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1. Introduction

We investigate the potential links between large portfolio rebalancing effects due to

hedging strategies used by option market makers and leveraged ETFs, the intraday dy-

namics of stock prices (momentum and reversal), and abnormal changes in end-of-day

volatility.

The role of the options market and leveraged ETFs on the dynamics of the underlying

stock prices has recently garnered a lot of attention, attracting negative press coverage

for potentially contributing to market volatility during already turbulent times.1 Just

recently, the trading activity in options was blamed to increase the violent stock swings

during the February-March 2020 Covid-19 selloff. The Wall Street Journal wrote:

“Investors searching for clues on what drove the back-to-back drops in the stock

market are pointing to the options market as a contributor, saying hedging

activity by traders may have exacerbated the decline.”

Wall Street Journal, Feb. 27, 20202

While it is widely accepted that options are non-redundant and may directly influence

the price of the underlying (Black, 1975), we lack a clear quantification of these effects in

individual stocks and how they relate to end-of-day price dynamics. We study the role

of two distinct institutional channels.

The first channel relates to the activity of (option) market makers. Market makers

and broker/dealers provide liquidity to clients who want to take positions in stock op-

tions. However, they have institutional incentives to avoid directional exposures and they

usually delta-hedge their positions. Since the option delta changes when the value of the

underlying changes, market makers need to regularly update their positions to maintain

delta neutrality.

The direction of the price pressure exerted by the market maker depends on its initial

gamma imbalance and the price movement of the underlying asset. Suppose, for instance,

that the price of a stock has a positive jump, due to some positive unexpected fundamental

news about future cash flows. If the gamma of the market maker positions is initially

negative, maintaining delta-neutrality requires the purchase of additional shares in the

underlying stock. On the contrary, a positive net gamma requires selling the underlying

1See for example Davies (2019).
2https://www.wsj.com/articles/the-invisible-forces-exacerbating-market-swings-

11582804802
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asset. Thus, if the aggregate gamma of market makers is significantly negative, delta-

hedging could give rise to significant net purchase contributing to end-of-day momentum.

Contrarily, if the aggregate gamma imbalance of market makers was positive, delta-

hedging would have a stabilizing effect in the form of an end-of-day reversal.

Notice that derivative markets are by construction zero-sum games. For each option,

there is a buyer and a seller. Therefore, the overall dollar value of aggregate gamma for

each option is zero across all purchasers and sellers. However, certain market participants

may have different incentives to hedge. Thus, in the cross-section one can observe a dis-

tribution of delta and gamma imbalances. Market makers are obliged to uphold liquidity

in the options market and facilitate the efficiency of trades. They refrain from taking any

directional bets on the underlying stocks by hedging their option delta-exposure.

The second source of institutional frictions relates to the end-of-day mechanical re-

balancing of leveraged ETFs. The mechanism is simple. For a normal ETF the payoff

is equal to the value of the referenced portfolio. Thus, the required notional exposure

is identical to the actual exposure. Leveraged ETFs are synthetic instruments that are

benchmarked at the close and created with total return swaps whose notional principal

is a multiple of the value of a referenced portfolio. Thus, different than for a normal

ETF, a price appreciation of the underlying asset portfolio has the compounded effect

of increasing both the referenced portfolio and the required notional value of the swap.

As a consequence, any price appreciation or drop gives rise to an imbalance between the

required and effective notional amount of the swap. The swap counterparty has to man-

age her exposure to the underlying ETF, thus potentially inducing a large rebalancing

of the portfolio of physical assets used to hedge the swap (see Section 2.3). Cheng and

Madhavan (2010) argues that the portfolio rebalancing of leveraged ETFs may have an

impact on intraday prices.

Figure 1 (top panel) illustrates the rebalancing effects caused by option market makers

and leveraged ETFs towards the end of the trading day. The upper panel shows the

intraday return path for Tesla stock on 13 December 2012. At the beginning of the

day, the aggregate gamma was positive and economically significant. During the day,

Tesla experienced a negative return equal to −6.62% by 15:30. Based on the information

available, the gamma imbalance implied that delta-hedgers needed to trade an amount

equal to 102.11% of the average dollar trading volume of Tesla shares in the last half-

hour. As Figure 1 illustrates, a strong price reversal emerged in the last 30 minutes of

the trading day, which is consistent with the large initial positive gamma imbalance.

An interesting example that relates to the role of leveraged ETFs is provided by the
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dynamics of Apple stock on 24 October 2018, see Figure 1 (middle panel). Apple stocks

are an important constituent for leveraged ETFs. At the same time, at the beginning

of the trading day the aggregate gamma of market makers was close to zero. By 15:30,

Apple shares had dropped by −2.24%. As a consequence, leveraged ETF had to sell large

quantities of Apple shares to rebalance their portfolio of leveraged swaps for an estimated

dollar amount equal to 8.85% of the average dollar daily trading volume in Apple shares.

Possibly as a result, the price dropped further by −1.22%.

The timing of delta-hedging by market makers and portfolio rebalancing by leveraged

ETFs can be different. Figure 1 (bottom panel) illustrates this heterogeneity and the

potential effect on the price dynamics. On 23 June 2016, the gamma imbalance of market

makers on Amazon stock options was large and positive. At the opening, the price

dropped by almost 4%. The implied hedging demand by likely delta-hedgers required

purchasing shares for approximately 50% of the average dollar volume in Amazon shares.

Consistently, the share price started to mean revert, albeit not completely. At 15:30 the

share price was −3.27% lower than the previous day. Leveraged ETF had to rebalance,

which caused further downward pressure as it emerged shortly before the market closing.

There are two important differences between these two channels. First, the direction

of the price pressure from leveraged ETFs only depends on the return on the benchmark

index which the leveraged ETF promises to track as a multiple.3 Hence, the price pressure

can support dynamics consistent with intraday momentum. On the other hand, the

price pressure exerted by the rebalancing of market makers depends on the sign of their

gamma imbalance, and the effect can be consistent with either a momentum or mean-

reversion effect. Second, while option market makers have discretion on the execution of

their hedging strategies, leveraged ETF swap counterparties are required to establish the

target exposure of the fund at the close. We thus expect larger effects of leveraged ETF

rebalancing on end-of-day returns.4 Third, the demand pressure arising from leveraged

ETFs is common across all stocks which are part of the index referenced by the ETF.

On the other hand, the market makers’ gamma imbalance is stock-specific and it can be,

3There are generally two types of leveraged ETFs, bull funds that promise to deliver a multiple of
the underlying ETF’s return, and bear funds, which are designed to generate a multiple of the opposite
return of the index.

4While market makers should hedge continuously, whenever a large intraday price movement emerges,
the existence of frictions may create incentives for them to delay their hedging and distribute implied
price pressure during the day (Clewlow and Hodges, 1997). Indeed, liquidity and volume patterns are
attractive at the open and close, as previous studies have documented a U-shape end-of-day volume
pattern (Andersen and Bollerslev, 1997). It is certainly unusual for market makers to remain unhedged
when markets are closed due to the significant overnight gap risks and regulations such as BIS capital
requirements that make it costly to hold overnight positions due to higher capital costs.
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Fig. 1. Delta-Hedging and Leveraged ETF Rebalancing Effects
The figure depicts the effects of delta-hedging and leveraged ETF rebalancing on three days in our
sample for Tesla (TSLA), Apple (AAPL), and Amazon (AMZN) stock, respectively. rpre denotes the
return from previous day’s close price until 15:30. rend denotes the return from 15:30 to close. ΓHP is
defined in Equation (5) and is the product of rpre and the aggregate gamma imbalance, ΓIB . ΩLETF is
the measure for leveraged ETF rebalancing, defined in Equation (6). ΓHP and ΩLETF are expressed in
relative terms to the average dollar trading volume in the last half hour over the last quarter.

at the same time, positive for one stock and negative for another. This may generate

mean-reversal for a set of stocks and intra-day momentum for others.

We build a unique dataset that merges data from several options exchanges providing

the identity of all option counterparties and the portfolio composition of 72 leveraged

ETFs for 24 underlying benchmark ETFs, which represents almost the whole universe

of leveraged ETFs on U.S. equity indexes. After computing the gamma imbalance of

market makers and the rebalancing demand of leveraged ETFs, we use intraday TAQ
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data to study the potential implications on intraday price dynamics. We ask three re-

lated questions: First, is there an empirical correlation between the required portfolio

rebalancing of leveraged ETFs, the gamma imbalance of market makers, and end-of-day

price dynamics? What is the relative importance of these two channels? Second, given

the emergence of a price jump during the trading day, what is the extent to which the

resulting portfolio imbalances are absorbed during the trading day and at the market

closure? Third, how does the effect hold up in different subsamples and over time? Is

the effect more pronounced for small or large stocks? While large stocks are often more

liquid, they are more often part of those indexes that are referenced by leveraged ETFs.

First, we investigate both effects in isolation. We find that end-of-day returns and

orderflow measured by signed trading volume are correlated with a measure of delta-

hedging required by market makers to neutralize price changes that have occurred until

15:30. When this hedging-pressure is positive (negative), we observe abnormal selling

(buying) pressure at the close, which directly translates into lower (higher) returns. This

effect is robust to a series of control variables suggested in the literature, such as the

trading volume in the option relative to the market (Roll, Schwartz, and Subrahmanyam,

2010), the put/call ratio (Blau, Nguyen, and Whitby, 2014), and properties of the implied

volatility. Turning to the impact of rebalancing flows originating from leveraged ETF

replication, we find large effects on both end-of-day orderflow and returns. The riskiness

of the stock position does not drive our results.

Next, we compare the two effects on a joint dataset, comprising all stocks that are

optionable and included in at least one leveraged ETF. First, the effect by leveraged

ETFs on end-of-day returns is larger in terms of economic and statistical significance. A

one standard-deviation increase in the Γ hedging pressure depresses end-of-day returns by

−113% of the average return in the last thirty minutes of a trading day. A one standard-

deviation increase in leveraged ETF rebalancing flows increases end-of-day returns by

430% of the average return in the last half hour. Moreover, we find that the impact of

both rebalancing sources is amplified when controlling for the magnitude of the other.

This is most evident when we condition on the set of days where both sources agree to

either buy or sell the underlying stock.

To assess the economic significance of the cross-sectional impact of these rebalancing

flows, we design a long-short strategy that uses as conditional signal the estimated de-

mand pressure. We find that the average annualized return of the strategy is positive,

unexplained by traditional risk factors, and orthogonal to the market return at the close.

The annualized Sharpe-ratio is about 3 (5), with a success rate of 58% (62%), using a
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value-weighted (equal-weighted) portfolio.

A central question in our analysis regards the timing of the portfolio rebalancing.

While theoretical arguments imply that hedging activity should be done instantaneously

by market makers, the presence of frictions may delay the hedging activity to the end-of-

day when liquidity is deeper. We empirically address this question by varying the intraday

hedging window at 30 minute intervals, between 10:00 and 16:00. We find supporting

evidence that a significant component of the hedging activity of option market makers

takes place toward the end of the trading day (an hour before the close); at the same time,

the counterparties to leveraged ETFs unequivocally implement their portfolio rebalancing

at the close.

Building on this insight, we also investigate how quickly option market makers actively

hedge following a large price shock in the underlying. If the large movement has occurred

early during the trading day, we find that the hedging activity is almost immediate. In

contrast, the rebalancing activity of leveraged ETFs is unrelated to intraday jumps and

takes place solely end-of-day.

Furthermore, we find that the estimated impact of option market maker is robust to

the presence or absence of fundamental news about the underlying stock. We consider

both earnings announcements and the release of material news as identified by RavenPack.

If portfolio rebalancing and hedging activities substantially distorts prices at the close,

we expect other market participants to correct this mispricing at the next open. Indeed,

we find that more than 80% of the impact of market makers and a third of the impact

of leveraged ETFs is reversed at the next open, highlighting the transitory nature of the

phenomenon.

Using rolling three-year subsamples, we provide evidence that the impact of both

channels has been both economically and statistically significant in all subsamples be-

tween 2012 and 2019. Additionally, we find that the impact of delta-hedging has increased

over time, whereas it remained constant for leveraged ETF rebalancing.

The effects of delta-hedging on the price of the underlying are more pronounced for

large stocks. This is due to the larger dollar open interest of high market capitalization

stocks, which skews the Γ-imbalance distribution towards them. On the other hand, the

impact of leveraged ETF rebalancing is symmetric between large and small stocks.

We provide a battery of robustness checks, relating to the empirical setup, the as-

sumption regarding who engages into delta-hedging, different ways to measure average

and risk-adjusted returns, and confirm that our results are unaffected by the respective

company’s industry. Furthermore, we address concerns regarding the possibility that
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changes in the options inventory of market makers in response to private and/or public

information on end-of-day returns explain our results (see Ni, Pearson, Poteshman, and

White, 2020, for the effect of delta-hedging on stock return volatility).

Related Literature

Our work relates to several streams of the literature. The first stream studies the

feedback effects of option markets on the underlying stock price dynamics. The literature

generally distinguishes between two channels through which option trading may have an

impact on the price of the underlying. Hu (2014) provides evidence that the information

found in market makers’ initial delta-hedges can significantly affect the price dynamics of

the underlying.5 However, a non-informational channel may also be at work: Ni, Pearson,

and Poteshman (2005) and Golez and Jackwerth (2012) document that rebalancing and

unwinding of option market makers’ delta hedges on or very close to expiration drive

the prices of individual stocks and stock index futures towards option strike prices on

option expiration dates. Lately, Ni et al. (2020) analyze the effects of Γ-imbalance on

absolute returns and the autocorrelation of returns, based on theoretical models that

predict a negative relation between stock volatility and Γ-imbalance.6 Whereas Ni et al.

(2020) resort to daily data, Barbon and Buraschi (2020) concentrate on intraday price

dynamics. They find that Γ-imbalance is negatively related to intraday volatility and

document that Γ-imbalance can affect the frequency and magnitude of flash crashes.

Baltussen, Da, Lammers, and Martens (2020) show that end-of-day momentum in many

futures contracts concentrates on days with negative Γ-exposure of option market makers.

Finally, Chordia, Kurov, Muravyev, and Subrahmanyam (2021) propose a risk-based

channel. The authors show that net buying pressure in index puts on the International

Securities Exchange positively predicts subsequent S&P 500 index returns and trace the

predictability to the purchase of protection when uncertainty is high.

A different, but related stream of the literature studies the effects of option mar-

ket maker inventory. Gârleanu, Pedersen, and Poteshman (2009) have provided path-

breaking work on how demand pressure affects option prices. A closely related study is

by Fournier and Jacobs (2020). Johnson, Liang, and Liu (2016) investigate the forces

5Other studies advocating an informational channel are, among others, Easley, O’Hara, and Srinivas
(1998), Pan and Poteshman (2006), Ni, Pan, and Poteshman (2008), Cremers and Weinbaum (2010),
Roll et al. (2010), Johnson and So (2012), and Ge, Lin, and Pearson (2016).

6For a theoretical foundation, see among others Frey and Stremme (1997), Frey (1998), Sircar and
Papanicolaou (1998), Platen and Schweizer (1998), Wilmott and Schönbucher (2000).
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behind the use of S&P 500 index option and conclude that unspanned crash risk drives

much of their demand. Related, Jacobs and Mai (2020) find a tight link between prices

and demand in S&P 500 and VIX options. Chen, Joslin, and Ni (2019) infer financial

intermediary constraints via deep out-of-the-money index put options. The authors show

that a tightening of intermediary constraints is accompanied by option expensiveness and

broker-dealer deleveraging.

A third stream focuses on the effects of (leveraged) ETF ownership on the constituent

stocks. Ben-David, Franzoni, and Moussawi (2018) show that stocks with higher ETF

ownership exhibit higher volatility, as liquidity shocks caused by short-horizon traders in

the ETF can be transmitted to the underlying stocks by an arbitrage mechanism. Shum,

Hejazi, Haryanto, and Rodier (2016) show that the rebalancing flows of leveraged ETFs

amplify end-of-day volatility in the period from 2006 to 2011.

