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1. Introduction

Forecasting volatility is crucial in risk management and asset pricing in general. The availability of

high-frequency price data over the past two decades has spurred the field of modeling and forecasting

realized variance, RV , estimated by summing squared intraday returns.1 Most of the existing RV

forecasting models propose a handful of new predictors and then examine them one by one within

the framework of classical statistical inference. In this paper, instead of arguing the dominance of a

particular feature or algorithm, we have an ambitious objective: building an automatic forecasting

system that: 1) reduces human intervention in choosing features and algorithms; 2) scales to fit

many features while controlling for overfitting; 3) utilizes more flexible and state-of-the-art learning

algorithms; and 4) achieves good and consistent out-of-sample performance.

Our system has two main components: feature engineering and learning algorithm fitting. In the

feature engineering step, we consider 118 features that might be useful in predicting future volatility,

including 16 realized-variance-based (RV -based) features proposed by five popular RV forecasting

models and 102 implied-variance-based (IV -based) features across all deltas and with maturity

between one and three months. Our feature set is, to the best of our knowledge, the largest that

has ever been examined in the volatility forecasting literature. In the learning step, we aim to learn

the relation between volatility and features by five popular learning algorithms: LASSO, Principal

Component Regression (PCR), Random Forecast (RF), Gradient Boosted Regression Trees (GBRT),

and Neural Network (NN). These algorithms are more prediction-oriented and capable of capturing

complicated relations than simple OLS. Rather than emphasizing the performance of a particular

algorithm, we consider a simple combination of all machine learning algorithms. This ensemble

model is less prone to human decision-making biases and approves robust throughout our analyses.

We illustrate the automatic forecasting system through perhaps the largest-scale experiment

that compares different combinations of features and learning algorithms for 173 S&P 100 stocks

and 663 S&P 500 stocks. Our main findings are: 1) including all RV -based features from popular

RV forecasting models improves over any stand-alone model even through a simple OLS fit; 2)

further including all IV -based features can improve the out-of-sample forecasting performance; 3)
1Andersen and Bollerslev (1998) originally proposed the use of realized volatility for accurately measuring the

true latent integrated volatility; Andersen, Bollerslev, Diebold, and Labys (2003) suggested using reduced-form time
series forecasting models for realized volatilities.
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dynamically fitting the same feature set with machine learning algorithms can further improve the

performance over OLS; 4) an ensemble model that uses all features and all machine learning

algorithms performs extraordinarily well across forecast horizons and under different market

conditions; and 5) the improvement in out-of-sample prediction accuracy can translate into nontrivial

economic gains for a mean-variance investor who forecasts future volatilities based on the ensemble

model.

We start by comparing the predictive power of different features for the S&P 100 stock sample

using the same traditional OLS fit. We consider five RV -based feature sets from existing volatility

forecasting models including the HAR model by Corsi (2009); the MIDAS model by Ghysels,

Santa-Clara, and Valkanov (2006) and Ghysels, Sinko, and Valkanov (2007); the SHAR model by

Patton and Sheppard (2015); the HARQ-F model by Bollerslev, Patton, and Quaedvlieg (2016b);

and the HExpGl model by Bollerslev, Hood, Huss, and Pedersen (2018), as well as an additional

IV -based feature set. We find that the forecasting performance of any stand-alone RV -based feature

set can be improved if we combine them all together, whose performance can be further improved

by adding the IV -based features.

After fixing the feature set, our second exercise evaluates learning algorithms in comparison with

OLS models. We find that machine learning algorithms can improve performance over that of OLS

models. A simple average ensemble model that combines all machine learning algorithms delivers

extraordinary performance across forecast horizons, with R2
OOS ’s relative to HAR equal to 9.0%,

14.3%, 15.2%, and 10.0% at daily, weekly, monthly, and quarterly horizons. The corresponding

relative out-of-sample R2’s further jump to 10.4%, 18.7%, 29.6%, and 27.5% for the most recent

decade, indicating that our automatic volatility forecasting system becomes increasingly powerful

over time. We next show that the superior out-of-sample prediction performance also translates

into economic gains. Under a utility-based framework developed by Bollerslev, Hood, Huss, and

Pedersen (2018), we compute the realized utility of a mean-variance investor who trades an asset

with a constant Sharpe ratio. We show that at the monthly forecast horizon, using the ensemble

model is worth 24 basis points (bps) per year relative to using an OLS model with all features. In

other words, the investor is willing to pay 24 bps of his wealth to have access to the ensemble model

rather than investing according to OLS.

We further investigate which types of features are the most important in forecasting RV . Our
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feature importance evaluation process differs from those in existing studies in two important ways.

First, because several subgroups of our feature set are highly correlated, we assign highly correlated

features into one group and compute the importance of each group. The motivation is to avoid the

dilution effect of per-feature variable importance. Specifically, we divide 118 features into three

groups: 1) realized features from the MIDAS and HExpGl models; 2) semi-variances and daily,

weekly, monthly, and quarterly RV ’s as well as RV
√

RQ’s; and 3) implied variance features. Second,

instead of setting all values of the features within a group to zero, we consider random permutations

of values across observations within the training set for the tested features as suggested by Fisher,

Rudin, and Dominici (2019). This is because setting all feature values to zero introduces unintended

bias to nonlinear models. We find that all three groups of features contribute at least 10% to

the forecast across most horizons and learning algorithms. Interestingly, implied variance features

increasingly contribute more to volatility forecasting through time. We conjecture that much of

the gain comes from the improved quality of implied variance features as the overall option market

becomes more liquid.

