terminal conditions of the ODEs are G(0) = 0 and H(0) = iφv inferred from equation (C.2).

This system of ODEs expressed in equation (C.4) has the following closed-form solution:

H(τ) =
A2(DmX − iA2Y )φv − 2iA1(−Dm − 2A3φv + (Y − 1)(Dm − 2A3φv))

iA2DmX −A2
2Y + 4A1A3Y − 2A3DmXφv

,

G(τ) = rφxiτ

+
1

4A3

[
−2aA2τ −

2iaτ(A2
2 − 4A1A2)

Dm
+ 2ia arctan

(
A2A3X

2φv
A2

2(Y − 1)−A1A3Y 2 +A2
3X

2 + φ2
v

)
+

4aDp

Dm
arctan

(
iA2

2 + 2A2A3Xφv − 2iA3(A1Y −A3Xφ
2
v)

Dp(A2 + 2iA3φv)

)
− 4iaDp

Dm
arctanh

(
Dp

A2 + 2iA3φv

)
+ a log(Dp)

− a log
(
A4

2(Z − 1) +A2
1A

2
3Y

4 +A2
2A

2
3X

2Zφ2
v +A4

3X
4φ4

v − 2A1A3Y
2(A2

2(Y − 1) +A2
3X

2φ2
v)
) ]
,

where

A1 = −1
2φ

2
x + uφxi, A2 = ρσφxi− b, A3 = 1

2σ
2

Dm =
√
−A2

2 + 4A1A3, Dp =
√
A2

2 − 4A1A3

X = −1 + eiDmτ , Y = 1 + eiDmτ , Z = 1 + e2iDmτ .

To find the joint probability distribution function of x(t + τ) and v(t + τ), we apply the inverse
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Fourier transform to the characteristic function. That is,

Pr(x, v|x(t), v(t)) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

e−iφxx−iφvvgCHτ (φx, φv|x(t), v(t))dφxdφv (C.5)

To simplify the notation, we normalize the stock price. By letting the log stock price at time t be

x(t) = 0, x(t+ τ) represents the τ -horizon log return. Then, equation (C.5) can be written as

Pr(x, v|v(t)) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

e−iφxx−iφvv+G(τ |φx,φv)+H(τ |φx,φv)v(t)dφxdφv. (C.6)

Numerical integration of equation (C.6) is not tractable because the exponential function to be

integrated decays very slowly, especially over the φv dimension. To expedite its calculation, we use

the following weight function for the j-th grid point of φv, wj :

wj =


1
2 erfc

(
− j√

Nv/2
−
√
Nv/2

)
if j < 0

1
2 erfc

(
j√
Nv/2

−
√
Nv/2

)
if j ≥ 0,

where 2Nv is the number of grid points of φv. This weight function forces the exponential function to

decay much faster (see, for example, Ooura, 2001).24 Hence, we numerically compute equation (C.6)

as

Pr(x, v|v(t)) =
1

4π2

Nv−1∑
j=−Nv

Nx−1∑
k=−Nx

e−ixφx,k−ivφv,j+G(τ |φx,k,φv,j)+H(τ |φx,k,φv,j)v(t)wjζ(φx,k, φv,j),

where ζ(φx, φv) is an integration rule such as the trapezoidal or Gaussian quadrature method.

24Note that this approximation may cause an error if the true probability is near zero. This can happen when the
size of x(t+ τ) or v(t+ τ)− v(t) is very large. We find that the approximation works well for our application.
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Figure A.1: Implied One-Month Log Pricing Kernels

Panel A Panel B

Panel C Panel D

Notes: We plot the implied one-month log pricing kernels for the following four specifications: The
unrestricted exponential-affine (Panel A), the exponential-affine specification with the restriction
ξ = 0 (Panel B), the kernel implied by independent estimation of the P- and Q-parameters (Panel
C), and the affine price-of-risk specification (Panel D). Parameter values for Panels A and B are
from Table 3, parameter values for Panel C are from Table 2, and parameter values for Panel D
are from Table 4. The x-axis represents the standard deviations of log return from the expected
1-month log return.
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