Another stream studies intraday return patterns. We find high-frequency return con-

tinuation in the cross-section of stock returns, consistent with evidence provided by Gao,

Han, Zhengzi Li, and Zhou (2018) and Baltussen et al. (2020). Both studies focus on

aggregate investment vehicles, such as ETFs and index Futures. Gao et al. (2018) show

that their effects are stronger on days with elevated volatility, which are typically also

accompanied by higher trading volume. In the cross-section of stocks, we confirm the

finding of Komarov (2017) that stocks performing best in the first half of the day will

likely lose in the second half if controlled for market returns. Another study on short-

term return reversals is Heston, Korajczyk, and Sadka (2010). The authors show that the

returns of a half-hour period have predictive power over the same half-hour periods for up

to 40 days in the future, when controlling for the impact of the market. They relate this

to the usage of trade mechanisms by institutional traders, designed to limit the relative

price impact of their orders. More recently, studies link investor heterogeneity on the

stock-level to cross-sectional intraday and overnight return variations. Lou, Polk, and

Skouras (2019) hypothesize that different investor types trade predominately at different

times throughout the trading day. Empirically, the authors document high persistence

in overnight and intraday return components, which they find not on single-stock basis,

but also for 14 equity strategies such as size, value or profitability. Bogousslavsky (2020)

focuses only on intraday returns and finds that a mispricing factor earns positive returns

up to the last half hour, consistent with the idea that arbitrageurs trading on mispricing

reduce their positions at the end of the trading day.

Finally, the last streams focuses on the U.S. equity market closing auction. Bogous-

slavsky and Muravyev (2020) show that the share of daily volume in the closing auction
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has more than doubled from 2010 to 2018. They attribute the increase in trading vol-

ume to the rise of indexing and ETFs. Wu and Jegadeesh (2020) examine the price

impact, including ts temporary component, of closing auctions. Trading strategies based

on market-on-close imbalances generate out-sized returns.

2. Data and Measurements

To conduct our empirical analysis we pull data from several databases, including stock

and indices, single-name options, and leveraged ETFs. By merging these data sources we

obtain a unique dataset allowing us to measure flows coming from the hedging of options

and rebalancing of leveraged ETFs and study their potential impact on stock prices.

2.1. Data Sources

Option Markets. The first dataset merges option data from five different exchanges:

(a) the CBOE C1 exchange, (b) NASDAQ GEMX (GEMX), (c) NASDAQ International

Security Exchange (ISE), (d) NASDAQ Options Market (NOM), and (e) NASDAQ PHLX

(PHLX). The dataset includes information on signed trading volume, the underlying

stock, and the category of the counterparties engaged in the trade. The sample starts

in May 2005, when ISE data becomes available, then it adds PHLX data, which begins

in January 2009, NOM data, which starts in November 2011, GEMX data, starting in

August 2013, and CBOE data, which starts at the beginning of 2010. Our sample ends

in July of 2020.

Each of the five exchanges provides four categories of volume for each option series:

open buy, open sell, close buy, and close sell. Each of the volume categories is further

broken down into different types of market participants: broker/dealer, proprietary, and

customer.7. For each type of market participant, we sum the buy and sell trades to esti-

mate the long and short open interest at the trader-type level. The five exchanges sum

up to a substantial proportion of the equity options market, delivering the most compre-

hensive coverage available at the moment. Nonetheless, we do not cover volume outside

of these exchanges and OTC options trading.8 We also gather daily bid and ask quotes,

implied volatility, trading volume, open interest, and Greeks for each option contract

7In 2009, the type of professional customer has been introduced alongside the customer. We merge
professional customers with customers.

8Ge et al. (2016) estimate that ISE alone covers 30% of the total trading volume on individual equity
options.
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from OptionMetrics. As individual stock options are of American type, OptionMetrics

uses binomial trees to compute implied volatility and Greeks.

Leveraged ETFs. We obtain information on all leveraged ETFs on U.S. equity in-

dexes from ETFGlobal from January 2012 through December 2019, including the leverage

amount, the benchmark index referenced by the fund, and the assets under management

of each leveraged ETF at the daily frequency. We compute the constituents of the bench-

mark index of each leveraged ETF and use TAQ data to calculate intraday returns of

each selected benchmark referenced by the leveraged ETF. Figure 2 reports the evolu-

tion of aggregate assets under management (AUM) of leveraged ETFs. This industry

has grown rather significantly from about USD 40bn in 2012 to USD 130bn in 2020 in

leverage-adjusted terms. Even though the AUM in leveraged ETFs may appear insignifi-

cant when compared to the total stock market capitalization, this should not obscure its

potential impact on end-of-day returns for the following reasons. First, when compared to

the average dollar trading volume, which is typically several orders of magnitude smaller

than the market value, the flows arising from leveraged EFTs become relevant. Second,

as we argue in Section 2.3, the trading volume stemming from leveraged ETFs is concen-

trated in a very short time window at the end of the trading day. Third, leveraged ETFs

volume is likely executed through market orders, for the positions must be rebalanced to

avoid tracking errors.

Table OA2.1 in the Online Appendix provides an overview of the properties of lever-

aged ETFs included in our sample. On average, we consider 72 leveraged ETFs for 24

underlying benchmark indices, with a cross-sectional distribution that is fairly stable over

time. On average, 45% of the funds we consider are inverse or bear funds. Weighted by

the AUM (VW), this number drops to 33%, but fluctuates more substantially over time,

with a proportion of just 16% at the 10th percentile and 63% at the 90th. The average

fund is leveraged by an absolute value of 2.35.

Stock Markets. Information on individual equity stocks is obtained from the Center

for Research on Security Prices (CRSP) and includes trading volume, shares outstanding,

and closing prices. We restrict our analysis to stocks with CRSP share code 10 and 11,

and exchange code 1, 2, 3, 31, 32, and 33. Information on any type of distribution (e.g.

dividends and stock splits) is also obtained from CRSP. We match data from CRSP with

our options data via the matching algorithm provided by WRDS.

High-frequency Data on Underlying Assets. Intraday stock price data and transaction

volumes are obtained from TAQ. We use standard cleaning procedures and match intraday

trade prices with CRSP to obtain PERMNOs as unique identifiers. More details are given

10



2012 2013 2014 2015 2016 2017 2018 2019 2020

20

40

60

80

100

120

140

Bi
llio

ns
 (U

SD
)

AUM
Leverage-adjusted AUM

Fig. 2. Evolution of U.S. Equity Index Leveraged ETF Assets under Management
This figure shows the evolution of the assets under management (AUM) and leveraged-adjusted assets
under management over time. Leverage-adjusted assets under management are computed by multiplying
the assets under management by L × (L − 1), where L denotes the leverage factor, for each LETF-day
observation. The sample period is from January 2012 to December 2019.

in Appendix A. Equipped with intraday prices, we calculate intraday returns relative to

the previous day’s closing price. Following standard practice in the literature, (see Lou

et al., 2019), we assume that corporate events that mechanically impact prices, e.g.

dividend payments and stock splits, take place overnight and are realized at the time of

the first trade on the target date. If a delisting occurs as reported by CRSP, we assume

that the delisting amount is realized at the respective day’s close.

Earnings Announcements and News. Information on earnings announcement days is

obtained from Compustat and I/B/E/S. Whenever the announcement date for the same

stock differs between Compustat and I/B/E/S, we follow Dellavigna and Pollet (2009)

and use the earlier date. Compustat and I/B/E/S are matched to our CRSP data via

the matching algorithms provided by WRDS.

Finally, we use the Dow Jones version of Ravenpack News Analytics and its sentiment

scores to identify days with significant news for each underlying. We restrict our news

sample to articles that are most relevant for a particular stock, i.e. a relevance score of

100. Furthermore, we only include news that is highly positive (sentiment score above
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0.75) or highly negative (sentiment score below 0.25).

To summarize, our sample includes 3,428,010 observations on optionable stocks from

May 2005 through July 2020, and 4,448,494 observations of stocks included in leveraged

ETFs from January 2012 through December 2019. To study the relative importance of

the two channels, we also consider a joint sample obtained from the intersection of these

two.9 This comprises 1,979,544 observations from January 2012 through December 2019.

2.2. Measuring Gamma Hedging Pressure

Let V (t, S) denote the value of an option contract and ∆(t, S) = ∂V (t,S)
∂S

be the first

derivative of the option price with respect to the underlying, whereas Γ(t, S) = ∂2V (t,S)
∂S2

measures the change of ∆(t, S) for changes in S. When Γ(t, S) is not zero, ∆(t, S)

changes depending on time to maturity and the level of S and, consequently, any hedging

position has to be adjusted periodically. If Γ(t, S) is large in absolute terms, ∆(t, S) is

very sensitive to movements in the underlying and it implies a large amount of rebalancing

for the market maker to remain delta-neutral.

Since makers and broker/dealers have similar hedging incentives, we classify both as

“delta-hedgers”. Consequently, we categorize proprietary and customers as non-delta-

hedgers and refer to them jointly as “end-customers” in the remainder of the paper.

To obtain the gamma imbalance of delta-hedgers, we proceed as follows. Let OIBuy,Io,t

be the open interest of investors of type I in long positions in option o at time t, which

is related to daily volume as follows (see Ni et al., 2020):

OIBuy,Io,t = OIBuy,Io,t−1 + V olumeOpenBuy,Io,t − V olumeCloseSell,Io,t (1)

OISell,Io,t = OISell,Io,t−1 + V olumeOpenSell,Io,t − V olumeCloseBuy,Io,t , (2)

where V olumeOpenBuy,Io,t and V olumeOpenSell,Io,t denote the volume from investors type I to

open new long and short option positions, and V olumeCloseBuy,Io,t and V olumeCloseSell,Io,t

refer to volumes with which investors of type I closed existing long and short positions,

respectively.

Second, we calculate the delta-hedgers’ net open interest in option series o at date t’s

9To appear in the joint sample, each stock has to be optionable and included in one or more leveraged
ETFs.
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close as

netOIo,t = −
[
OIBuy,Customero,t −OISell,Customero,t +OIBuy,Proprietaryo,t −OISell,Proprietaryo,t

]
,

(3)

where netOIo,t is measured in units of option contracts and OID,Io,t is the open interest

of direction D (either buy or sell) by market participant type I (either customer or

proprietary) in option series o at the close of date t. The net open interest of market

makers is the opposite of the sum of the remaining market participant types. Assuming

that broker/dealers are also delta-hedgers, we arrive at Equation (3).

Let Γo(t, S) denote the gamma of option series o on stock j at day t and underlying

price S, expressed in shares of the underlying.10 To compute the day t delta-hedger dollar

gamma imbalance in option series o, we take the product of Γo(t, S) with the stock price

S at 15:30 on the target day and multiply by the contract multiplier Multo of o (typically

Multo = 100). 11

To obtain the aggregated gamma imbalance on an underlying stock j for trading day

t, denoted by ΓIBj,t , we compute the sum over all options on the underlying:

ΓIBj,t =

(∑
o

netOIo,t−1 × Γo(t− 1, Sclosej,t−1)× S15:30
j,t ×Multo

)
︸ ︷︷ ︸

(?)

×
Sclosej,t−1

100
× 1

ADVend
j,t−1

. (4)

The term (?) in Equation (4) denotes the total dollar gamma imbalance for a given

stock at day t. It is the dollar amount delta-hedgers need to trade in the underlying

for each one-dollar move in the underlying stock price S. By multiplying (?) by the

underlying price divided by 100, we obtain the dollar gamma imbalance for a one percent

move in S. This facilitates comparison over time and in the cross-section. Finally, we scale

by the average dollar volume in the last half hour of a trading day, ADVend
t−1, computed

over the last month.12 Thereby, we express the delta-hedgers’ gamma imbalance in a

given stock as a fraction of the typical trading taking place in the last half hour, which

allows us to obtain a timely proxy for the potential price impact of hedging adjustments.

10OptionMetrics calculates the gamma of an option as the absolute change in delta given a $1.00
change in the underlying.

11Since we cannot observe intraday variations of the net open interest, we assume that Γ(t, S) only
changes due to innovations in the stock price. We hence use the observed stock price at 15:30 on day t
to compute the best possible estimate of the amount to be traded by delta-hedgers.

12As Table OA3.1 shows, it is inconsequential to our main results if we compute the average dollar
trading volume over a weekly or quarterly horizon.
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Fig. 3. Timeline. This diagram shows how returns over different periods of the trading day are
calculated. We denote by rpre

j,t the cumulative return of stock j from the closure of day t− 1 to 15:30 of

day t, and by rend
j,t its return during the last half-hour of day t, i.e. from 15:30 to 16:00.

ΓIBj,t denotes the amount of hedging market makers would have to do for a 1%-move

in the underlying stock j at time t. We combine this measure with information on how

much the underlying has moved before the start of the hedging window. The timeline

is illustrated in Figure 4. The return from the close of day t − 1 to the start of the

hedging window at 15:30 is denoted as rpre
j,t . The percentage hedging pressure is thus the

interaction between ΓIBj,t and rpre
j,t :

ΓHPj,t = 100× ΓIBj,t × r
pre
j,t . (5)

ΓHP is our main variable of interest. It directly captures the amount of hedging required

for delta-hedgers to remain delta-neutral after observing intraday return rpre.

We acknowledge that our proxy for the delta hedging amount has some limitations.

First, we cover only about 50-70% of the transacted volume in equity options and, second,

we rely solely on Gamma to approximate changes in the hedging amount. In an ideal

setting, we would be able to track intraday changes in the inventories of delta-hedgers,

obtain intraday changes in deltas, and a complete list of hedging times. These limitations

introduce errors in our estimates but, as Ni et al. (2020) shown, bias regression coefficients

toward zero. We hence argue that our analysis provides a lower bound for the real impact

of gamma imbalance on stock prices.

2.3. Measuring LETF Rebalancing Pressure

To understand how leveraged ETFs may contribute to intraday price momentum, let

L be the fund’s leverage factor, say −3 for a bear and +3 for a bull fund, and At the

leveraged ETF’s assets under management (AUM). The required notional amount of total

return swaps at day t is St = L×At. Hence, if the return on the index at time t+1 is rbencht+1 ,

then At+1 = At× (1+L×rbencht+1 ). Therefore, the required notional amount of total return
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swaps at t+ 1 becomes St+1 = L×At+1 = L×At× (1 +L× rbencht+1 ). However, the actual

exposure of the total return swaps at t+1 is Et+1 = St×(1+rbencht+1 ) = L×At×(1+rbencht+1 ).

The difference between the required and the actual notional is the rebalancing amount,

equal to St+1−Et+1 = L× (L−1)×At×rbencht+1 . Given that the required hedging multiple

L × (L − 1) is strictly positive for L ∈ R \ [0, 1], leveraged ETF swap counterparties

always have to trade in the same direction as the return of the underlying index, which

may induce an end-of-day return momentum effect in the stocks included in the index

referenced by the leveraged ETF.13 Unlike the gamma imbalance effect, hedging demand

by leveraged ETFs for a given stock is not necessarily proportional to the return of that

specific stock but, rather, to the return of the underlying index. Therefore, leveraged

ETFs rebalancing may induce return momentum in a stock, even if its return in the first

part of the trading day is zero.

To compute the amount of rebalancing affecting an individual stock, let stock j be

included in the underlying of a leveraged ETF i with a weight of wi,j,t on day t. If the

swap counterparty starts rebalancing their exposure at 15:30, and rpre
i,t;bench denotes the

return on the benchmark ETF up until that moment, the relative amount of rebalancing

required in stock j is the sum over all leveraged ETFs in which stock j is included in:

ΩLETF
j,t =

∑Ni,t
i=1 Li × (Li − 1)× Ai,t−1 × wi,j,t−1 × rpre

i,t;bench

ADVend
j,t−1

(6)

We scale by the average dollar volume in the last half hour (ADVend) to compare the

impact of rebalancing with the average amount of trading at the close.

2.4. Summary Statistics

In this Section, we provide summary statistics for the gamma imbalance and leveraged

ETF hedging pressure.