To test the robustness of the system, we augment the feature set by including six firm

characteristics and six pure noise terms. Firm characteristics have not been widely documented as

useful predictors of volatilities. Therefore, if our system is robust, adding these 12 features should

not materially change the forecasting performance. Indeed, we find that firm characteristics do

not contribute much to volatility forecasting and our system continues to perform well even after

including these weak or noisy features. Interestingly, the contribution of firm characteristics is

slightly higher at around 3% for nonlinear models RF, GBRT, and NN compared with around 1%

for linear models LASSO and PCR. One possible explanation is that firm characteristics may help

predict future RV only as interaction terms with existing RV predictors. The noise features, on

the other hand, contribute almost nothing to model prediction, indicating that our system and the

associated group importance metrics effectively control for false positives.

Is our machine-learning-based automatic system scalable to more stocks? To this end, we

examine its performance on a large and different set of 663 S&P 500 stocks. To speed up fitting

nonlinear models, we transfer tuning parameters already learned from the S&P 100 stock universe

to the S&P 500 universe. We find that tuning parameters based on the original sample perform

well in the new sample, and our automatic system consistently delivers significant gains over the
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traditional OLS-based approach. In terms of utility gains, the ensemble model delivers 44 more bps

per year to the mean-variance investor relative to using OLS for this large stock universe.

We offer two main contributions to the literature: one for our methodology and one for empirics.

Regarding methodology, we propose a modern machine-learning-based framework for volatility

forecasting. Within this framework, we decompose the volatility forecasting task into feature

engineering and learning algorithm fitting steps. In the feature engineering step, rather than

examining individual features one by one to test their significance, we include many features all

together. We use learning algorithms along with prediction-oriented model selection procedures

to automatically and dynamically select features. For learning algorithms, we go beyond OLS

to include major linear and nonlinear learning algorithms. We do not argue for the dominance

of one particular algorithm over another as suggested by Wolpert (1996). Instead, we consider

combinations across all learning algorithms as long as they are well implemented to avoid overfitting.

Therefore, our framework is less prone to human decision-making biases (e.g., cherry-picking of

features and models) and interventions (e.g., using one set of features or models for a particular

sample period) and appears to be robust throughout our analyses.

Regarding empirics, we conduct perhaps the largest-scale experiment involving the forecasting

of realized stock-price volatility. Our big dataset consists of intraday high-frequency data and

stock-level option data for 173 S&P 100 stocks and another 663 S&P 500 stocks for the period

from January 1996 to June 2019. Our giant feature set includes predictors drawn from five popular

RV -based volatility forecasting models and implied variances with one-to-three-month maturity

across all deltas. Our learning algorithms consist of major linear and nonlinear machine learning

models. With our comprehensive data and unique study design, we empirically demonstrate the

gains that can be obtained when using the new automatic system based on many features and

learning algorithms to forecast realized volatility.

There is burgeoning interest in applying machine learning (ML) techniques to asset pricing. Gu,

Kelly, and Xiu (2020) show that ML methods can generate robust forecasting power to predict

stock returns in the cross section and time series. Bianchi, Büchner, and Tamoni (2021) use ML

algorithms to predict treasury bond returns. Bali, Goyal, Huang, Jiang, and Wen (2020) study

cross-sectional predictability of corporate bond returns using both stock and bond characteristics

via ML. Li and Rossi (2021) select mutual funds using stock-based fund characteristics via ML. In
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addition, several papers apply selective ML algorithms to volatility forecasting problems: Audrino

and Knaus (2016) use LASSO to forecast realized volatility; Luong and Dokuchaev (2018) forecast

realized volatility with random forest algorithms; Rossi (2018) employs Boosted Regression Trees

to forecast stock returns and volatility at monthly frequency; Bucci (2020) and Rahimikia and

Poon (2020) apply neural networks to predict realized volatility; and Carr, Wu, and Zhang (2020)

rely on Ridge, Feedforward Neural Networks, and Random Forecast to predict realized variance of

SPX using option price as features. Compared with these studies that apply machine learning to

volatility forecasting, our work focuses on building an entire learning system that is automatic and

robust. Again, we emphasize the benefits of using not just one or two particular learning algorithms,

such as RF or GBRT, but more specifically the benefits of an ML-based system that allows us to

consider features and algorithms more inclusively, because machines are able to scan, fit, and select

features in a robust and prediction-error-optimized fashion.

2. Data and Response Variable

2.1. Data

We consider a large universe of stocks that were ever constituents of the S&P 100 index over the

period from January 1993 to June 2019, listed on the New York Stock Exchange (NYSE), National

Association of Securities Dealers Automated Quotations (NASDAQ), and the American Stock

Exchange (AMEX) with share code of 10 or 11, price between $1 and $1,000, and daily number of

trades greater than or equal to 100. To prepare the intraday price data, we collect minute-by-minute

observations of intraday prices from the NYSE trade and quote (TAQ) database by applying the

cleaning rules of Bollerslev, Li, and Todorov (2016a), Bollerslev, Li, and Zhao (2020), and Jiang,

Li, and Wang (2021a).2 In addition to the TAQ data, we collect implied variances for the same

universe of stocks from the volatility surface data in OptionMetrics. The database provides implied

volatilities with various maturities and deltas at the stock and date levels. In our empirical analyses,

we rely on implied variances (i.e., squared implied volatilities) from call and put options with

maturity of one month (30 days), two months (60 days), and three months (91 days), and absolute
2Further details regarding the TAQ data-cleaning rules are provided in the Appendix.
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delta of 0.1, 0.15, ..., 0.9.3 Some RV -based features (e.g., features from the HExpGl model) detailed

in Section 3 require a longer historical sample for estimation. To ensure that all RV -based features

have the same history, we use the sample between 1993 and 1995 to construct their first observations;

therefore our features first become available in January 1996. Our final stock sample consists of 173

unique stocks with at least five years of data for all features and response variables over the period

from January 1996 to June 2019.

Our S&P 100 stock universe is large-scale by the volatility forecasting literature standard.

Another paper we are aware of that uses such a large dataset to forecast volatility is Patton and

Sheppard (2015), which relies on 105 unique stocks that were constituents of the S&P 100 index

and with four-year continuous data between June 1997 and July 2008. The focus on S&P 100 stocks

helps ensure all stocks are frequently traded and thus their realized features based on intraday data

are less subject to measurement errors. In Section 8, we also examine the out-of-sample performance

of various models for a different set of 663 S&P 500 stocks. To the best our knowledge, this universe

is the largest ever that has been explored in the RV forecasting literature.

2.2. Response Variable

As in every predictive problem, we first need to define what exactly we are trying to predict. In this

paper, we aim to predict realized variance (RV ), which is a consistent estimator of the quadratic

variation of the log price process over a given period. Formally, let pi,t denote the natural logarithm

of stock i’s price on day t. We omit subscription i in this section for simplicity and assume the log

price follows a generic jump diffusion process:

pt =
∫ t

0
µsds +

∫ t

0
σsdWs + Jt, (1)

where µ and σ denote the drift and diffusive volatility processes, respectively, W is a standard

Brownian motion, J is a pure jump process, and the unit time interval corresponds to a trading

day. It is natural to extend the notation to intraday prices using the notation pt, pt+1/n, ..., pt+1,

assuming prices are observed at n + 1 equally spaced time intervals from day t to day t + 1. The

annualized daily RV based on summing over frequently sampled squared returns within a trading
3Implied variances with ten-day maturity only became available in November 2005 for a handful of stocks and are

excluded from our analyses because of limited availability of data.
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day is then:

RV d
t = 252 ×

n∑
i=1

r2
t−1+i/n, (2)

where rt−1+i/n = pt−1+i/n − pt−1+(i−1)/n is the log return over the ith time interval on day t. In

particular, we include the overnight squared returns in the daily RV estimation to obtain an

RV measure for the entire day. As shown in Andersen, Bollerslev, Diebold, and Labys (2001,

2003), RV is a consistent estimator for quadratic variation when the number of intervals n → ∞.

Longer-horizon RV ’s (e.g., weekly, monthly, and quarterly) can be estimated by averaging daily

RV over the corresponding intervals. Formally, the h-day ahead RV is defined as:

RV t+h
t+1 = 1

h

h∑
i=1

RV d
t+i, (3)

where h = 5, 21, 63 corresponds to weekly, monthly, and quarterly RV , respectively.4

Our research objective is to build better predictive models for the responses of daily, weekly,

monthly, and quarterly RV s. To empirically compute RV , we use the five-minute sampling frequency

commonly employed in the realized volatility literature. To further increase the efficiency of RV

estimates, we apply a subsampling approach following Zhang, Mykland, and Aït-Sahalia (2005).

Specifically, we compute five separate daily RV estimates by starting the trading day at 9:30, 9:31,

9:32, 9:33, and 9:34, respectively, and then average over these five estimates to obtain the final daily

RV estimate.5

3. Features

Our machine learning predictive system consists of two components: features and learning algorithms.

Generally speaking, our research design involves first constructing input features that potentially
4From a heuristic perspective, French, Schwert, and Stambaugh (1987), Schwert (1989), and Schwert and Seguin

(1990) rely on the sum of intra-month squared daily returns to estimate monthly U.S. equity volatilities.
5Other consistent but more complicated RV estimators, such as the two-scale RV of Zhang, Mykland, and

Aït-Sahalia (2005), the kernel-based RV of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and the
pre-averaged RV of Jacod, Li, Mykland, Podolskij, and Vetter (2009), all require the choice of additional parameters.
From a theoretical perspective, Andersen, Bollerslev, and Meddahi (2011) and Ghysels and Sinko (2011) show that the
simple subsampled 5-minute RV perform on par with or better than these more complicated estimators. Empirically,
Liu, Patton, and Sheppard (2015) compare more than 400 different RV estimators across multiple asset classes and
conclude that it is difficult to significantly beat the 5-minute RV .
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contain predictive information, then fitting learning algorithms to estimate functions that map

features to the response variable, and finally evaluating the performance of our predictions. In this

section, we discuss how we construct our feature sets. We consider two types of features: 1) features

proposed by popular RV -based volatility forecasting models: HAR, SHAR, MIDAS, HARQ-F, and

HExpGl; and 2) features from option-implied variances. We start by reviewing several popular RV

forecasting models with a focus on the particular features (predictors) proposed by each model.

3.1. HAR

The Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) is popular because it is

easy to implement yet very effective in practice. The idea is to mix short- (daily), medium- (weekly),

and long-term (monthly) volatility components for capturing various empirical properties observed

in volatility series such as long memory and fat tails. The original HAR is used to forecast volatility

up to monthly horizon. As our longest forecast horizon is quarterly, we augment the HAR model

with a quarterly RV term:

RV t+h
t+1 = β0 + βdRV d

t + βwRV w
t + βmRV m

t + βqRV q
t + ϵt, (4)

where RV w
t , RV m

t and RV q
t denote the average annualized daily RV over lags 1 to 5, lags 1 to 21,

and lags 1 to 63 throughout the paper.