Figure 4 shows the cross-sectional distribution of ΩLETF over time and compares

it with the distribution of ΓHP in the joint sample. While both are time-varying, the

distribution of ΓHP is wide, with a larger interquartile range, suggesting that on the

same day market makers can have a large negative gamma imbalance on some stocks

and, at the same time, a large positive gamma imbalance on another stock. Table B1 in

13We assume that returns swap providers (or their counterparties) ultimately need to hold a quantity
of the underlying stock proportional to the size of the swap contract. If some of the swaps are based on
other instruments or on correlated assets, this would introduce noise in our proxy and bias our results
toward zero.
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Fig. 4. Time Series Cross-sectional Distribution of ΩLETF and ΓHP

This figure shows weekly averages of the cross-sectional distribution of the demand pressure from the
rebalancing of leveraged ETFs (ΩLETF ) and Gamma imbalance (ΓHP ). The dark line represents the
cross-sectional median, the dark-colored area the 25th/75th percentile, and the light-colored area the
5th/95th percentile.

the Appendix provides more granular summary statistics on ΓHP and ΩLETF . Table B1

shows that the aggregate pressure arising from leveraged ETFs is on average higher than

the one from delta-hedging, but the distribution of absolute ΓHP has a heavy right tail.

Table 1 documents the economic significance of the demand pressure arising from

the rebalancing activity of the leveraged ETFs and the delta hedging activity of market

makers in the options market. The second column reports the average number of stocks in

the joint sample for which the combined dollar rebalancing amount due to both channels

exceeds a certain threshold (first column) of the average dollar volume in the last 30

minutes of the trading day (ADVend). We find that, on average, for 69 (12) stocks

the combined rebalancing amount exceeds the 10% (25%) threshold. For these stocks,

the average rebalancing dollar amount is equal to 21.23% (49.00%) of ADVend. The

cross-sectional dispersion is large and for stocks in the 90th percentile (last column) the

average rebalancing dollar amount exceeds 34.30% (76.72%) of the total trading volume.

The fourth column provides information about the relative importance of each channel.

The majority of the rebalancing amount is driven by ΓHP . For the group exceeding a

rebalancing threshold of 10% (25%), 71.86% (80.91%) of the average absolute combined
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Table 1: The Cross-Section of Demand Pressure from Gamma and LETFs Rebalancing
This table reports the average daily number (N) and percentage (Share) of stocks with a combined re-
balancing amount in the last 30 minutes of the trading day exceeding a certain threshold (first column),
as a percentage of the average dollar volume. The fourth column (% Gamma) reports the proportion
of the total demand pressure due to the Gamma imbalance ΓHP relative to the combined rebalancing
amount: |ΓHP |/(|ΓHP |+ |ΩLETF |). Additionally, the table reports the average mean (Mean), standard
deviation (Std), and 10%- and 90%-percentile of the share of the combined rebalancing amount condi-
tional on exceeding the specified level. The sample contains stocks that are optionable and included in
the benchmark index of at least one leveraged ETF. The sample period is from January 2012 – December
2019.

N Share % Gamma Mean Std 10% 90%

1% 601.7 60.23% 49.95% 5.11 8.29 1.30 9.81

2% 354.4 35.48% 55.76% 7.68 10.41 2.86 13.67

5% 182.6 18.28% 63.01% 12.07 13.72 5.47 20.28

10% 69.5 6.95% 71.86% 21.23 19.63 10.83 34.30

15% 34.0 3.41% 76.47% 30.50 24.34 16.43 48.97

25% 12.5 1.25% 80.91% 49.00 31.88 28.92 76.72

50% 3.4 0.34% 84.75% 94.33 44.86 72.69 122.20

rebalancing originates from the hedging activity of option market makers. Moreover,

the share of ΓHP in the combined rebalancing amount is monotonically increasing in the

threshold level, suggesting that the demand pressure from this channel is highly non-

linear and can become dominant. Thus, the relative importance of the two channels for

the dynamics of asset prices is largely an open question and requires a direct empirical

investigation.

2.5. Abnormal Order Flow

We define the abnormal order flow in the last 30 minutes of trading day t for stock j

as

RSVOLend
j,t = SVOLend

j,t /ADVend
j,t−1 . (7)

SVOLend
j,t is the difference between the trading volumes in up- and down-minutes, defined

as

SVOLendj,t =
∑

m∈ 15:30→Close
VOLj,t,m × 1rj,t,m>0 −

∑
m∈ 15:30→Close

VOLj,t,m × 1rj,t,m<0, (8)
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where m denotes the minutes within the hedging window for target day t.14

3. Empirical Results

Consider the case in which ΓIBj,t for stock j at time t is negative. If delta-hedgers want

to maintain delta-neutrality, they have to sell the underlying stock if it has depreciated

intraday. Additionally, if ΩLETF
j,t is negative, rebalancing of leveraged ETFs will cause

further downward price pressure. Table 2 provides an overview of these two effects.

Accordingly, our empirical study revolves around the following two hypotheses:

H0Γ: Positive (negative) Gamma hedging pressure leads to additional selling (buying)

at the end of the trading day and, consequently, to negative (positive) end-of-day stock

returns.

H0Ω: If the previous day return on the benchmark index was positive (negative), the

rebalancing activity of leveraged ETFs adds to buying (selling) at the close and, conse-

quently, to positive (negative) end-of-day stock returns.

An important difference between H0Γ and H0Ω is in the cross-section. Since ΓHP

can greatly differ across stocks even at the same time t, the effect is stock-specific. For

ΩLETF , in contrast, all stocks that belong to the same referenced index are exposed to

the same price pressure.

3.1. Discretionary Rebalancing: Gamma Hedging Pressure

Order Flow

The first part of H0Γ predicts that ΓHP is negatively related to the order flow of the

underlying stock. To test this hypothesis we run panel regressions of the following form:

RSVOLend
j,t = β0ΓHPj,t + γ ′Xj,t + FEj + FEt + εj,t, (9)

including asset (FEj) and date fixed effects (FEt), and allowing for additional control

variablesXj,t, depending on the specification. H0Γ predicts that the sign of β0 is negative.

14We scale by ADVend to make the signed volume comparable across stocks in the cross-section and
over time.
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Table 2: The Impact of ΓHP and ΩLETF on End-of-Day Returns
The table depicts the effects of ΓHP , as defined in Equation (5), and ΩLETF , as defined
in Equation (6), on end-of-day returns. RSV OL denotes the relative signed trading
volume, as defined in Equation (7). The upper half of the table visualizes the interaction
of gamma imbalance ΓIB and the return until the last hour of the trading day, rpre

t . The
lower half of the table visualizes directly the impact of ΩLETF on rpre

t .

rpre
t > 0 rpre

t < 0

ΓIBt−1 > 0 ΓHPt > 0 ⇒ RSVOL↘⇒ rend
t ↘ ΓHPt < 0 ⇒ RSVOL↗⇒ rend

t ↗

ΓIBt−1 < 0 ΓHPt < 0 ⇒ RSVOL↗⇒ rend
t ↗ ΓHPt > 0 ⇒ RSVOL↘⇒ rend

t ↘

ΩLETF
t−1 > 0 RSVOL↗⇒ rend

t ↗ RSVOL↗⇒ rend
t ↗

ΩLETF
t−1 < 0 RSVOL↘⇒ rend

t ↘ RSVOL↘⇒ rend
t ↘

Results are reported in Table 3 with standard errors double-clustered by day and

asset, as it is done throughout the paper. Column (1) provides support for our hypoth-

esis, reporting that the coefficient on ΓHP is −13.37 (t-value: −3.89). The estimate is

significantly different from zero at the 1% confidence level, suggesting a link between the

hedging pressure of market makers due to their gamma imbalance and the order flow in

the underlying stock.

Nevertheless, this unveiled empirical relationship may be consistent with alternative

hypotheses. In particular, it may arise from intraday oscillations in the level of risk, for

volatility-target investors might rebalance their portfolio away from risky assets towards

the end of the trading day if volatility changes, generating directional order flow. Since

option demand is also a positive function of investors expectations about future volatility,

changes in risk may impact the inventory of market makers and, potentially, their Γ

imbalance. These two observations may generate a mechanical and negative relationship

between gamma imbalance and order-flow, driven by the dynamics of expected volatility.

To rule out the above explanations, specifications in columns (2) and (3) add con-

trols for two proxies of expected volatility, namely the level of the at-the-money implied

volatility (IV ) on day t− 1 and a forecast of future variance using an EGARCH model,
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Table 3: Delta Hedging and End-of-day Order Flow
The table reports the results of a regression of relative signed trading volume in the last half hour of
a trading day on market maker hedging pressure ΓHP , following Equation (7). IVt−1 denotes implied

volatility at time t− 1. R̂V
end

t denote the square root of predicted realized variance for the time period
from 15:30 to 16:00. PCt−1 is the put-call-ratio and O/S$

t−1 denotes the option-to-stock volume in dollar
terms. T-statistics in parentheses are derived from standard errors clustered by date and entity. ***,
**, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects and weight returns
by the stock’s market capitalization. The sample period is May 2005 – July 2020.

(1) (2) (3) (4) (5)

Dependent RSVOLend
t RSVOLend

t RSVOLend
t RSVOLend

t RSVOLend
t

ΓHPt -13.368*** -13.369*** -13.372*** -13.378*** -13.367***

(-3.892) (-3.891) (-3.890) (-3.894) (-3.899)

IVt−1 -0.434

(-0.296)

R̂V
end

t 73.938

(0.628)

PCt−1 0.689**

(2.170)

O/S$
t−1 1177.611

(1.402)

Observations 3,331,713 3,331,713 3,331,360 3,325,116 3,331,706

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

R̂V .15 Results show that neither of these two controls is significant, nor does the inclusion

of either materially alter the coefficient and statistical significance of ΓHP .

Besides risk-based explanations, our findings may arise from information being trans-

mitted from the options market to the market of the underlying. A stream of the literature

argues that options are often used because of their implicit leverage in presence of market

frictions, for instance when short selling is expensive (Ge et al., 2016). Accordingly, Blau

et al. (2014) find that an increase in the put-call ratio negatively predicts future returns

at the daily, weekly, and monthly frequency. Roll et al. (2010) and Hu (2014) show that

the option-to-stock volume predicts options’ underlying returns. We thus extend the

baseline regression to control for these explanatory variables. Columns (4) and (5) sum-

15The EGARCH models the sum of 1-minute squared returns for each stock in the last half hour of
a trading day, using historical data up until day t− 1 (see Moskowitz, Ooi, and Pedersen (2012)).
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marize the results and show that the coefficient on ΓHP is unchanged both in magnitude

and significance, suggesting that our results are not driven by an information channel.

End-of-day returns

Given that higher hedging pressure from the options market is associated with additional

signed volume at the end of the trading day, we study the extent to which this hedging

pressure affects end-of-day stock returns. To test the second half of the joint hypothesis

H0Γ, we regress the returns from 15:30 to the close of day t (rend) onto our proxy for

gamma hedging pressure (ΓHP ), controlling for the return from the open to 15:30 (rpre).

As in the previous specification, we saturate the regression model with fixed effects and

other stock-specific control variables Xj,t :

rend
j,t = β0r

pre
j,t + β1ΓHPj,t + γ ′Xj,t + FEj + FEt + εj,t. (10)

The results are reported in Table 4. The slope coefficient β1 equals −11.947 (t-value:

−5.37) and is statistically significant at the 1%-level, suggesting that a negative shock to

ΓHP amplifies end-of-day returns. Comparing the results in column (1) to those reported

in column (2)-(5), we find insignificant changes in the slope coefficient, suggesting that

the results are robust to the additional control variables. While proxies for expected

volatility IV and R̂V are both significant in the regression setup, the inclusion of neither

proxy materially changes the impact of ΓHP . The same applies to the proxies of informed

trading.16

3.2. Leveraged ETFs

Order Flow

We investigate the first part of the prediction H0Ω, which suggests the existence of a

positive relationship between end-of-day order flow in single equities and the rebalancing

pressure from leveraged ETFs. Similar to Equation (9), we run the following regression:

RSVOLend
j,t = β0ΩLETF

j,t + γ ′Xj,t + FEj + FEt + εj,t. (11)

The results are summarized in Table 5. We find that signed volume in the last half hour

16To further rule out the possibility of informed trading driving our results, we adopt the idea of Ni
et al. (2020) and compute ΓHP based on “old” positions. Results from this exercise are reported in
Appendix D and allow us to reject such an alternative explanation.
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Table 4: Delta Hedging and End-of-day Returns
The table summarizes the results of regressions of returns in the last half hour of a trading day on market
maker hedging pressure ΓHP , after controlling for returns until 15:30 (rpre), as in Equation (10). IVt−1

denotes implied volatility at time t− 1; R̂V
end

t denotes the square root of predicted realized variance for
the time period from 15:30 to 16:00; PCt−1 is the put-call-ratio and O/S$

t−1 denotes the option-to-stock
volume in dollar terms. T-statistics are in parentheses below and are computed using time-and-entity-
clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity
fixed effects in all specifications and value-weight observations. The sample period is May 2005 – July
2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -11.947*** -11.916*** -11.941*** -11.954*** -11.947***

(-5.367) (-5.368) (-5.344) (-5.369) (-5.376)

rpre
t -0.718*** -0.719*** -0.718*** -0.718*** -0.718***

(-4.560) (-4.573) (-4.560) (-4.558) (-4.560)

IVt−1 5.974***

(3.077)

R̂V
end

t 521.440*

(1.889)

PCt−1 0.354*

(1.736)

O/S$
t−1 622.216

(1.062)

Observations 3,365,367 3,365,367 3,365,009 3,358,722 3,365,359

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

of a trading day is positively correlated with ΩLETF , our proxy of rebalancing pressure

by leveraged ETF. Consistent with the prediction, the estimated coefficient is positive

(70.206) and highly significant (t-value: 6.08).

After controlling for ex-ante forecasts of realized volatility before (R̂V
pre

) and at the

close (R̂V
end

), the slope coefficients for ΩLETF are unchanged.

End-of-day returns

For the second part of H0Ω, we analyze whether the documented order flow arising from

leveraged ETF rebalancing translates into additional price pressure. The regression setup
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Table 5: ETF Rebalancing and End-of-day Order Flow
The table reports the results to regressing the relative signed trading volume in the last half hour of a

trading day on leveraged ETF rebalancing quantity ΩLETF following Equation (11). R̂V
end

t (R̂V
pre

t )
denote the square root of predicted realized variance for the time period from 15:30 to 16:00 (from
previous day’s close to 15:30) on day t. T-statistics are in parentheses below and are computed using
time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity-fixed effects in all specifications and value-weight observations. The sample period is
January 2012 – December 2019.

(1) (2) (3)

Dependent RSVOLend
t RSVOLend

t RSVOLend
t

ΩLETF
t 70.206*** 70.096*** 70.137***

(6.075) (6.065) (6.064)

R̂V
pre

t -46.954*

(-1.873)

R̂V
end

t 10.641

(0.063)

Observations 4,359,817 4,342,509 4,342,509

Entity FE Yes Yes Yes

Time FE Yes Yes Yes

SEs [t;j] [t;j] [t;j]

takes the following form:

rend
j,t = β0r

pre
j,t + β1ΩLETF

j,t + γ ′Xj,t + FEj + FEt + εj,t. (12)

The results are summarized in Table 6 and show that the impact of leveraged ETF

rebalancing on signed order flow is positive and significant with a coefficient equal to

33.214 (t-value: 5.42).

The estimated coefficient increases in magnitude and becomes even more significant

once we control for stock-level returns up to 15:30 (rpre), suggesting that the effect we

are capturing indeed arises from ETF-level order-flow pressure, rather than from stock-

specific dynamics. Moreover, as columns (3) and (4) report, the coefficient on ΩLETF is

unaffected by the inclusion of measures of single-stock riskiness (Heston et al., 2010; Gao

et al., 2018; Baltussen et al., 2020).
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Table 6: ETF Rebalancing and End-of-day Returns
The table reports the results of regressions of returns in the last half hour of a trading day on the
leveraged ETF rebalancing quantity ΩLETF , after controlling for the returns until 15:30 (rpre) as in

Equation (12). R̂V
15:30→close
t (R̂V

close−1→15:30

t ) denote the square root of predicted realized variance
for the time period from 15:30 to 16:00 (from previous day’s close to 15:30) on day t. T-statistics are in
parentheses below and are computed using time-and-entity-clustered standard errors. ***, **, * denotes
significance at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and value-weight
observations. The sample period is January 2012 – December 2019.