3.2. MIDAS

The mixed data sampling (MIDAS) model of Ghysels, Santa-Clara, and Valkanov (2006) assumes

the following form:

RV t+h
t+1 = β0 + β1MIDASk

t + ϵt, (5)

in which the MIDASk term is defined by:

MIDASk
t = 1∑L

i=1 ai

(a1RV d
t + a2RV d

t−1 + ... + aLRV d
t−L+1),

ai = ( i

L
)θ1−1(1 − i

L
)θ2−1Γ(θ1 + θ2)Γ(θ1)−1Γ(θ2)−1, i = 1, ..., L,

(6)

8



where Γ(·) denotes the Gamma function; the superscript k in MIDASk can take values of d, w, m, q,

representing the resulting MIDAS term from predicting h = 1, 5, 21, 63-day-ahead RV . The

MIDAS feature can be viewed as a smoothly weighted sum of lagged daily RV s. It has three

hyperparameters θ1, θ2, and L that need to be tuned. Directly mirroring Ghysels, Santa-Clara,

and Valkanov (2006) and Bollerslev, Hood, Huss, and Pedersen (2018), we set θ1 = 1 and L = 50.

Further guided by Bollerslev, Hood, Huss, and Pedersen (2018) and Ghysels and Qian (2019), we

employ a grid search to tune θ2 for each h-day forecast horizon and choose the value that minimizes

the Mean Squared Errors (MSE) over the full sample.6

3.3. SHAR

We follow Patton and Sheppard (2015) to estimate a Semivariance-HAR (SHAR) model that

decomposes daily RV into two realized semivariance components:

RV t+h
t+1 = β0 + β+

d RV P d
t + β−

d RV Nd
t + βwRV w

t + βmRV m
t + βqRV q

t + ϵt, (7)

where the annualized daily positive and negative semivariances, introduced by Barndorff-Nielsen,

Kinnebrock, and Shephard (2010), are defined as:

RV P d
t = 252 ×

n∑
i=1

r2
t−1+i/n1{rt−1+i/n>0}, RV Nd

t = 252 ×
n∑

i=1
r2

t−1+i/n1{rt−1+i/n<0}. (8)

Daily realized semivariances provide a natural decomposition of daily RV , i.e., RV d
t = RV P d

t +

RV Nd
t . Patton and Sheppard (2015) show that the negative semivariance RV Nd has stronger

predictive power on future RV s.7 To mitigate bias in realized semivariance estimates, we also apply

the subsampling scheme to construct RV P d and RV Nd.
6To avoid onerous computational burdens, we follow the literature and do not perform a rolling grid search for the

θ2 parameter. As a result, the MIDAS feature is not truly out-of-sample but is included for comparison.
7Patton and Sheppard (2015) also rely on the difference between positive and negative realized semivariances to

isolate signed jumps, e.g., ∆J2
t = RV P d

t − RV Nd
t , and show that ∆J2

t negatively predicts future RV . Our Eq. (7)
nests the specification of including signed jump variation when β+

d = −β−
d . On a related note, Andersen, Bollerslev,

and Diebold (2007) find that unsigned jumps lead to only a slight decrease in future RV .
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3.4. HARQ-F

Bollerslev, Patton, and Quaedvlieg (2016b) propose a HARQ-F model by considering measurement

errors in RV estimates. The measurement error may be characterized by the asymptotic (for

n → ∞) distribution theory of Barndorff-Nielsen and Shephard (2002):

RVt = IV ∗
t + ϵt, ϵt ∼ MN(0, 2∆IQt), (9)

where IV ∗
t ≡

∫ t
t−1 σ2

sds is the unobservable Integrated Variance, IQt ≡
∫ t

t−1 σ4
sds denotes the

Integrated Quarticity (IQ), and MN stands for mixed normal. Using intraday returns, the integrated

quarticity for annualized daily RV may be consistently estimated by annualized daily realized

quarticity (RQ):

RQd
t = 2522 × n

3

n∑
i=1

r4
t−1+i/n. (10)

To improve efficiency, we further apply the subsampling method to the daily RQ estimation. Weekly,

monthly, and quarterly realized quarticities, denoted by RQw, RQm and RQq, respectively, can be

calculated by averaging daily RQ over lags 1 to 5, lags 1 to 21, and lags 1 to 63. The HARQ-F

model allows coefficients of lagged RV s to vary as a function of
√

RQ:

RV t+h
t+1 = β0 + βdRV d

t + βwRV w
t + βmRV m

t + βqRV q
t

+ ϕdRV d
t

√
RQd

t + ϕwRV w
t

√
RQw

t + ϕmRV m
t

√
RQm

t + ϕqRV q
t

√
RQq

t + ϵt.

(11)

Bollerslev, Patton, and Quaedvlieg (2016b) show that, by allowing the model parameters to vary

explicitly with the degree of measurement error, this model generates significant improvements

in the accuracy of the forecasts compared with the forecasts from some of the most popular risk

models.

3.5. HExpGl

The Heterogeneous Exponential Realized Volatility with Global Risk Factor (HExpGl) model by

Bollerslev, Hood, Huss, and Pedersen (2018) represents one of the latest techniques for volatility

forecasting. Like HAR and MIDAS, HExpGl also constructs features based on daily RV series. The
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difference is that HExpGl uses exponentially weighted moving averages (EWMA) of lagged daily

RV s, whereas HAR uses step functions and MIDAS relies on more complicated functional forms.

The EWMA of lagged daily RV ’s with a pre-specified center-of-mass (CoM) is given by:

ExpRV
CoM(λ)

t =
500∑
i=1

e−iλ

e−λ + e−2λ + ... + e−500λ
RV d

t−i+1, (12)

where λ defines the decay rate of the weights and CoM(λ) denotes the corresponding center-of-mass

CoM(λ) = e−λ/(1 − e−λ); conversely, for a given center-of-mass, λ can be inferred from λ =

log(1 + 1/CoM). The center-of-mass for a given ExpRV measure captures the “average” horizon of

the lagged RV s that it uses. We follow Bollerslev, Hood, Huss, and Pedersen (2018) to consider

ExpRV terms with center-of-mass equal to 1, 5, 25, and 125 trading days. Motivated by the

cross-asset and cross-market volatility spillover effects, HExpGl also includes the EWMA of a global

risk factor GlRV with a center-of-mass equal to 5:

ExpGlRV 5
t =

500∑
i=1

e−iλ

e−λ + e−2λ + ... + e−500λ
GlRVt−i+1, (13)

where the corresponding λ = log(1 + 1/CoM) = log(1 + 1/5). For each day t and each stock i, the

global risk factor GlRV is computed as the average normalized RV scaled back to the asset’s own

long-run mean of RV , that is, ( 1
N

∑N
j=1

RV d
j,t

RVj
)RVi, where RVi is the long-run mean of daily RV for

stock i calculated from the beginning of the sample period until day t. The resulting HExpGl model

specification is given by:

RV t+h
t+1 = β0 + β1ExpRV 1

t + β2ExpRV 5
t + β3ExpRV 25

t + β4ExpRV 125
t

+ β5ExpGlRV 5
t + ϵt.

(14)

3.6. Option-Implied Variances

In addition to the high-frequency-based realized features from existing models, our paper also

considers option-implied variances as inputs.8 Because our forecasting horizon is up to three

months, we include all 102 options from put and call options with maturities between one and three
8Christensen and Prabhala (1998) find that volatility implied by S&P 100 index option prices predicts ex-post

realized volatility. Busch, Christensen, and Nielsen (2011) further show that implied volatility contains incremental
information about future volatility across different asset classes.
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months across all deltas to avoid cherry-picking a particular option in order to reduce the chance of

overfitting. For call-option-implied variances, we denote these features as CIV jm,δ with maturity

equal to j months (j = 1, 2, 3) and delta equal to δ (δ = 0.1, 0.15, ..., 0.9). For put-option-implied

variances, we denote these features as PIV jm,δ with maturity equal to j months (j = 1, 2, 3) and

delta equal to δ (δ = −0.1, −0.15, ..., −0.9).

3.7. Descriptive Statistics for Features

Table 1 provides the descriptive statistics for all realized features and selected implied variance

features with absolute delta equal to 0.5.9 Figure 3 plots the average implied variances of call and

put options with maturities of one month (30 days), two months (60 days), and three months (91

days) from the entire panel of stocks in our sample as functions of deltas. From the summary

statistics reported in Tables A.1 and A.2, the lowest average implied variance from call (put) options

is the one with a maturity of three months and a delta of 0.2 (-0.7). Options with longer maturity

are associated with lower implied variances.

In Table 2 we report pairwise correlations between features shown in Table 1. MIDAS features

for various forecast horizons exhibit the highest correlations of 0.96 or above with each other perhaps

because they are calibrated by fitting highly correlated dependent variables to the same daily RV

terms. HARQ-F features (e.g., RV k
√

RQk) have weak correlations with other realized features,

mostly because these features contain realized quarticities while other realized measures are all linear

combinations of daily RV s. Interestingly, IV -based features CIV s and PIV s exhibit relatively

weak correlations with all RV -based features, suggesting potentially new information contained in

the IV -based features to the RV -based features.

4. Machine Learning Methodology

This section reviews the five machine learning algorithms we investigated in this paper. The first two

are linear: Least Absolute Shrinkage and Selection Operator (LASSO) and Principal Component

Regression (PCR). The next three are nonlinear: Random Forest (RF), Gradient Boosted Regression

Trees (GBRT) and Neural Network (NN).
9Further details on implied variance features across deltas are reported in Tables A.1 and A.2 in the Appendix for

call and put options, respectively.

12



4.1. LASSO

LASSO is designed to improve performance over that of OLS by imposing sparsity-encouraging

penalties on regression coefficients for variance reduction and model interpretation. Take daily RV

prediction as an example, LASSO assumes the same linear regression function as OLS:

g∗(zi,t; θ) = z′
i,tθ, (15)

where z′
i,t is the feature vector for stock i on day t and θ is the unknown parameter. Unlike OLS,

however, LASSO estimates θ through a penalized L1 loss function:

L(θ; λ) = 1
NT

N∑
i=1

T∑
t=1

(RV d
i,t+1 − g∗(zi,t; θ))2 + λ

P∑
j=1

|θj |, (16)

where λ is the shrinkage parameter that controls for the magnitude of the penalty on the coefficients.

The special case of λ = 0 collapses back to OLS. In such a case, LASSO/OLS minimizes the training

(in-sample) error, potentially overfitting the data. By imposing the L1 penalty λ
∑P

j=1 |θj |, LASSO

is capable of setting some of the coefficients to be exactly zero, a very desirable property for two

reasons. First, setting coefficients to zero reduces parameter estimation variance and thus brings

down the variance component of the prediction error. Second, with zero regression coefficients, the

fitted model becomes more interpretable.