(1) (2) (3) (4)

Dependent rend
t rend

t rend
t rend

t

ΩLETF
t 33.214*** 41.350*** 41.386*** 41.358***

(5.421) (6.752) (6.751) (6.745)

rpre
t -0.900*** -0.908*** -0.909***

(-9.897) (-10.031) (-10.032)

R̂V
pre

t 36.481**

(2.484)

R̂V
end

t 408.311***

(4.165)

Observations 4,403,855 4,403,855 4,386,322 4,386,322

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j]

3.3. Assessing Rebalancing Jointly

The two rebalancing channels may affect closing stock returns in different ways. In the

example reported in the Introduction, for instance, an investor considering only Gamma

hedging flows would have predicted positive returns for Amazon on June 23rd, 2016,

given the large and negative magnitude of ΓHP . Had she also known about the significant

amount of selling expected from leveraged ETFs, she may have revised her prediction.

In this section, we discuss in more detail the relative importance of these two channels.

To conduct this analysis, we consider a joint sample, which comprises all stocks that are

included in at least one leveraged ETF and for which options are traded on one of the

five exchanges we consider. Then, we run the following panel regression:

rend = β0r
pre
j,t + β1ΓHPj,t + β2ΩLETF

j,t + FEj + FEt + εj,t (13)
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The results are summarized in table Table 7, showing that the slope coefficients of both

ΓHP and ΩLETF are statistically significant. The slope coefficient of ΓHP is equal to

−9.16 (t-value: −4.53); the slope coefficient of ΩLETF is equal to 44.36 (t-value: 4.56).

In column (3) we estimate a model accounting for the two channels jointly, resulting in

increases of both coefficients in absolute magnitude to −10.677 for ΓHP and 47.611 for

ΩLETF . Accounting for the mean of each explanatory variable in the sample, the average

impact of leveraged ETF rebalancing is about 4 times larger than that of ΓHP . It is

important to notice that the joint sample restricts the universe to larger stock, given

the two requirements of being optionable and included in leveraged ETFs. For these

stocks, we find that the end-of-day effect of leveraged ETF rebalancing is about twice as

large as the effect of the gamma hedging pressure. More precisely, a standard deviation

decrease in ΓHP is associated with a 1.13-times increase in the magnitude of end-of-day

returns relative to the stock-level median, while a standard deviation increase in ΩLETF

corresponds to a 4.31-times increase.

To further investigate the relative importance of the two channels, we construct four

variables, which capture the amount of price pressure in four distinct states. We define

the first state as one in which ΓHPi,t < 0 and ΩLETF
i,t > 0. We label this state as “BB”.

The first letter denotes the trade direction for option market makers (B for buy, S for

sell) and the second letter the trade direction for the rebalancing of leveraged ETFs. We

define the other three states in a similar way:

BB = (ΩLETF
i,t − ΓHPi,t )× 1(ΓHPi,t <0), (ΩLETFi,t >0)

SS = (ΓHPi,t − ΩLETF
i,t )× 1(ΓHPi,t >0), (ΩLETFi,t <0)

BS = (ΩLETF
i,t − ΓHPi,t )× 1(ΓHPi,t <0), (ΩLETFi,t <0)

SB = (ΩLETF
i,t − ΓHPi,t )× 1(ΓHPi,t >0), (ΩLETFi,t >0) (14)

Thus BB restricts to scenarios with joint buying pressure in the last half hour, when both

option dealers and leveraged ETFs swap counterparties are forced to buy additional shares

of the underlying stock. This should lead to a larger effect on end-of-day volumes and

returns. Symmetrically, SS captures states in which both sources of rebalancing induce

selling pressure at the close. Conversely, BS (SB) is non-zero in situations in which

option market makers have to buy (sell) shares, while the rebalancing of leveraged ETFs

requires the sale (purchase) of additional shares.17 To gauge the effects of rebalancing on

17In our sample, BB occurs for 24.4%, SS for 20.3%, BS for 23.8 and SB for 29.0% of observations.
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Table 7: Joint Impact of Delta-Hedging and Leveraged ETF Rebalancing
The table reports the results to regressing the returns in the last half hour of a trading day on returns until
15:30 (rpre), on options market maker hedging pressure ΓHP and leveraged ETF rebalancing quantity
ΩLETF following Equation (13). We also consider the impact of joint rebalancing activity using the
variables defined in Equation (14) in the regression setup proposed in Equation (15). T-statistics are in
parentheses below and are computed using time-and-entity-clustered standard errors. ***, **, * denotes
significance at the 1%, 5%, 10% level. We include entity-fixed effects in all specifications and value-weight
observations. The sample period is 2012 – December 2019.

(1) (2) (3) (4)

Dependent rend
t rend

t rend
t rend

t

ΓHPt -9.164*** -10.677***

(-4.531) (-5.324)

ΩLETF
t 44.357*** 47.611***

(4.563) (4.935)

rpre
t -0.821*** -0.959*** -0.882***

(-6.982) (-8.172) (-7.479)

BB 41.412***

(5.183)

SS -44.044***

(-3.747)

BS -24.422***

(-2.949)

SB 19.074***

(2.619)

Observations 1,940,150 1,940,150 1,940,150 1,940,150

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes -

SEs [t;j] [t;j] [t;j] [t;j]

end-of-day stock returns in under these different circumstances, we estimate the following

regression model:

rend = β0r
pre
j,t + β1BBj,t + β2SSj,t + β3BSj,t + FEj + FEt + εj,t (15)

Given that the estimated effect of ΩLETF is larger, we expect it to dominate the joint effect of the two
sources of rebalancing disagree in the trade direction. However, a reduction of the estimated coefficient
suggests that a) our identification approach is working and b) that knowing about Gamma flows is still
useful in these cases.
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Results, reported in column (4) of Table 7, show that joint buying pressure (BB) is

associated with significantly positive returns in the last half hour of a trading day. The

coefficient on BB is 41.41 (t-value: 5.18) and is highly significant both statistically and

economically. Similarly, the coefficient on SS is roughly comparable and estimated at

−44.044 (t-value: −3.747). These results imply that a one standard deviation increase

in the joint rebalancing amount from leveraged ETF and option market makers on BB

(SS) days amplifies (depresses) end-of-day returns by 1.53 bps (−1.68 bps). These effects

are not trivial, since the median return at the close amounts to only 0.32 bps, suggesting

a 4.8-times (5.25-times) return multiple. This underlines the importance of identifying

multiple sources of rebalancing activity at the close. As expected, we find smaller absolute

coefficients for BS and SB. Once again, we find evidence supporting the idea that the

impact of leveraged ETF rebalancing outweighs the impact of ΓHP . Indeed, the coefficient

on BS is negative (t-value: 2.95) and the one of SB is positive (t-value: 2.62). A one

standard deviation increase in the joint rebalancing leads to additional returns of 0.65

bps (0.49 bps) on BS (SB) days, highlighting the relative dominance of leveraged ETF

rebalancing effects.

3.4. Trading Strategy

Next, we study the extent to which the excess return generated by a long-short strat-

egy based on ΓHP and ΩLETF are related to traditional risk factors. First, we construct

a long-short portfolio based on ΓHP . Specifically, on each day at 15:30, we sort our stock

sample according to ΓHP into decile portfolios. Subsequently, we build a long-short strat-

egy, denoted by LmHΓ, by taking a long (short) position in the lowest (highest) decile

portfolio. We close our positions at the market close of the same trading day, such that

we effectively hold the securities in our strategy for 30 minutes each day.

In a second strategy, HmLΩ, we use ΩLETF as a timing signal. We construct decile

portfolios based on ΩLETF and take a long (short) position in the highest (lowest) decile.

Finally, we use both ΓHP and ΩLETF as signals in a combined strategy. For each stock

at 15:30, we compute its cross-sectional rank according to ΓHP and ΩLETF , respectively.18

We sum the individual ranks to obtain a combined ranking. Based on the combined

ranking, we once again build decile portfolios and go long (short) the highest (lowest)

decile portfolio.

18In the combined strategy, we reverse the ΓHP ranking, such that a higher rank denotes buying
pressure.
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Table 8: ΓHP and ΩLETF Based Trading Strategies
The table reports the economic value of timing the last half-hour market return using ΓHP , ΩLETF and
a joint signal based on both. The ΓHP -strategy, LmHΓ, takes a long (short) position in a stock when the
stock’s ΓHP is in the lowest (highest) decile. The ΩLETF -strategy, HmLΩ, takes a long (short) position
in a stock when the stock’s ΩLETF is in the highest (lowest) decile. The combined strategy, HmLΓ,Ω,
computes a cross-sectional rank according to ΓHP and ΩLETF and takes a long (short) position in a stock
when the stock’s aggregated ranking is in the highest (lowest) decile. As a benchmark, Marketend denotes
investing in all stocks from 15:30 to 16:00. We consider equally-weighted (EW) and value-weighted (VW)
portfolios, including for Marketend. For each strategy, we report the average return (Avg ret), standard
deviation (Std dev), Sharpe ratio (Sharpe), skewness, kurtosis, and success rate (Success). The returns
are annualized and in percentage. Newey and West (1987) robust t-statistics are in parentheses, and
significance at the 1%, 5%, or 10% level is denoted by ***, **, or *, respectively. The sample period is
January 2012 – December 2019.

Avg ret Std dev Sharpe Skewness Kurtosis Success

Panel A: Equally Weighted

LmHΓ 5.16*** 1.25 4.13 0.33 3.48 62.34

HmLΩ 11.82*** 2.54 4.65 0.46 2.98 60.81

HmLΓ,Ω 11.00*** 2.16 5.09 0.22 3.10 61.91

Marketend 0.62 3.29 0.19 -0.61 6.18 54.02

Panel B: Value Weighted

LmHΓ 5.20*** 1.36 3.83 0.17 3.00 61.07

HmLΩ 5.78*** 2.31 2.51 0.13 3.54 56.29

HmLΓ,Ω 6.21*** 1.98 3.14 0.31 3.21 58.13

Marketend -1.39 3.26 -0.43 -1.05 12.27 51.92

Table 8 reports summary statistics of the resulting strategies for the joint sample.19

In Panel A, decile portfolios are equally-weighted, whereas Panel B shows results for

value-weighted portfolios. LmHΓ yields average total excess returns of 5.16% per year,

which are significant at the 1%-level. The results are robust to using either equally-

or value-weighted returns within each portfolio (Panel B). For matters of comparison,

we consider a benchmark strategy Marketend which takes a long position in all available

stocks at the beginning of the last half hour of a trading day and closes each position

at the close. For our sample from 2012 through 2019, Marketend yields an insignificant

annual return of 0.62%.

When we compare LmHΓ with HmLΩ, we find that equally-weighted average returns of

19Appendix OA7 in the Internet Appendix reports summary statistics for LmHΓ and HmLΩ in their
respective sample periods.
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Table 9: Risk-adjusted Returns of ΓHP and ΩLETF Trading Strategies
The table reports the estimation results from regressing returns of strategies timing the last half-hour
based on ΓHP , ΩLETF and a combination of both on the returns of all stocks from 15:30 to 16:00
(Marketend), the equity market excess return (MKT), size (SMB), book-to-market (HML), profitability
(RMW), investment (CMA), momentum (MOM), and an intermediary capital asset pricing factor (IC,
proposed by He et al., 2017). The ΓHP -strategy, LmHΓ, takes a long (short) position in a stock when the
stock’s ΓHP is in the lowest (highest) decile. The ΩLETF -strategy, HmLΩ, takes a long (short) position
in a stock when the stock’s ΩLETF is in the highest (lowest) decile. The combined strategy, HmLΓ,Ω,
computes a cross-sectional rank according to ΓHP and ΩLETF and takes a long (short) position in a
stock when the stock’s aggregated ranking is in the highest (lowest) decile. We consider equally weighted
(EW) and value-weighted (VW) portfolios. Newey and West (1987) robust t-statistics are in parentheses,
and significance at the 1%, 5%, or 10% level is denoted by ***, **, or *, respectively. The sample period
is January 2012 – December 2019.

Intercept Marketend MKT SMB HML RMW CMA MOM IC R2 R2 adj

Panel A: Equally Weighted

LmHΓ 5.15 0.01 0.10% 0.05%

(9.51***) (1.27)

5.10 0.92 -0.29 -1.00 3.06 4.59 1.12 0.77 0.78% 0.36%

(9.00***) (0.99) (-0.24) (-0.59) (1.52) (1.90*) (1.33) (1.08)

HmLΩ 11.83 -0.02 0.04% -0.01%

(8.56***) (-0.72)

12.92 -0.45 3.77 -1.64 2.62 -1.07 -1.47 1.00 0.33% -0.09%

(8.49***) (-0.21) (1.48) (-0.42) (0.62) (-0.20) (-0.80) (0.64)

HmLΓ,Ω 11.01 -0.01 0.02% -0.03%

(9.96***) (-0.45)

11.54 0.58 3.67 -1.54 5.07 -0.84 -0.28 0.70 0.46% 0.03%

(9.26***) (0.29) (1.63) (-0.49) (1.50) (-0.19) (-0.17) (0.55)

Panel B: Value Weighted

LmHΓ 5.21 0.01 0.03% -0.02%

(9.37***) (0.42)

4.84 1.24 1.11 0.46 2.89 0.89 2.13 0.72 0.88% 0.45%

(7.99***) (1.00) (0.88) (0.27) (1.58) (0.31) (2.10**) (0.86)

HmLΩ 5.77 -0.01 0.02% -0.03%

(6.07***) (-0.30)

6.22 0.24 0.93 -1.11 -4.98 1.03 -4.06 -1.04 0.72% 0.29%

(5.87***) (0.09) (0.42) (-0.36) (-1.27) (0.25) (-2.87***) (-0.61)

HmLΓ,Ω 6.19 -0.02 0.07% 0.02%

(7.44***) (-0.58)

6.58 -1.86 1.54 -4.23 0.67 2.44 -1.46 1.65 0.36% -0.07%

(6.92***) (-0.91) (0.80) (-1.62) (0.23) (0.68) (-0.96) (1.36)

the latter are twice as high. Risk-adjusted returns are also slightly higher, with a Sharpe-

ratio of 4.65 for HmLΩ vs. 4.13 for LmHΓ. Here, however, we document that the average

and risk-adjusted-performance is halved if we weigh observations by the company’s market

capitalization. This suggests that the effect of leveraged ETF rebalancing is outsized for
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smaller stocks.

Finally, Table 8 includes the summary statistics of the trading strategy that combines

ΓHP and ΩLETF as trading signals. The combined strategy yields an annualized average

return of 11.00%, with an improved annual Sharpe ratio of 5.09.20 HmLΓ,Ω also shows the

best performance when stocks are value-weighted, with an average annual return of 6.21%

and a Sharpe-ratio of 3.14. At the same time, the success rates of all three strategies are

high, above 56% and highest for LmHΓ, with values upwards of 61%.21

Table 9 summarizes the results of regressions of LmHΓ, HmLΩ, and HmLΓ,Ω on the

market model (Marketend) and the Fama-French five-factor model (Fama and French,

2015), augmented by a momentum factor and an intermediary capital asset pricing factor

(He et al., 2017).22,23 We find that neither the market nor the augmented five-factor model

explains the properties of LmHΓ, HmLΩ, and HmLΓ,Ω. The R2s of these regressions

is small on average. The only factor that is statistically significant is MOM. This is

interesting since it suggests that part of MOM returns correlate with intraday dynamics

related to institutional frictions. Notwithstanding the significance of this factor, the

alphas of these regressions are very large and significant.

Figure 5 depicts the performance and drawdown curves of the trading strategies be-

tween 2012 and 2019. Neither of the two trading strategies experiences significant fluc-

tuations, nor do we visually spot any structural breaks. Instead, cumulative returns are

fairly smooth over time. No strategy except for Marketend exhibit a maximum draw-

down in excess of −2%. The maximum drawdown is smaller for the combined strategy

compared to the ΩLETF strategy.

20The daily return HmLΓ,Ω equates to 4.36 basis points on average. This compares well to Bogous-
slavsky (2020) who documents that a mispricing factor earns an alpha of −2.43 basis points in the last
30 minutes of the trading day.

21To put this in context, Jiang, Kelly, and Xiu (2020) use convolutional neural networks on price path
images to predict the future return direction. They achieve a success rate of up to 53.6%.