It is important to consider several implementation details to achieve better performance with

LASSO. First, we need to normalize features before estimating the models so that all features have

comparable magnitudes. Otherwise, a single λ would have vastly different shrinkage effects on

different features, making it impossible to tune. The normalization is done by using only mean and

standard deviation of the training sample to prevent look-ahead bias; we recalculate the mean and

standard deviation once per year to be consistent with the expanding window scheme detailed in

Section 4.7. Second, we need to choose λ from a wide range of values that can generate coefficient

estimates with varying sparsity levels for the model selection procedure to choose from. Otherwise,

the selected θ might be far from the region of optimal fit in the parameter space.
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4.2. Principal Component Regression

The second linear learning algorithm we consider is PCR, which is motivated by the fact that

our volatility forecasting features are often correlated. PCR uses dimension-reduction techniques

to produce a small number of common factors from the original feature space and then relies on

the derived features as inputs for regressions. Specifically, in the first step, Principal Component

Analysis (PCA) is performed on the P -dimensional original feature space to extract a small number

of factors as linear combinations of the original inputs; these factors are orthogonal to each other

to prevent information redundancy. In the second step, we take only the first K most important

principals that preserve the main variability of the original features for fitting the regression. More

formally, PCR is defined as follows:

RV = (ZΩK)θK + Ẽ, (17)

where RV is the NT × 1 vector of realized variances, Z is the NT × P matrix of features, ΩK

is a P × K orthogonal projection matrix from the P -dimensional original feature space onto the

K-dimensional derived input space, θK is a vector of coefficients corresponding to K derived inputs,

and Ẽ is an NT × 1 vector of residuals. The projection matrix ΩK can be found through singular

value decomposition (SVD) of the original feature matrix Z.

The hyperparameters for PCR is the number of derived input features K. There is a trade-off

between dimension reduction and information preservation when choosing K. If K is large, more

information in the original features is kept and used to make predictions. Overfitting concerns

naturally arise, however, as there are more parameters to estimate. If K is small, there is a risk

that the second-stage regression model misses some useful information in the discarded principal

components. In our implementation, we choose K through validation. This gives the unsupervised

learning PCA some guidance based on the target. We also standardize all features, as in LASSO,

to ensure the principal components are not dominated by a single feature with extremely large

variance. The number of components used in the linear regression is chosen by the smallest MSE on

the validation sets. To increase computational speed and also prevent overfitting, we set an upper

bound for K equal to 20.
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4.3. Random Forest

Our first nonlinear learning algorithm is the random forest (RF) model, which is based on regression

trees for modeling nonlinearity. Unlike linear methods reviewed in Sections 4.1 and 4.2 that

essentially project the response onto the feature space, tree-based models partition the feature

space into a set of non-overlapping regions as illustrated in Figure 1. The observations within the

same region are then fit through a simple model such as a constant. Mathematically, the estimated

response function of a regression tree is:

ĝ∗(z∗
i,t; θ, K, L) =

K∑
k=1

θk1{z∗
i,t∈Ck(L)}, (18)

where Ck(L) is one of the K regions pre-determined by the training set. K is the number of regions,

L is the tree depth, 1{·} is an indicator function, and θk is the sample mean of the outcomes for

training observations within that region. A very large tree with many regions can capture very

fine details of the data but is prone to overfitting. Consider the extreme case where a fully grown

tree divides every single training observation in the training set into one region, thus yielding zero

training error but very poor out-of-sample performance.

Fig. 1 Illustration of a regression tree model

RF reduces the overfitting problem associated with regression trees through several modifications.

First, instead of a single tree, RF generates multiple trees by bootstrapping the training sample and

then averaging forecasts from each individual tree to reduce the variance. Second, RF implements

observation and feature subsampling in the training process to decorrelate individual trees in the
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forest for further variance reduction.

How large should we grow the trees? As described earlier, deep trees are less biased but very

unstable. Our strategy is to grow a large tree and then prune it back to a depth of L. We tune the

tree depth L via validation where we search for the optimal L that minimizes the validation error

over a grid of values ranging from 1 to 20. For each RF fitting, we bootstrap and average over 500

trees. For each tree, we use 50% of the training observations, and for each node split, we use log(P )

features. Tree-based models are insensitive to feature location and scale and thus do not require

feature standardization.

4.4. Gradient Boosted Regression Trees

The second nonlinear learning algorithm we investigate is the Gradient Boosted Regression Trees

(GBRT), which uses the base learner of regression trees as RF. There are, however, two principal

differences between GBRT and RF. First, GBRT uses trees as base learners in an additive fashion

whereas RF uses trees in an average fashion. At each step, GBRT fits a new tree to explain what has

been left unexplained by previous trees, while RF fits a parallel tree to explain the original response.

Second, GBRT prefers using shallow trees because each tree is supposed to be weak, but by adding

many small trees GBRT gradually reduces prediction bias while still controlling for variance. In

contrast, RF prefers deep trees because these trees need to be unbiased, and only by averaging

many deep trees is RF expected to reduce variance while simultaneously capturing the true relation.

To prevent overfitting, GBRT adds a new tree after discounting its contribution. Specifically,

at every round after fitting a tree to the residuals, we update our ĝ∗(·) by adding a shrunken

version of the new tree with a shrinkage multiplier 0 < λ < 1, which is called the learning rate.

We then update the residuals by subtracting this shrunken tree from the previously predicted

values. Other approaches employed by RF to mitigate overfitting problems are also used for GBRT.

Specifically, we adopt subsampling for each tree and randomly draw a subset of features at each split.

The hyperparameters for GBRT are the learning rate λ which controls the speed of learning, the

maximum tree depth that represents the upper bound for the degree of polynomials and interactions,

and the number of trees which prevents overfitting and as a result can balance the in-sample

performance with the out-of-sample prediction.

In our implementation, we set the learning rate λ low at 0.001 to help prevent the model from
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overfitting the residuals. We validate the maximum tree depth, L, from 1 to 5. The grids with

L > 1 are set to give GBRT the ability to include high-order interactions and polynomials. For

subsampling, we again use 50% of the training observations for each tree and log(P ) features for

each split. In addition, we use early-stopping rules to help us choose the number of trees in the

GBRT model: 1) If Mean Squared Errors (MSE) stop decreasing after 50 consecutive rounds, we

set the number of trees as the round at which the MSE stops improving instead of including more

trees in our GBRT model, and 2) when the total number of trees reaches 20,000. We report the

resulting number of trees as model complexity. Like RF, GBRT is location- and scale-invariant so

there is no feature standardization.

4.5. Feed-Forward Neural Network

Our third nonlinear model is the feed-forward Neural Network (NN), which uses hidden layers and

nonlinear transformations to capture complex nonlinear relations. As shown in Figure 2, the original

inputs X pass through one or more hidden layers, which transform these inputs into derived features

Z. The output layer aggregates the derived features into the final prediction. Transformations are

called activation functions in NN and are the sources of nonlinearity.

Fig. 2 Illustration of a feed-forward neural network model

In our implementation, we consider a model that has two hidden layers with 5 and 2 neurons,
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respectively. For the activation function, we choose the commonly used rectified linear unit (ReLU)

given as:

ReLU(x) = max(x, 0). (19)

We solve for the parameters in the activation function via stochastic gradient descent (SDG). We

choose the adaptive moment estimation (Adam) by Kingma and Ba (2015) for computational

efficiency and standardize each feature because NN is sensitive to feature scales. We also use

multiple random states when implementing stochastic optimization for hyperparameters and derive

predictions by averaging forecasts based on all tuned neural network models with varying starting

points.

4.6. Ensemble Model

In addition to the aforementioned stand-alone learning algorithms, we consider an ensemble model

that combines forecasts from several models. The intuition is that no single model is expected to

dominate the others under any circumstances (Wolpert, 1996). Different models might do well in

different scenarios and by combining them we can make the forecast more robust. Here, we propose

an equal-weighted average of all five machine learning methods as our ensemble forecast and call it

AVG:

AV G = 1
5

5∑
m=1

ĝ∗m(z∗
i,t). (20)

4.7. Training and Validation

Machine learning algorithms include key hyperparameters that control for model complexity. We

should tune these parameters based on the prediction error rather than the training error. Otherwise,

learning algorithms, especially nonlinear algorithms, will overfit the training data and do poorly

out of sample. Accordingly, we adopt a training-validation-testing scheme for model selection and

assessment. Given the well-known commonalities in the dynamic dependencies of volatilities and

spillover effects across assets, we purposely fit pooled models based on panel data in order to
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increase estimation efficiency over stock-by-stock fitting.10 Specifically, at the end of each year t,

we divide the sample into three parts: an expanding-window training set consisting of data from

data inception (year 1996) to year t − 1, a validation set consisting of year t data, and a testing

set consisting of year t + 1 data. In other words, we refit our models every year by increasing the

training set by one year, and rolling the validation and testing sets one year forward. For example,

our first training sample contains four years of data from year 1996 to 1999, our first validation

sample contains data in year 2000, and our first testing sample contains data in year 2001. This

scheme leaves us with a total of 19 years of predictions between 2001 and 2019 corresponding to 19

fitted models for each learning algorithm. For models that do not require validation (e.g., OLS), we

use data from data inception to year t for training and data in year t + 1 for testing. Thus, the

overall testing sets are the same across models and differences in model performance cannot be

driven by sample differences.

4.8. Performance Evaluation

Since we focus on prediction rather than statistical inference, we use out-of-sample R2 relative to a

benchmark as our main performance measure:

R2
OOS(m) = 1 −

∑
i,t(RVi,t − R̂Vi,t

m
)2∑

i,t(RVi,t − R̂Vi,t
benchmark

)2
, (21)

where R̂Vi,t
m

refers to forecasts from one of the OLS-based or machine-learning-based volatility

forecasting models, and R̂Vi,t
benchmark

is the forecast of a benchmark model.11 A positive R2
OOS(m)

indicates that model m achieves smaller out-of-sample prediction mean squared errors than the

benchmark model. We consider two benchmarks: one is the prediction from HAR, and the other

is the long-run mean, which equals the expanding sample mean of RV s from the inception date

until day t. The long-run mean is a commonly used benchmark and also mirrors the out-of-sample

evaluation measure used in the return prediction literature. However, the bar for beating the
10Volatility spillover effects and commonalities in the dynamic dependencies are well documented in the traditional

GARCH and stochastic volatility models, see Taylor (2005), and Andersen, Bollerslev, Christoffersen, and Diebold
(2006) and the references therein. Recent work by Herskovic, Kelly, Lustig, and Nieuwerburgh (2016), Bollerslev,
Hood, Huss, and Pedersen (2018), and Herskovic, Kelly, Lustig, and Nieuwerburgh (2021) further highlights the
co-movement of stock volatilities over time.

11Mirroring Swanson and White (1997) and Bollerslev, Hood, Huss, and Pedersen (2018), we apply an “insanity
filter” to avoid deflation in R2

OOS . Specifically, we replace any predictions that exceed (fall below) the maximum
(minimum) outcome value in the training sample with the observed maximum (minimum).
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long-run mean is low because volatilities are persistent and time-varying. HAR is perhaps a better

benchmark because it has shown good volatility forecasting performance empirically and is also

easily implementable and interpretable.

In addition to R2
OOS(m), we also use a modified Diebold and Mariano (1995) (DM) test for

pairwise comparison of two models. The DM test is based on the difference in the out-of-sample

squared error losses between two forecasting models. More formally, for stock i on day t, the loss

differential is defined as di,t = (ê(1)
i,t )

2
− (ê(2)

i,t )
2
, where ê

(1)
i,t and ê

(2)
i,t are the prediction errors from

two models. We then compute the cross-sectional mean of di,t and denote it by dt. The modified

DM test statistic DM = d/σ̂d, where d and σ̂d are the mean and Newey and West (1987) standard

error of dt over the testing sample.