22Data on the Fama-French five-factor model and the momentum factor is taken from
Kenneth French’s website, https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html, whereas data on the intermediary capital asset pricing factor is obtained from Zhiguo He’s
website, https://voices.uchicago.edu/zhiguohe/data-and-empirical-patterns/intermediary-

capital-ratio-and-risk-factor/.
23Appendix OA8 in the Internet Appendix reports results for LmHΓ and HmLΩ on their respective

sample periods.
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Fig. 5. Performance and Drawdown Curves of ΓHP and ΩLETF Trading Strategies
The figure shows the cumulative performance of a one-dollar investment (top panel) into as well as the
drawdown curve in percent (bottom panel) for trading strategies based on ΓHP and ΩLETF . The ΓHP -
strategy, LmHΓ, takes a long (short) position in a stock when the stock’s ΓHP is in the lowest (highest)
decile. The ΩLETF -strategy, HmLΩ, takes a long (short) position in a stock when the stock’s ΩLETF is in
the highest (lowest) decile. The combined strategy, HmLΓ,Ω, computes a cross-sectional rank according
to ΓHP and ΩLETF and takes a long (short) position in a stock when the stock’s aggregated ranking is
in the highest (lowest) decile. As a benchmark, Marketend denotes investing in all stocks from 15:30 to
16:00. The sample period is January 2012 – December 2019.

4. Characteristics of Delta-Hedging and Leveraged

ETF Rebalancing

In this section, we investigate the effects of delta-hedging and leveraged ETF rebal-

ancing in more detail.
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4.1. Hedging Windows

Throughout the paper, our working assumption is that rebalancing occurs during the last

30 minutes of the trading day. We now challenge this assumption and explore rebalancing

effects on alternative hedging windows W , one for each 30-minute interval between 10:00

and the close at 16:00. We compute cumulative returns from the previous day’s close

until the beginning of interval W , and recalculate ΓHP and ΩLETF based on the new

values for rpre and rpre
bench, following Equation (5) and Equation (6).

10
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5

HP

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30
Hedging window starts at [30-minutes long]
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Fig. 6. Alternative Delta-Hedging and Leveraged ETF Hedging Windows
The figure shows the effect on ΓHP and ΩLETF when varying the time interval over which rpre is
measured. The x-axis displays the time until we measure the cumulative return from the previous
trading day’s close price. For the ΓHP -analysis, we take returns of the underlying stock (rpre), whereas
we take the returns of the LETF benchmark indices for the ΩLETF -analysis (rpre

bench). We also record
returns in the subsequent 30-minute time interval (rnext). Next, we reconstruct ΓHP and ΩLETF with
the new values for rpre and rpre

bench following Equation (5) and Equation (6), respectively. Finally, we
re-estimate Equation (10) and Equation (12)using rnext as the dependent variable and plot the estimated
coefficients for each window. The filled areas denote 95% confidence bounds.

Figure 6 shows the resulting intraday evolution of the impact of Gamma and lever-

aged ETF rebalancing flows on end-of-day returns. For ΓHP (upper panel), we find

significantly negative coefficients only for the last two hedging windows, suggesting that

some rebalancing may already take place an hour before the market closes. Nonetheless,

the bulk of rebalancing seems to occur between 3:30 pm and 4 pm, when the coefficient

is the largest in absolute magnitude at roughly −10. We find no significant effect during
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the other hedging windows apart from 10 am to 10:30 am, where the estimated coeffi-

cient is only marginally significant. For leveraged ETFs (lower panel), we find virtually

no impact of rebalancing for any hedging window different from the last one. Only the

end-of-day coefficient is significantly different from zero. In conjunction, these results

support the view that option market makers enjoy some level of discretion regarding the

timing of their rebalancing activity. Market makers for swaps replicating leveraged ETFs,

in contrast, are bound by their contractual obligation to deliver a multiple exposure at

the market close, and time their rebalancing activity accordingly.

4.2. Discretionary vs. non-discretionary

The previous section has indicated that some rebalancing activity of option market makers

may occur before the close. In order to investigate in how far they act at their own

discretion with regards to the timing of these activities, we focus on the price effects of

rebalancing activities following large price movements. Intuitively, a market maker may

be inclined to hedge her directional exposure immediately after observing substantial

jumps in the underlying. Given the evidence above, we would assume that this applies

only to option market makers.

We detect price jumps for the underlying stocks in the case of ΓHP and the benchmark

ETF for ΩLETF . For this, we compare the return in each 30-minute interval of a given

trading day with the return distribution of the same interval over the last year. We

denote as “jump events” those stock intervals where this metric is in the top or bottom

2.5% of the distribution. We then record the cumulative return from the previous day

close up to the end of the interval when the jump has occurred (rincl. jump
t ) and relate it to

the return in the subsequent 30-minute interval (rnext
t ), and to ΓHP and ΩLETF computed

using rincl. jump
t . In Table 10 we separately report regressions for jump events occurring

on expanding portions of a trading day, from those observed until 12:00 in columns (1)

and (4), to those observed until 15:00 in columns (3) and (6). The underlying idea is that

market makers may want to hedge large price movements only if they occur early during

the day, and wait for favorable market conditions at the close otherwise. Notice that we

intentionally leave out the last 30 minutes of the trading day from this exercise to avoid

conflating the results presented here with the end-of-day evidence.

For ΓHP we find large and significant negative coefficients, indicating a stronger effect

than in our baseline specification. This suggests that option market makers aggressively

rebalance their exposure after particularly large price movements. Interestingly, the effect
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Table 10: Delta-Hedging and Leveraged ETF Rebalancing After Intraday Jumps
The table reports the results to regressing the intraday jump returns on returns in the subsequent 30-
minute interval. For delta-hedging, we identify jumps in the underlying stock returns. For leveraged
ETF rebalancing, we identify jumps in the benchmark of the leveraged ETF. To detect jumps, we
compare each non-overlapping 30-minute return with returns of the same interval over the last year. If
the return is higher (lower) than the 97.5% (2.5%) percentile, we regard the return as a jump. Next,
we record the return from yesterday’s close until the end of the 30-minute interval, where the jump has
occurred (rincl. jump

t ). We collect also the return of the subsequent 30-minute interval (rnext
t ) on the stock

level. In the case of leveraged ETFs, we select all stocks in leveraged ETFs for which a jump in the
benchmark index of the leveraged ETF has occurred. Finally, we disregard jumps that have occurred
after a certain time (given in row “Jumps Until”). Equipped with rincl. jump

t , rnext
t , and the intraday

return of the benchmark index, we reconstruct ΓHPt and ΩLETFt for each affected stock j. Subsequently,
we run Equation (10) and Equation (12). T-statistics are in parentheses below and are computed using
time-and-entity-clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity-fixed effects in all specifications and value-weight observations. The sample period is
January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rnext
t rnext

t rnext
t rnext

t rnext
t rnext

t

ΓHPt -44.416** -41.310* -31.825

(-1.984) (-1.875) (-1.492)

ΩLETF
t -0.220 -0.349 -0.405

(-0.686) (-1.099) (-1.312)

rincl. jump
t -0.952*** -0.965*** -0.951*** -0.711** -0.596** -0.596**

(-4.240) (-4.883) (-4.947) (-2.083) (-2.322) (-2.559)

Observations 339,552 559,520 645,246 500,036 716,298 795,337

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

Jumps Until 12:00 14:00 15:00 12:00 14:00 15:00

is stronger for jumps in the first part of the trading day, supporting the idea that option

market makers may decide to wait to re-hedge after late jump events to take advantage

of favorable liquidity patterns at the close (Lou et al., 2019; Andersen and Bollerslev,

1997). The impact for leveraged ETF rebalancing, instead, is not significantly different

from zero in all specifications. These results confirm Figure 6, indicating that leveraged

ETFs market makers rebalance only at the very end of the trading day, even if large price

swings occurr intraday.

To further investigate how option market makers exploit the discretionary nature

of their re-hedging needs, we focus on the gamma imbalance accumulated only during
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Table 11: End-of-day Delta-Hedging on Identified Jump Days
The table reports the effect of end-of-day delta-hedging on end-of-day returns, conditional on the oc-
currence of an intraday jump. Precisely, we reset the Gamma exposure of option market makers at the
time the jump has occurred and re-estimate the aggregate Gamma exposure of option market makers at
15:30, (ΓHPt ), given by the product of the return after the jump until 15:30 (rafter jump) and the gamma
imbalance. We vary times until we consider jumps (Jumps Until). T-statistics are in parentheses below
and are computed using time-and-entity-clustered standard errors. ***, **, * denotes significance at the
1%, 5%, 10% level. We include entity-fixed effects in all specifications and value-weight observations.
The sample period is January 2012 – December 2019.

(1) (2) (3)

Dependent rend
t rend

t rend
t

ΓHPt -34.546 -43.904** -46.904**

(-1.575) (-2.069) (-2.330)

rafter jump -0.825*** -0.832*** -0.862***

(-3.678) (-3.762) (-3.953)

Observations 339,552 559,520 645,246

Entity FE Yes Yes Yes

Time FE Yes Yes Yes

SEs [t;j] [t;j] [t;j]

Jumps Until 12:00 14:00 15:00

and after a jump event. We thus assume that the market maker re-hedges her accrued

directional exposure after the jump in stock j on day t, such that the remaining exposure

amounts to

ΓHPj,t = 100× ΓIBj,t−1 × r
after jump
j,t , (16)

where rafter jumps measures the return of the underlying after the identified jump period

until 15:30.

The results reported in Table 11 provide evidence of end-of-day rebalancing on iden-

tified jump-days only for jumps that happen relatively late during a trading day. In fact,

the pattern of significance and the magnitude of coefficients inversely match the pattern

in Table 10 for the impact of hedging directly after large price movements. The later the

identified jump, the less likely will a market maker rebalance her exposure right away.

Adding to the considerations of Clewlow and Hodges (1997), we find that market makers

tend to rapidly rebalance after early jumps, while they tend to wait until trading closes

for later jumps.24

24We show that the rebalancing impact after jumps differs between large and small stocks in our
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Considering the amount of trading on identified jump days corroborates this idea. In

Figure 7 we show the trading volume for the average stock in our sample, relative to

the intraday volume pattern we observe on a typical day (also shown in the last panel

of the Figure). From the plot we can make three observations: First, if a jump occurs

on a given day, the 30 minutes immediately after the jump and the last 30 minutes of

the trading day experience the most trading activity. Second, if the jump occurred early

in the day (before 13:30) we find the trading activity in the 30 minutes after the jump

to occasionally exceed that end-of-day. Third, if we instead consider late jumps (after

13:30), most trading happens in the last half hour. Together, these results are consistent

with the idea that option market makers hedge mostly early jumps immediately.

4.3. Mechanical

We hypothesize that rebalancing activities of option market makers and leveraged

ETF swap counterparties do not reflect fundamental values, but solely originate from the

existence of derivatives markets. If this is the case, neither source of rebalancing should

depend on the current market environment or the reason why stocks and benchmark

ETFs moved before the hedging window.

Index versus Stock Specific Effects

While Gamma rebalancing activity depends on the return of the underlying stock, the

rebalancing amount for leveraged ETFs instead depends on the return of the benchmark

index of the leveraged ETF. We exploit this unique structure of the rebalancing flows from

leveraged ETFs, by conditioning on those stocks for which the return until hedging begins

is near zero (below 10 bps). Given that the impact of rebalancing flows is mechanical,

we still expect an effect of ΩLETF in roughly the same magnitude as for the full sample.

This approach allows us to investigate the impact of leveraged ETF rebalancing without

being conflated by other intraday return phenomena (Heston et al., 2010; Lou et al., 2019;

Bogousslavsky, 2020), or option rebalancing in the form of ΓHP . The results in Table 12

confirm our prior.

sample in Tables OA6.1 – OA6.3 in the Internet Appendix.
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Fig. 7. Volume Patterns on Jump Days
The figure shows the intraday volume pattern for the average stock in our sample between 2012 and
2019 on identified jump days. The intraday volume pattern is expressed relative to the average volume
pattern on a typical day, which is shown in the last panel in gray. The other panels show the relative
trading activity conditional on when the jump in the underlying stock occurred, varying between all but
the last possible thirty-minute interval.
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Table 12: Near Zero Returns of the Underlying Stock
The table reports the results to regressing the returns in the last half hour of a trading day on the
Leveraged ETF rebalancing quantity ΩLETF . We have included only stock-day observations for which
the absolute return from the previous day’s close until 15:30 of stock j is below 10 basis points. T-statistics
are in parentheses below and are computed using time-and-entity-clustered standard errors. ***, **, *
denotes significance at the 1%, 5%, 10% level. We include entity-fixed effects in all specifications and
value-weight observations. The sample period is January 2012 – December 2019.

(1) (2) (3)

Dependent rend
t rend

t rend
t

ΩLETF
t 71.441*** 71.697***

(5.212) (5.246)

rpre
t -0.912 -1.242

(-0.427) (-0.579)

Observations 123,737 123,737 123,737

Entity FE Yes Yes Yes

Time FE Yes Yes Yes

SEs [t;j] [t;j] [t;j]

What is the role of news on fundamentals?

To test that delta-hedging effects are unrelated to fundamental news on the underlying

stock, we perform sample splits on earnings announcements and material news. We iden-

tify the two weeks centered around earnings announcements and the releases of material

news as indicated by RavenPack for each stock in our sample. The estimated coefficients

for stocks with and without material news releases or earnings announcements in Table 13

barely differ, confirming the mechanical nature of ΓHP -flows.

4.4. Transitory versus Persistent Components

If the rebalancing activity of market makers exerts enough pressure to push prices from

fundamental values, other market participants should pick up on this mispricing and

quickly correct it. We, therefore, expect to see a quick reversal of these effects at the next

open. If the impact of rebalancing activity is indeed transitory, we expect returns on the

following market open to relate positively to ΓHP and negatively to ΩLETF . To test this

hypothesis, we run the panel regressions

rnight
j,t = β0r

end
j,t + β1ΓHPj,t + β2ΩLETF

j,t + FEj + FEt + εj,t, (17)
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Table 13: Impact of Fundamental Information
The table reports the results to regressing the returns in the last half hour of a trading day on returns until
15:30, rpre, and gamma hedging pressure ΓHP . The regression results are reported for several subsamples
where we focus on or exclude days with fundamental information, either earnings announcements (EA)
or fundamental news releases identified by RavenPack. Specification (1) uses the subsample for which
Compustat and/or I/B/E/S do not report earnings announcements (EA). Specification (2) excludes day-
asset observations for which Compustat and/or I/B/E/S report earnings announcements. In specification
(3) we exclude asset-day observations for which RavenPack documents either at least one negative (score
≥ 25) or one positive (score ≤ 75) news appearance, whereas specification (4) includes only these
observations. Whenever earnings announcements or fundamental news are released on day t for asset
j, we exclude also a window of 5 trading days around t for asset j. t-statistics are in parentheses
below. T-statistics are in parentheses below and are computed using time-and-entity-clustered standard
errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity-fixed effects in all
specifications and value-weight observations. The sample period is January 2012 – December 2019.

(1) (2) (3) (4)

Dependent rend
t rend

t rend
t rend

t

ΓHPt -9.430*** -9.274** -9.589*** -9.386***

(-4.713) (-2.317) (-5.968) (-2.716)

rpre
t -0.746*** -0.933*** -0.728*** -0.897***

(-6.454) (-5.034) (-6.268) (-5.407)

Observations 1,639,105 301,045 1,603,389 336,761

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j]

Subsample Excluding EA Only EA Excluding News Only News

where rnight
j,t is the return from the close of day t to 10am on day t+ 1.

Table 14 provides evidence for the reversal of ΓHP and ΩLETF effects at the next open.

In specifications (1) and (2), the coefficient on ΓHP is positive at 31.868 (t-value: 3.53),

while that on ΩLETF is negative at−45.959 (t-value: −2.108), suggesting that price effects

from the previous day are short-lived. In column (3), where both channels are considered

jointly, the estimated reversal effects are even stronger. Returns at the open are about

four times as dispersed as end-of-day returns when measured by the respective standard

deviation. In economic terms, we, therefore, find that on average 84% of the impact of

delta-hedging and a third of the impact of leveraged ETF rebalancing is reversed at the

next open.
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Table 14: Impact of Joint Rebalancing – Transitory Impact
The table reports the results to regressing returns from closure of day t to 10am on day t + 1 on
returns until 15:30, rpre, on option market maker hedging pressure ΓHP and leveraged ETF rebalancing
quantity ΩLETF following Equation (13). We also consider the impact of joint rebalancing activity using
the variables defined in Equation (14) in the regression setup proposed in Equation (15). T-statistics
are in parentheses below and are computed using time-and-entity-clustered standard errors. ***, **, *
denotes significance at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and
value-weight observations. The sample period is January 2012 – December 2019.

(1) (2) (3)

Dependent rnight
t rnight

t rnight
t

ΓHPt 31.868*** 34.339***

(3.532) (3.734)

ΩLETF
t -45.959** -59.984***

(-2.108) (-2.685)

rend
t -12.439*** -12.553*** -12.364***

(-4.902) (-4.927) (-4.887)

Observations 1,939,895 1,939,895 1,939,895

Entity FE Yes Yes Yes

Time FE Yes Yes Yes

SEs [t;j] [t;j] [t;j]

4.5. Subsample Analysis

We re-run our baseline regression for the first three years in our sample, shift the starting

and end date by one day, and repeat this procedure for all years in the joint sample (2012–

2019). The resulting coefficients for ΓHP are provided as the blue line in Figure 8, while

those for ΩLETF are provided as the green line. Corresponding t-statistics are presented in

the lower panel. The impact of ΓHP has stayed nearly unchanged until the end of 2016 at

an estimated coefficient of roughly −9 but has started to increase in absolute magnitude

afterward. In fact, during 2019 the magnitude of the effect has increased to a coefficient

of −16. The estimated coefficient for ΩLETF stayed within the same ballpark over time,

fluctuating between 40 and 60, with a mean of around 50 for the years 2012 through 2019.

The impact of both rebalancing activities was statistically highly significant throughout

our sample.
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Fig. 8. Rolling Regressions
The figure shows the impact of ΓHP and ΩLETF over time, as measured on a rolling basis for each three
year-period starting in January 2012. Specifically, we estimate Equation (10) and Equation (6) for the
first three years in our sample, shift the starting and end date by one day and repeat this for all days in
our joint sample (January 2012 – December 2019). The upper panel depicts the estimated coefficients
for ΓHP and ΩLETF , whereas the lower panel shows the corresponding t-statistics.

4.6. Market Capitalization Effects

The impact of rebalancing flows may differ between stocks of different market cap-

italization. On the one hand, we might find a stronger impact for small stocks, given

that the same amount of nominal trading potentially influences prices more, as a result of

their limited liquidity. On the other hand, large stocks are typically included in multiple

leveraged ETFs and enjoy a bigger and more liquid options market. The results in Table 8

have already hinted towards roughly constant effects of ΓHP for stocks of differing market

size, but outsized effects of ΩLETF on small issues. To investigate this more formally, we

split our sample by the prevailing cross-sectional median of last month’s average market

capitalization and redo the regression in Equation (13) for each subsample. The results

are shown in Table 15. The estimated coefficient of ΓHP is elevated for small stocks. In

economic terms, a one standard deviation decrease in ΓHP amplifies end-of-day returns

by 0.48 bps (0.33 bps) for small (large) stocks. At the same time, however, small stocks

are known to be more volatile (Fama and French, 1993), such that the impact measured

in units of return-per-risk is amplified for large stocks.
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Table 15: Impact of Joint Rebalancing – Small vs. Large Caps
The table reports the results to regressing the returns in the last half hour of a trading day on returns
until 15:30, rpre, on options market maker hedging pressure ΓHP and leveraged ETF rebalancing quantity
ΩLETF following Equation (13). We also consider the impact of joint rebalancing activity using the
variables defined in Equation (14) in the regression setup proposed in Equation (15). T-statistics are in
parentheses below and are computed using time-and-entity-clustered standard errors. ***, **, * denotes
significance at the 1%, 5%, 10% level. We include entity-fixed effects in all specifications and value-weight
observations. The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -14.997*** -14.748*** -7.917*** -9.424***

(-5.542) (-5.461) (-3.826) (-4.602)

ΩLETF
t 47.120*** 46.951*** 41.185*** 44.714***

(8.366) (8.342) (3.663) (3.977)

rpre
t -0.253*** -0.271*** -0.265*** -0.955*** -1.090*** -1.012***

(-3.191) (-3.435) (-3.358) (-7.083) (-8.177) (-7.487)

Observations 970,574 970,574 970,574 969,576 969,576 969,576

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

Market Cap Small Small Small Large Large Large

In contrast, while the estimated coefficient for ΩLETF is roughly the same between

the larger and smaller stocks in our sample, the resulting return impact is much larger

for small stocks (1.75 bps vs. 0.76 bps). The larger fluctuation of end-of-day returns of

small stocks is offset by a comparably large increase in the fluctuation of ΩLETF .

4.7. Other Robustness Tests

The Online Appendix contains a battery of additional robustness tests. Our results

are robust to the choice of the look-back window to compute ADVend (Appendix OA3)

or to using scaled returns following Moskowitz et al. (2012) (Appendix OA4). Fur-

thermore, delta-hedging and leveraged ETF rebalancing are present across all industries

(Appendix OA5).
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5. Conclusion

A growing literature focuses on cross-sectional intraday return variation, linking it to

investor heterogeneity on the stock level. In this paper, we provide novel insights into how

derivative markets add to cross-sectional variation towards the end of the trading day.

By drawing upon a unique dataset merging data from several exchanges identifying types

of market participants in U.S. stock options and the portfolio composition of U.S. equity-

focused leveraged ETFs, we document large price pressure on end-of-day returns when

option market makers engage in delta-hedging and leveraged ETF swap counterparties

rebalance their positional exposure.

We show that delta-hedging and leveraged ETF rebalancing exert an economically

large price pressure on end-of-day returns. Whereas leveraged ETFs contribute to a

market-wide momentum effect, delta-hedging can either have a stabilizing effect in the

form of end-of-day reversal, but also exaggerate intraday momentum. The direction is

determined by the previous return of the underlying and the aggregate option inventory of

market makers. Moreover, our results reveal that option market makers have discretion

on the execution of their hedging strategies, especially after intraday jumps. On the

contrary, leveraged ETF swap counterparties are required to establish the target exposure

of the fund at the close. We find that both rebalancing effects are mechanical, that is,

they do not impound new fundamental information into prices. Given that the impact of

rebalancing is mechanical in nature, we also document that it is transitory, as the effects

reverse at the next open. Our results furthermore suggest that especially the impact from

option market imbalances continues to increase over time, leading to potentially erratic

moves at the close and subsequent reversals the next day.
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Appendix A. Cleaning of High-Frequency Data

To analyze intraday momentum effects in individual stocks, we rely on the NYSE

Trades and Quote (TAQ) database for January 1996 through July 2019. Since the NYSE

provides the raw tape of all trades performed on the included exchanges, multiple cleaning

steps are required. Additionally, we merge the TAQ database with CRSP to use the

PERMNO as a unique identifier per common share of any company.

A.1. Cleaning Procedure

We retain only trades with trade correction indicators “00” an “01”, which refer to

correctly recorded trades, and those that have been subsequently altered, but reflect the

actual trade price at the time. We further keep only trades with trade sale corrections

”Z”, ”B”, ”U”, ”T”, ”L”, ”G”, ”W”, ”K”, and ”J”, as well as an accompanying ”I”

reflecting odd lot trades. To rely on trade prices during regular trading hours only, we

discard all observations before 9:30 and after 16:01. We explicitly include the minute of

4pm, as many closing trades (denoted by sale conditions ”6” or ”M”) fall within the first

few seconds afterwards.

If multiple trades occur at exactly the same point in time, we take the median price

as the “correct price”. To make sure that prices are consistent by Ticker, we employ a

bounce-back filter following Andersen, Bondarenko, and Gonzalez-Perez (2015), which

effectively checks whether any trade’s price deviates by more than 15 times the median

absolute deviation of the day. If this is the case, we will kick this observation if we observe

a reversion to the previous price within the next five minutes, or 10 trades, whichever

encompasses more trades. We also drop price observations which deviate by more than

two times |log(pt/p̂)|, where p̂ is the median for the day. We choose trade-based filters to

check for the internal consistency, instead of relying on the Quote database also provided

by the NYSE, as some observations are falsely recorded in both. Afterwards, we span a

minute-by-minute grid between 9:30 and 16:01 and map trades to these trading minutes,

taking the volume-weighted average price within each minute to limit the impact of

microstructure noise and single trades.

A.2. Merge with CRSP

The TAQ database provides intraday trade prices, but lacks information about dis-

tributions, mergers, and delistings. We obtain this information from CRSP, as the low-
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frequency database in financial economics.

We use the PERMNO provided by CRSP as an identifier that is unique over time.

In a first step, we merge the historical CUSIP by CRSP (NCUSIP) with the CUSIPs in

the master file taken from TAQ. In some occasions, we cannot merge available tickers in

the trade file this way, and in a second step merge the two databases by the root ticker

and ticker suffix, which indicates different share classes. We keep only stocks with share

codes 10 and 11, denoting common shares, as well as exchange codes 1, 2, 3, 31, 32 and

32, representing the NYSE, AMEX and NASDAQ, respectively. Using this procedure, we

can merge most stocks for which we have intraday data available and cover most of the

CRSP sample. Since we are interested in the impact of market maker hedging activity, we

retain only those stocks that are optionable, i.e. for which options have traded between

May 2005 and July 2020.
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Appendix B. Detailed Summary Statistics on ΓHP and

ΩLETF

Table B1 provides detailed summary statistics on the main variables of interest in the

main paper. Panel A in Table B1 provides the summary statistics for the joint sample,

that is, every stock in the joint sample is optionable and included in a benchmark index

of at least on leveraged ETF. Panel B in Table B1 provides the summary statistics for

the sample of optionable stocks. Panel C in Table B1 provides the summary statistics

for the sample of stocks included in benchmark indices of leveraged ETFs.
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Table B1: Summary Statistics
The table reports means, standard deviations, and quantiles for the gamma, leveraged ETF variables
and returns used in the regression models. The descriptive statistics are first computed for each day and
subsequently averaged across all days. rpre, rnight and rend are denoted in basis points. ADVend is given
in million USD. ΓIB , ΓHP , ΩLETF and their corresponding absolute values are given percentage. The
sample periods and data sets are given in the panel titles.

Mean Std 2.5% 10% 25% 50% 75% 90% 97.5%

Panel A: Joint (2012-2019)

rpre 6.26 240.49 -405.97 -194.44 -83.0 4.92 91.94 202.79 429.13

rend 0.32 45.57 -81.2 -40.28 -18.45 -0.53 17.81 41.16 87.12

rnight 4.25 174.25 -258.07 -119.93 -51.63 3.0 57.79 127.89 276.07

ADVend 22.87 65.36 0.23 0.74 2.13 6.75 20.24 49.5 147.74

ΓIB 0.55 3.66 -4.26 -1.37 -0.26 0.08 0.94 3.0 7.51

|ΓIB| 1.56 3.34 0.0 0.03 0.14 0.56 1.72 3.95 8.82

ΓHP 0.03 6.42 -8.22 -2.4 -0.49 0.0 0.53 2.53 8.51

|ΓHP | 2.06 6.06 0.0 0.02 0.1 0.49 1.85 4.97 13.2

ΩLETF 0.15 2.71 -3.54 -1.91 -0.95 0.1 1.2 2.27 4.08

|ΩLETF | 1.88 2.66 0.03 0.17 0.44 1.1 2.56 4.32 7.46

ΩLETF − ΓHP 0.12 7.25 -9.8 -3.65 -1.38 0.1 1.62 3.92 9.91

|ΩLETF − ΓHP | 3.3 6.64 0.06 0.23 0.65 1.75 3.8 7.14 15.31

Panel B: Gamma Exposure (2005-2020)

rpre 6.06 233.35 -397.66 -192.07 -83.06 4.4 91.48 200.9 421.69

rend 0.42 53.35 -96.42 -46.93 -21.04 -0.47 20.64 48.06 102.65

rnight 3.21 168.23 -252.12 -117.57 -51.26 2.03 55.45 122.94 267.22

ADVend 13.93 49.65 0.08 0.22 0.7 2.68 9.84 29.94 97.8

ΩLETF 0.36 48.13 -6.0 -3.35 -1.7 0.16 2.09 3.98 7.04

|ΩLETF | 4.83 48.11 0.02 0.2 0.61 2.1 4.38 7.51 12.95

Panel C: LETF Rebalancing (2012-2019)

rpre 3.53 260.04 -442.13 -222.4 -100.77 0.23 101.71 226.63 470.58

rend 1.13 56.7 -95.23 -46.36 -21.02 0.03 21.68 48.96 104.39

rnight 2.4 183.8 -281.23 -138.01 -63.03 -0.05 63.75 142.38 301.99

ADVend 19.51 52.36 0.26 0.79 2.14 6.27 18.0 43.17 119.79

ΓIB 0.38 3.57 -4.7 -1.84 -0.53 0.05 0.95 2.87 7.01

|ΓIB| 1.64 3.17 0.01 0.06 0.22 0.72 1.91 4.01 8.46

ΓHP 0.01 6.99 -9.05 -2.87 -0.68 -0.0 0.69 2.94 9.22

|ΓHP | 2.34 6.53 0.0 0.03 0.16 0.68 2.24 5.6 14.13
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Appendix C. Different Sets of Delta-Hedgers

We investigate whether the choice of the set of delta-hedgers skews our results. In

the main part of the paper, we have assumed that delta-hedgers are composed of market

makers and broker/dealers. We exchange the set of delta-hedgers to include only market

makers (Table C2) or to include market makers, broker/dealers, and firm proprietary

traders (Table C3). The choice of the set of likely delta-hedgers has little impact on our

results.

Table C2: Market Makers as the only Delta-Hedgers
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). We assume that market
makers are delta-hedgers. T-statistics in parentheses are derived from standard errors clustered by date
and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects and
weight returns by the stock’s market capitalization. The sample period is May 2005 – July 2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -11.619*** -11.560*** -11.564*** -11.625*** -11.619***

(-3.926) (-3.926) (-3.901) (-3.928) (-3.929)

rpre
t -0.714*** -0.715*** -0.714*** -0.713*** -0.713***

(-4.495) (-4.509) (-4.497) (-4.493) (-4.495)

IVt−1 6.095***

(3.153)

R̂V
end

t 540.566*

(1.957)

PCt−1 0.334

(1.629)

O/S$
t−1 680.601

(1.162)

Observations 3,365,367 3,365,367 3,365,008 3,358,727 3,365,359

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]
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Table C3: Market Makers, Broker/Dealer, and Firm Proprietary Traders as
Delta-Hedgers
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). We assume that market
makers, broker/dealer, and firm proprietary traders are delta-hedgers. T-statistics in parentheses are
derived from standard errors clustered by date and entity. ***, **, * denotes significance at the 1%, 5%,
10% level. We include entity fixed effects and weight returns by the stock’s market capitalization. The
sample period is May 2005 – July 2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -16.345*** -16.309*** -16.305*** -16.350*** -16.341***

(-8.931) (-8.939) (-8.915) (-8.934) (-8.932)

rpre
t -0.627*** -0.628*** -0.627*** -0.626*** -0.627***

(-3.906) (-3.920) (-3.908) (-3.904) (-3.906)

IVt−1 6.010***

(3.104)

R̂V
end

t 525.810*

(1.907)

PCt−1 0.341*

(1.685)

O/S$
t−1 650.340

(1.087)

Observations 3,365,367 3,365,367 3,365,006 3,358,716 3,365,359

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]
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Appendix D. ΓHP based on “Old” Positions

Endogeneity concerns regarding Equation (10) might be raised given that traders

with public and/or private information on the return of stock j in the last 30 minutes,

rend
j , choose the option market to exploit this information. To mitigate any concerns, we

adopt the idea of Ni et al. (2020). Precisely, we split ΓHP in two parts: gamma hedging

pressure originating from “old” positions held by delta-hedgers at time t− τ , and gamma

hedging pressure stemming from new positions between t − τ and t. Ni et al. (2020)

argue that option positions which existed at t − τ cannot be established due to private

and/or public information after the close at t − τ . In case of short-lived private and/or

public information, positions at t − τ are of no use for predicting the return in the last

30 minutes on t, rpre.

To decompose ΓHP , we first define the gamma imbalance for stock j at time t which

is based on option positions of delta-hedgers at time t− τ as

ΓIBj,t;τ =

Nt
t−τ∑
o=1

netOIo,t−1−τ × Γo(t− 1, Sclosej,t−1)× S15:30
j,t ×Multo


×
Sclosej,t−1

100
× 1

ADVend
j,t−1

, (D1)

where N t
t−τ denotes the number of options contracts on stock j that are available at time

t− τ and expire after t. The difference between Equation (D1) and Equation (4) in the

main paper is that Equation (D1) uses the net open interest of likely delta-hedgers at

time t − τ and sums over options expiring after t. However, both definitions use the

gamma of option contracts at the previous trading day, t − 1. Hence, Equation (D1)

denotes the gamma imbalance at time t of old positions.

Next, we define the gamma hedging pressure due to old positions as

ΓHPj,t;τ = 100× ΓIBj,t;τ × r
pre
j,t . (D2)

We decompose ΓHP at time t into the part that is due to old positions existing at

time t− τ , ΓHPj,t;τ , and the part due to new positions, ΓHPj,t;new, as follows

ΓHPj,t = ΓHPj,t;τ − ΓHPj,t;new, (D3)

where ΓHPj,t;new = ΓHPj,t − ΓHPj,t;τ .
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Finally, we run the following specification where we control for fixed effects and other

control variables, Xj,t,

rend
j,t = β0r

pre
j,t + β1ΓHPj,t;τ + β2ΓHPj,t;new + γ ′Xj,t + FEj + FEt + εj,t. (D4)

We hypothesize that β1 is negative and statistically significant. Table D4 and Table D5

show results with τ set to five and ten business days, respectively. Both tables confirm

our hypothesis.
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Table D4: Option Hedging Pressure based on 5-Business Day Old Positions
The table summarizes the results of regressions of returns in the last half hour of a trading day on market
maker hedging pressure based on five business day old positions ΓHPt;τ and hedging pressure based on new

positions, ΓHPt;new, after controlling for returns until 15:30 (rpre), as in specification Equation (D4). IVt−1

denotes implied volatility at time t− 1. R̂V
end

t denote the square root of predicted realized variance for
the time period from 15:30 to 16:00. PCt−1 is the put-call-ratio and O/S$

t−1 denotes the option-to-stock
volume in dollar terms. T-statistics are in parentheses below and are computed using time-and-entity-
clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity
fixed effects in all specifications and value-weight observations. The sample period is May 2005 – July
2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt;τ -16.945*** -16.893*** -16.916*** -16.958*** -16.943***

(-7.220) (-7.191) (-7.188) (-7.223) (-7.225)

ΓHPt;new -0.159 -0.155 -0.144 -0.159 -0.158

(-0.411) (-0.401) (-0.374) (-0.412) (-0.408)

rpre
t -0.835*** -0.836*** -0.835*** -0.834*** -0.835***

(-4.738) (-4.753) (-4.739) (-4.736) (-4.738)

IVt−1 7.413***

(3.216)

R̂V
end

t 571.432*

(1.793)

PCt−1 0.501*

(1.901)

O/S$
t−1 511.163

(0.893)

Observations 1,878,136 1,878,136 1,877,909 1,875,677 1,878,131

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]
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Table D5: Option Hedging Pressure based on 10-Business Day Old Positions
The table summarizes the results of regressions of returns in the last half hour of a trading day on market
maker hedging pressure based on ten business day old positions ΓHPt;τ and hedging pressure based on new

positions, ΓHPt;new, after controlling for returns until 15:30 (rpre), as in specification Equation (D4). IVt−1

denotes implied volatility at time t− 1. R̂V
end

t denote the square root of predicted realized variance for
the time period from 15:30 to 16:00. PCt−1 is the put-call-ratio and O/S$

t−1 denotes the option-to-stock
volume in dollar terms. T-statistics are in parentheses below and are computed using time-and-entity-
clustered standard errors. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity
fixed effects in all specifications and value-weight observations. The sample period is May 2005 – July
2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt;τ -20.419*** -20.370*** -20.407*** -20.436*** -20.424***

(-7.924) (-7.897) (-7.903) (-7.926) (-7.927)

ΓHPt;new -0.186 -0.182 -0.172 -0.187 -0.185

(-0.481) (-0.471) (-0.444) (-0.482) (-0.478)

rpre
t -0.840*** -0.842*** -0.840*** -0.840*** -0.840***

(-4.776) (-4.791) (-4.777) (-4.774) (-4.775)

IVt−1 7.417***

(3.218)

R̂V
end

t 572.220*

(1.796)

PCt−1 0.500*

(1.898)

O/S$
t−1 519.470

(0.908)

Observations 1,878,136 1,878,136 1,877,909 1,875,677 1,878,131

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]
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The Role of Leveraged ETFs and Option Market

Imbalances on End-of-Day Price Dynamics
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by Andrea Barbon, Heiner Beckmeyer, Andrea Buraschi, Mathis Moerke

Abstract

This appendix provides supplementary results and additional analyses besides

robustness checks not included in the paper.

Table of Contents:

• Appendix OA1 provides summary statistics for the underlying stocks in the

sample.

• Appendix OA2 provides summary statistics for the leveraged ETFs in the

sample.

• Appendix OA3 investigates the effect of altering the calculation of the average

dollar volume.

• Appendix OA4 investigates the effect of scaling returns according to Moskowitz

et al. (2012).

• Appendix OA5 investigates the effect across different industries.

• Appendix OA6 analyses the rebalancing activities around intraday jumps for

small and large market cap stocks, respectively.

• Appendix OA7 provides summary statistics for trading strategies based on ΓHP

and ΩLETF on their respective data samples.

• Appendix OA8 provides results for risk-adjusted returns of the trading strategies

based on ΓHP and ΩLETF on their respective data samples.
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Appendix OA1. Summary Statistics of the Underly-

ing

Table OA1.1: Industry Distribution of Underlying Stocks
The table reports time-series averages of industry distributions of the Fama-French 12-
industry classification. The industry distributions are reported for the gamma exposure,
LETF and joint sample. For comparability to the CRSP universe, the distributions of
the full CRSP samples for the corresponding time periods are included.

FF-12 Industry Options sample CRSP sample (2005-2020) LETF sample Joint sample CRSP sample (2012-2019)

Consumer durables 0.58% 0.28% 0.36% 0.43% 0.19%

Consumer nondurables 5.16% 3.16% 4.35% 4.55% 2.71%

Manufacturing 11.14% 5.48% 9.12% 10.17% 4.78%

Energy 6.64% 3.49% 4.53% 5.71% 3.4%

Chemicals 3.3% 1.37% 2.74% 3.21% 1.26%

Business Equipment 13.7% 10.58% 12.79% 15.6% 8.62%

Telecom 2.27% 2.37% 2.56% 2.37% 1.95%

Utilities 4.23% 2.03% 3.46% 3.71% 1.9%

Wholesale 12.25% 5.69% 9.65% 11.73% 4.96%

Healthcare 10.26% 6.76% 8.05% 10.72% 5.51%

Finance 10.56% 40.92% 16.9% 10.29% 44.13%

Other 19.91% 17.9% 25.61% 21.64% 20.61%

2



Table OA1.2: Summary Statistics of Underlying Stocks
The table reports summary statistics on the stock-day sample for the underlying stocks.
Panel A reports the time-series summary statistics and Panel B reports the time-series
average of cross-sectional distributions. Percent coverage of the stock universe (EW) is
the number of stocks in the sample, divided by the total number of CRSP stocks. Percent
coverage of the stock universe (VW) is the total market capitalization of sample stocks
divided by the total CRSP market capitalization. Percent coverage of stocks traded at
NYSE or AMEX is the number of stocks in the sample trading at NYSE or AMEX,
divided by the total number of stocks. The firm size percentiles are computed using the
full CRSP sample. Number of LETF is the number of LETF a stock is included in.

Mean Std 10-Pctl Q1 Median Q3 90-Pctl

Panel A: Time-Series Distribution

Gamma Exposure (2005-2020)

Number of stocks in the sample each month 892.94 347.42 320.6 559.0 1061.0 1157.0 1221.0

Stock coverage of stock universe (EW) 12.63 4.81 4.6 8.24 15.01 16.2 17.02

Stock coverage of stock universe (VW) 44.99 9.09 30.23 34.65 50.29 51.66 52.66

Stock traded at NYSE or AMEX 43.66 5.48 36.38 39.37 43.38 44.76 52.32

LETF (2012-2019)

Number of stocks in the sample each month 2210.98 525.92 1611.8 2295.0 2355.0 2424.0 2464.0

Stock coverage of stock universe (EW) 30.89 7.43 21.88 31.22 32.99 34.5 35.04

Stock coverage of stock universe (VW) 65.04 13.57 63.67 66.72 68.52 69.23 69.71

Stock traded at NYSE or AMEX 38.74 8.07 35.78 37.91 40.15 42.89 43.42

Joint (2012-2019

Number of stocks in the sample each month 992.53 227.92 877.2 973.0 1043.0 1101.25 1140.0

Stock coverage of stock universe (EW) 13.86 3.17 12.43 13.65 14.57 15.26 15.92

Stock coverage of stock universe (VW) 48.79 10.17 48.47 49.76 50.92 51.85 52.72

Stock traded at NYSE or AMEX 38.74 8.07 35.78 37.91 40.19 42.88 43.42

Panel B: Time-Series Average of Cross-Sectional Distributions

Gamma Exposure (2005-2020)

Firm size in million 13824 37492 530 1308 3626 11011 30004

Firm size CSRP percentile 78 17 52 68 82 92 96

LETF (2012-2019)

Firm size in million 9229 33225 286 577 1578 5084 17629

Firm size CSRP percentile 69 19 42 54 71 85 94

Number of LETF 8 3 6 6 8 10 13

Joint (2012-2019

Firm size in million 15050 44338 454 1079 3152 11182 31883

Firm size CSRP percentile 77 17 51 66 81 92 96

Number of LETF 9 3 6 7 9 11 14
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Appendix OA2. Summary Statistics of Leveraged ETFs

Table OA2.1: Summary Statistics Underlying Leveraged ETFs
The table reports time-series summary statistics on the underlying leveraged ETFs in our sample. Num-
ber of LETF is the number of leveraged ETFs. Number of benchmark indices is the number of unique
benchmark indices underlying all leveraged ETFs. Aggregated AUM denotes the assets under man-
agement across all leveraged ETFs, in million. Aggregated leverage-adjusted AUM is the assets under
management adjusted for the rebalancing leverage of each leveraged ETF. Percentage of inverse LETF
(EW) is the number of inverse ETFs divided by the total number of leveraged ETFs. Percentage of
inverse LETF (VW) is the assets under management weighted proportion of inverse ETFs to the total
leveraged ETF sample. Average absolute leverage factor (EW) is the average absolute leverage factor.
Average absolute leverage factor (VW) is the assets under management weighted absolute leverage factor.
The sample period is January 2012 – December 2019.

Mean Std 10% 25% 50% 75% 90%

Number of LETF 71.67 11.05 66.0 72.0 74.0 76.0 79.0

Number of benchmark indices 23.72 3.7 21.0 23.0 25.0 25.0 27.0

Agg. AUM 17.71 4.69 12.03 15.29 16.92 21.33 24.43

Agg. leverage-adjusted AUM 95.33 28.55 64.23 73.01 86.97 121.12 131.71

Perc. of inverse LETF (EW) 45.29 3.38 41.67 43.24 45.07 45.95 51.28

Perc. of inverse LETF (VW) 33.14 15.66 16.31 22.75 28.48 41.77 62.64

Avg. absolute leverage factor (EW) 2.35 0.13 2.21 2.22 2.32 2.45 2.5

Avg. absolute leverage factor (VW) 2.43 0.14 2.29 2.35 2.44 2.53 2.6

4



Appendix OA3. Different ADV Measures

We investigate whether the choice of scaling the proposed Gamma exposure with last

month’s average dollar volume skews our results. To do so, we exchange the proposed

ADV measure with last week’s ADV and last quarter’s ADV. We also check whether

results change materially when using ADV of the last half hour of a trading day (I) or

the entire daily trading volume (D). Table OA3.1 and Table OA3.2 present results for

the gamma and LETF sample, respectively, whereas Table OA3.3 displays results for the

joint data sample. The choice of denominator for ΓHP and ΩLETF has little impact on

our results.

Table OA3.1: Effect of Different ADV Measures in Gamma Sample
The table reports the results to regressing returns in the last half hour of a trading day on returns
until 15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). We exchange the
standard ADV measure as the average volume in the last half trading hour over the last month by similar
measures using weekly (W) and quarterly horizons (Q), as well as measures using daily volume in their
constructed (denoted by “-D”). T-statistics in parentheses are derived from standard errors clustered by
date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects
and weight returns by the stock’s market capitalization. The sample period is May 2005 – July 2020.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -11.014*** -56.466*** -11.947*** -58.915*** -12.472*** -60.231***

(-5.047) (-5.208) (-5.008) (-4.808) (-4.721) (-4.071)

rpre
t -0.719*** -0.716*** -0.718*** -0.717*** -0.717*** -0.718***

(-4.337) (-4.299) (-4.341) (-4.326) (-4.360) (-4.355)

Observations 3,365,367 3,365,367 3,365,367 3,365,367 3,365,367 3,365,367

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

ADV W-I W-D M-I M-D Q-I Q-D
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Table OA3.2: Effect of Different ADV Measures in LETF Sample
The table reports the results to regressing returns in the last half hour of a trading day on returns
until 15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). We exchange the
standard ADV measure as the average volume in the last half trading hour over the last month by similar
measures using weekly (W) and quarterly horizons (Q), as well as measures using daily volume in their
constructed (denoted by “-D”). T-statistics in parentheses are derived from standard errors clustered by
date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects
and weight returns by the stock’s market capitalization. The sample period is January 2012 – December
2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΩLETF
t 25.285*** 152.698*** 41.350*** 109.642*** 43.195*** 180.037***

(3.311) (8.532) (8.569) (2.620) (8.425) (9.256)

rpre
t -0.878*** -0.892*** -0.900*** -0.875*** -0.901*** -0.897***

(-8.654) (-9.393) (-9.299) (-7.911) (-9.253) (-9.400)

Observations 4,403,855 4,403,744 4,403,855 4,403,854 4,403,855 4,403,855

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

ADV W-I W-D M-I M-D Q-I Q-D
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Table OA3.3: Effect of Different ADV Measures for Joint Sample
The table reports the results to regressing returns in the last half hour of a trading day on returns
until 15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). We exchange the
standard ADV measure as the average volume in the last half trading hour over the last month by similar
measures using weekly (W) and quarterly horizons (Q), as well as measures using daily volume in their
constructed (denoted by “-D”). T-statistics in parentheses are derived from standard errors clustered by
date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects
and weight returns by the stock’s market capitalization. The sample period is January 2012 – December
2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -9.536*** -53.144*** -10.677*** -56.517*** -10.708*** -57.467***

(-4.945) (-6.602) (-5.324) (-6.534) (-4.929) (-6.290)

ΩLETF
t 42.696*** 181.998*** 47.611*** 193.612*** 50.017*** 206.090***

(4.407) (5.721) (4.935) (5.803) (4.845) (5.767)

rpre
t -0.882*** -0.869*** -0.882*** -0.870*** -0.887*** -0.875***

(-7.484) (-7.309) (-7.479) (-7.285) (-7.519) (-7.330)

Observations 1,940,150 1,940,150 1,940,150 1,940,150 1,940,150 1,940,150

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

ADV W-I W-D M-I M-D Q-I Q-D
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Appendix OA4. Scaled Returns as in Moskowitz et al.

(2012)

In the main analyses we use plain returns and value-weight observations in the panel

regressions. Instead, Moskowitz et al. (2012) proposes the use of scaled returns, which

expresses returns in terms of units of expected risk:

r̂ =
r

σr
, (OA1)

where σr is calculated using an exponentially-weighted moving average from the realized

variance of using 5-minute squared returns from last close to 15:30. The half life is chosen

to equal 60 days.

Table OA4.1 and Table OA4.2 present results for the gamma and LETF sample,

respectively, whereas Table OA4.3 displays results for the joint data sample. Scaling

returns does not alter our results.

8



Table OA4.1: Using Scaled Returns for the Gamma Sample
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). The regression setup
follows Table 4 but uses scaled returns. T-statistics in parentheses are derived from standard errors
clustered by date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity
fixed effects and weight returns by the stock’s market capitalization. The sample period is May 2005 –
July 2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -29.475*** -29.410*** -29.486*** -29.489*** -29.475***

(-4.171) (-4.166) (-4.169) (-4.172) (-4.175)

rpre
t -0.071*** -0.071*** -0.071*** -0.071*** -0.071***

(-9.206) (-9.204) (-9.205) (-9.208) (-9.206)

IVt−1 12.640***

(3.966)

R̂V
close−1→15:30

t 77.456

(1.541)

PCt−1 0.561

(0.917)

O/S$
t−1 1521.516

(0.918)

Observations 3,365,009 3,365,009 3,365,009 3,358,408 3,365,001

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]
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Table OA4.2: Using Scaled Returns for the LETF Sample
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). The regression setup
follows Table 4 but uses scaled returns. T-statistics in parentheses are derived from standard errors
clustered by date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity
fixed effects and weight returns by the stock’s market capitalization. The sample period is January 2012
– December 2019.

(1) (2) (3) (4)

Dependent rend
t rend

t rend
t rend

t

ΩLETF
t 54.287*** 95.759*** 95.753*** 95.756***

(2.761) (5.054) (5.055) (5.052)

rpre
t -0.064*** -0.064*** -0.064***

(-10.184) (-10.183) (-10.182)

R̂V
close−1→15:30

t -7.640

(-0.156)

R̂V
15:30→close
t 630.649**

(2.062)

Observations 4,386,322 4,386,322 4,386,322 4,386,322

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j]
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Table OA4.3: Using Scaled Returns for the Joint Sample
The table reports the results to regressing returns in the last half hour of a trading day on returns until
15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). The regression setup
follows Table 4 but uses scaled returns. T-statistics in parentheses are derived from standard errors
clustered by date and entity. ***, **, * denotes significance at the 1%, 5%, 10% level. We include entity
fixed effects and weight returns by the stock’s market capitalization. The sample period is January 2012
– December 2019.

(1) (2) (3) (4)

Dependent rend
t rend

t rend
t rend

t

ΩLETF
t 166.908*** 175.169***

(4.700) (4.975)

ΓHPt -26.845*** -31.727***

(-3.201) (-3.841)

rpre
t -0.063*** -0.071*** -0.067***

(-7.883) (-8.958) (-8.185)

BB 170.872***

(5.279)

SS -179.481***

(-3.963)

BS -96.936***

(-2.874)

SB 75.525***

(2.744)

Observations 1,940,048 1,940,048 1,940,048 1,940,048

Entity FE Yes Yes Yes Yes

Time FE Yes Yes Yes -

SEs [t;j] [t;j] [t;j] [t;j]
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Appendix OA5. Effects Across Industries

Investor attention for stocks in respective sectors changes over time. To compare how

hedging pressure from the options market impacts end-of-day returns, we sort stocks into

their respective industry following the classification on Kenneth French’s website.

Table OA5.1 and Table OA5.2 present results for the gamma and LETF sample,

respectively, whereas Table OA5.3 displays results for the joint data sample. ΓIB− and

ΩLETF−effects are present and statistically significant in all industries.

Table OA5.1: Effects in Different Industries for the Gamma Sample
The table reports the results to regressing returns in the last half hour of a trading day on re-
turns until 15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). The sam-
ple is split by the industry classification based on SIC codes, following Kenneth French’s website,
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. T-statistics in
parentheses are derived from standard errors clustered by date and entity. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects and weight returns by the stock’s market
capitalization. The sample period is May 2005 – July 2020.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -9.646*** -6.965** -10.429** -14.460*** -17.307***

(-4.789) (-2.196) (-2.283) (-3.286) (-6.063)

rpre
t -0.890*** -1.009*** -0.971*** -1.179*** -0.651***

(-6.985) (-3.705) (-4.488) (-5.006) (-3.239)

Observations 637,729 798,830 624,852 363,951 940,005

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

Industry Consumer Manuf.+Energy Business Health Other
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Table OA5.2: Effects in Different Industries for the LETF Sample
The table reports the results to regressing returns in the last half hour of a trading day on re-
turns until 15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). The sam-
ple is split by the industry classification based on SIC codes, following Kenneth French’s website,
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. T-statistics in
parentheses are derived from standard errors clustered by date and entity. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects and weight returns by the stock’s market
capitalization. The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΩLETF
t 40.190*** 20.354*** 43.533*** 70.799*** 48.152***

(8.611) (3.823) (6.716) (5.911) (9.913)

rpre
t -0.766*** -0.889*** -1.075*** -0.929*** -0.780***

(-7.154) (-5.781) (-6.432) (-4.889) (-5.734)

Observations 705,758 867,361 721,391 355,840 1,753,505

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

Industry Consumer Manuf.+Energy Business Health Other
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Table OA5.3: Effects in Different Industries for the Joint Sample
The table reports the results to regressing returns in the last half hour of a trading day on re-
turns until 15:30, rpre and market maker hedging pressure ΓHP , following Equation (10). The sam-
ple is split by the industry classification based on SIC codes, following Kenneth French’s website,
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. T-statistics in
parentheses are derived from standard errors clustered by date and entity. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects and weight returns by the stock’s market
capitalization. The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5)

Dependent rend
t rend

t rend
t rend

t rend
t

ΓHPt -8.632*** -6.315** -7.902* -19.952*** -15.017***

(-5.343) (-2.573) (-1.887) (-4.262) (-5.092)

ΩLETF
t 30.339*** 20.801*** 50.707*** 96.362*** 38.856***

(6.439) (2.871) (9.469) (6.680) (4.287)

rpre
t -0.710*** -0.955*** -1.034*** -0.963*** -0.696***

(-5.262) (-4.391) (-5.054) (-4.543) (-3.720)

Observations 354,699 437,271 378,458 210,157 559,565

Entity FE Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j]

Industry Consumer Manuf.+Energy Business Health Other
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Appendix OA6. Discretionary Rebalancing – The Case

of Jumps

Table OA6.1: Delta-Hedging After Intraday Jumps – Market Cap Effects
The table reports the results to regressing intraday jump returns on returns in the subsequent 30-minute
interval for large and small stocks in our sample. We identify jumps in the underlying stock returns.
To detect jumps, we compare each non-overlapping 30-minute return with returns of the same interval
over the last year. If the return is higher (lower) than the 97.5% (2.5%) percentile, we regard the return
as a jump. Next, we record the return from yesterday’s close until the end of the 30-minute interval,
where the jump has occurred (rincl. jump

t ). We collect also the return of the subsequent 30-minute interval
(rnext
t ) on the stock-level. Finally, we disregard jumps which have occurred after a certain time (given in

row “Jumps Until”). Equipped with rincl. jump
t , rnext

t , and the intraday return of the benchmark index,
we reconstruct ΓHPt for each affected stock j. Subsequently, we run Equation (10). The sample period
is January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rnext
t rnext

t rnext
t rnext

t rnext
t rnext

t

ΓHPt -71.878* -77.413** -72.054** -41.922* -39.247* -29.792

(-1.651) (-2.214) (-2.239) (-1.813) (-1.732) (-1.363)

rincl. jump
t -0.787** -0.925*** -0.977*** -1.016*** -1.004*** -0.976***

(-2.419) (-3.253) (-3.601) (-4.004) (-4.517) (-4.519)

Observations 173,131 287,164 331,109 166,421 272,356 314,137

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

Jumps Until 12:00 14:00 15:00 12:00 14:00 15:00

Market Cap Small Small Small Large Large Large
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Table OA6.2: Leveraged ETF Rebalancing After Intraday Jumps – Market Cap Effects
The table reports the results to regressing intraday jump returns on returns in the subsequent 30-minute
interval for large and small stocks in our sample. For leverage ETF rebalancing, we identify jumps in the
benchmark of the leverage ETF. To detect jumps, we compare each non-overlapping 30-minute return
with returns of the same interval over the last year. If the return is higher (lower) than the 97.5% (2.5%)
percentile, we regard the return as a jump. Next, we record the return from yesterday’s close until the
end of the 30-minute interval, where the jump has occurred (rincl. jump

t ). We collect also the return of the
subsequent 30-minute interval (rnext

t ) on the stock-level. In case of leveraged ETFs, we select all stocks
in leveraged ETFs for which a jump in the benchmark index of the leverage ETF has occurred. Finally,
we disregard jumps which have occurred after a certain time (given in row “Jumps Until”). Equipped

with rincl. jump
t , rnext

t , and the intraday return of the benchmark index, we reconstruct ΩLETFt for each
affected stock j. Subsequently, we run Equation (12). The sample period is January 2012 – December
2019.

(1) (2) (3) (4) (5) (6)

Dependent rnext
t rnext

t rnext
t rnext

t rnext
t rnext

t

ΩLETF
t -0.612 -0.707** -0.592* -0.304 -0.430 -0.502

(-1.618) (-2.075) (-1.793) (-0.843) (-1.198) (-1.428)

rincl. jump
t -0.280 -0.226 -0.248 -0.772** -0.640** -0.637**

(-1.076) (-1.134) (-1.366) (-2.052) (-2.234) (-2.446)

Observations 232,351 337,343 376,041 267,685 378,955 419,296

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

Jumps Until 12:00 14:00 15:00 12:00 14:00 15:00

Market Cap Small Small Small Large Large Large
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Table OA6.3: End-of-day Delta-Hedging on Identified Jump Days – Market Cap Effects
The table reports the results to regressing intraday jump returns on returns in the subsequent 30-
minute interval. For delta-hedging, we identify jumps in the underlying stock returns. For leverage ETF
rebalancing, we identify jumps in the benchmark of the leverage ETF. To detect jumps, we compare
each non-overlapping 30-minute return with returns of the same interval over the last year. If the return
is higher (lower) than the 97.5% (2.5%) percentile, we regard the return as a jump. Next, we record
the return from yesterday’s close until the end of the 30-minute interval, where the jump has occurred
(rincl. jump
t ). We collect also the return of the subsequent 30-minute interval (rnext

t ) on the stock-level. In
case of leveraged ETFs, we select all stocks in leveraged ETFs for which a jump in the benchmark index
of the leverage ETF has occurred. Finally, we disregard jumps which have occurred after a certain time
(given in row “Jumps Until”). Equipped with rincl. jump

t , rnext
t , and the intraday return of the benchmark

index, we reconstruct ΓHPt and ΩLETFt for each affected stock j. Subsequently, we run Equation (10)
and Equation (12). The sample period is January 2012 – December 2019.

(1) (2) (3) (4) (5) (6)

Dependent rend
t rend

t rend
t rend

t rend
t rend

t

ΓHPt -75.978** -48.187 -51.226 -27.275 -38.879* -42.076**

(-2.121) (-1.398) (-1.498) (-1.182) (-1.740) (-1.985)

rafter jump -0.104 -0.230 -0.250 -1.001*** -0.983*** -1.015***

(-0.440) (-1.121) (-1.259) (-3.748) (-3.765) (-3.955)

Observations 173,131 287,164 331,109 166,421 272,356 314,137

Entity FE Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

SEs [t;j] [t;j] [t;j] [t;j] [t;j] [t;j]

Jumps Until 12:00 14:00 15:00 12:00 14:00 15:00

Market Cap Small Small Small Large Large Large
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Appendix OA7. Trading Strategy for Single Data Sets

Table OA7.1: ΓHP and ΩLETF Trading Strategies on their respective Data Samples
The table reports the economic value of timing the last half-hour market return using either ΓHP or
ΩLETF . The ΓHP -strategy, denoted by LmHΓ, takes a long position in stock j when the stock’s ΓHPj
is in the upper decile and a short position when it is in the lower decile. The ΩLETF -strategy, denoted
by HmLΩ, takes a short position in stock j when the stock’s ΩLETFj is in the upper decile and a long

position when it is in the lower decile. Marketend denotes investing in all stocks from 15:30 to 16:00.
We consider equally weighted (EW) and value weighted (VW) portfolios for all strategies, including
Marketend. For each strategy, we report the average return (Avg ret), standard deviation (Std dev),
Sharpe ratio (Sharpe), skewness, kurtosis, and success rate (Success). The returns are annualized and
in percentage. Newey and West (1987) robust t-statistics are in parentheses, and significance at the
1%, 5%, or 10% level is denoted by ***, **, or *, respectively. The sample periods are 2005–2020 and
2012–2019 for the ΓHP -strategy and ΩLETF -strategy, respectively.

Avg ret Std dev Sharpe Skewness Kurtosis Success

Panel A: LmHΓ (Equally Weighted)

LmHΓ 6.23*** 1.97 3.16 1.57 28.98 58.84

Marketend 2.84** 6.09 0.47 0.55 24.37 53.22

Panel B: LmHΓ (Value Weighted)

LmHΓ 5.94*** 2.21 2.68 0.81 19.74 59.76

Marketend 0.45 5.89 0.08 0.32 28.75 51.29

Panel C: HmLΩ (Equally Weighted)

HmLΩ 18.88*** 3.23 5.85 -0.14 7.69 67.72

Marketend 0.92 3.38 0.27 -0.41 5.39 53.49

Panel D: HmLΩ (Value Weighted)

HmLΩ 11.01*** 2.72 4.05 -0.18 9.81 61.15

Marketend -1.08 3.24 -0.33 -0.95 11.84 51.97
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Appendix OA8. Risk-adjusted Trading Strategy Re-

turns

Table OA8.1: Risk-adjusted Returns for ΓHP and ΩLETF Trading Strategies on their
respective Data Samples
The table reports the estimation results from regressing returns of strategies timing the last half-hour
based on ΓHP and ΩLETF on the returns of all stocks from 15:30 to 16:00 (Marketend), the equity
market excess return (MKT), size (SMB), book-to-market (HML), profitability (RMW), investment
(CMA), momentum (MOM), and an intermediary capital asset pricing factor (IC, proposed by He et al.,
2017). The ΓHP -strategy, LmHΓ, takes a long (short) position in a stock when the stock’s ΓHP is in the
lowest (highest) decile. The ΩLETF -strategy, HmLΩ, takes a long (short) position in a stock when the
stock’s ΩLETF is in the highest (lowest) decile. We consider equally weighted (EW) and value weighted
(VW) portfolios. Newey and West (1987) robust t-statistics are in parentheses, and significance at the
1%, 5%, or 10% level is denoted by ***, **, or *, respectively. The sample periods are 2005–2020 and
2012–2019 for the ΓHP -strategy and ΩLETF -strategy, respectively.

Intercept Marketend MKT SMB HML RMW CMA MOM IC R2 R2 adj

Panel A: LmHΓ (Equally Weighted)

LmHΓ 6.19 0.01 0.20% 0.17%

(9.54***) (1.24)

6.30 0.33 -1.40 3.23 3.49 -0.25 1.37 0.19 0.49% 0.29%

(9.14***) (0.35) (-0.86) (1.18) (1.76*) (-0.07) (1.47) (0.22)

Panel B: LmHΓ (Value Weighted)

LmHΓ 5.94 -0.00 0.01% -0.02%

(9.18***) (-0.15)

5.91 1.62 -0.42 0.82 2.46 0.16 1.76 -1.09 0.59% 0.39%

(8.65***) (0.72) (-0.21) (0.30) (1.14) (0.04) (1.69*) (-0.78)

Panel C: HmLΩ (Equally Weighted)

HmLΩ 18.91 -0.03 0.09% 0.04%

(11.34***) (-0.66)

20.13 -5.44 1.50 -0.83 3.56 -2.14 -1.25 2.62 0.48% 0.05%

(11.56***) (-1.87*) (0.41) (-0.19) (0.82) (-0.34) (-0.63) (1.19)

Panel D: HmLΩ (Value Weighted)

HmLΩ 11.01 -0.00 0.00% -0.05%

(8.17***) (-0.04)

12.34 -1.92 3.19 -0.16 -0.29 0.71 -2.43 1.14 0.40% -0.02%

(8.51***) (-0.79) (1.11) (-0.05) (-0.07) (0.13) (-1.38) (0.60)
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