4.9. Feature Importance Metric

To shed additional light on how these features and learning algorithms work for volatility forecasting,

we investigate how different features contribute to the prediction at various horizons. Our feature

importance evaluation process differs from those in existing applications of machine learning to

asset pricing. For example, Gu, Kelly, and Xiu (2020) compute the reduction in R2 obtained

by setting all values of one feature j to zero within each training set and then averaging the

reductions over the training samples to obtain a per-feature importance measure. In our evaluation,

we consider per-group feature importance instead of per-feature variable importance by assigning

highly correlated features into one group and computing the importance of the entire group. The

motivation is to avoid the dilution effect of per-feature variable importance. Consider the following

simple example. Suppose two uncorrelated features X1 and X2 are equally important so they reduce

R2 equally by 0.5 from the joint model (X1, X2). Now suppose a new feature X3 is introduced

and X3 is highly correlated with X2 but not with X1. If the model is estimated in a sensible way,

then the variable importance of X2 measured by its marginal reduction of R2 will be diluted by X3

because X3 might serve as a proxy for X2 in the model. The dilution phenomenon would be more

pronounced when there are many more correlated variables. For our feature set, several subgroups

are highly correlated as shown in Table 2. Because of the dilution effect, the per-feature variable

importance measure might not truly reflect the importance of that feature. Therefore, we consider

per-group feature importance to reduce cross-group correlations and also to reduce the number of
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candidates for feature importance evaluation.

Second, instead of setting all values of the features within a group to zero, we consider random

permutations of values across observations within the training set for the tested features as suggested

by Fisher, Rudin, and Dominici (2019). This is because setting all feature values to zero introduces

unintended bias to nonlinear models. To offer a simple example, suppose that we wish to test the

marginal contribution of daily realized variance RV d
t in RF fitting. If we simply set RV d

t to zero, all

observations will fall into one child node at each binary split that uses RV d
d as the splitting variable,

causing severe bias in the prediction. In contrast, permutation breaks the association between

features and the true outcome, enabling us to remove the effects of the tested features. Specifically,

for each training set and each feature group k, we permutate all values of each feature within group

k and record the corresponding R2. To reduce the permutation variance, we repeat the permutation

five times and use average R2 to compute the reduction in R2. We then average the reductions

in R2 over different training samples to obtain a single group importance measure GIk. We rank

groups based on their GIk such that the higher the rank the more important a feature group is.

5. Out-of-Sample Performance of Forecasting Models

In this section we show how machine learning can improve the volatility forecasting performance

over that of traditional approaches. We begin by establishing the baseline performance by applying

the traditional OLS method to each of the feature sets described in Section 3, as is commonly done

in the literature. We then show that combining many RV -based features improves performance over

that of any stand-alone feature set and that including the new IV -based features adds further value

to RV -based features. After fixing the feature set, we demonstrate the benefits of more sophisticated

learning algorithms in comparison with the baseline OLS. Finally, we show that an ensemble model

combining many learning algorithms delivers extraordinary performance across all forecast horizons.

5.1. OLS-Based Models

In Table 3 we report the out-of-sample performance of OLS-based volatility forecasting models

based on the R2
OOS relative to HAR from Eq. (21).12 The first column lists the model names

12R2
OOS ’s relative to the long-run mean of RV s for OLS-based models are presented in Table A.3 in the Appendix.
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and the second column summarizes their features. First, we focus on the four popular RV -based

models. Among them, MIDAS, SHAR, and HARQ-F outperform HAR across all forecast horizons,

as is evident by the positive relative R2
OOS ’s. HExpGl outperforms HAR at the daily, weekly, and

monthly horizons, while slightly underperforms HAR at the quarterly horizon.

Next, we combine all 16 realized measures from the MIDAS, SHAR, HARQ-F, and HExpGl

models through OLS.13 This model, namely OLSRM , not only outperforms HAR by wide margins

across all horizons, but it also generally beats individual models in most cases. Only HARQ-F has

a higher relative R2
OOS than OLSRM at the quarterly horizon. Overall, the superior performance

of OLSRM illuminates the importance of feature combination in improving volatility forecasting

performance.

We then fit OLS to the 102 implied variances (IV s) from call and put options with one-, two-,

and three-month maturities and denote the model by OLSIV . Unlike the realized features, these

IV features seem to underperform HAR as measured by the relative R2
OOS ’s. Yet this does not

mean that IV features are useless in the presence of realized features. Although IV s are weakly

informative as stand-alone features, they can still add value as long as they contain information

that is orthogonal to the realized features. To test whether there is any additional value gained

from IV features, we expand the feature set in OLSRM by adding the 102 IV features to the 16

realized features and call the model OLSALL. The row labeled OLSALL reports its performance.

As can be seen, OLSALL has the highest relative R2
OOS for the first three forecast horizons among

all OLS-based models in Table 3. At the quarterly horizon, however, the relative R2
OOS remains

negative at −0.6%, which is worse than several individual RV -based models. The result might

reflect the fact that, at the quarterly horizon, effective sample size drops significantly and thus we

do not have enough data to estimate a dense OLS model with 118 features.14 In such a case, we may

need sparse or more regularized models. Another point worth noting is that OLSALL outperforms

OLSRM at the first three horizons, indicating the additional information contained in IV measures.
13For a given forecast horizon, we include only one MIDAS term corresponding to the same horizon. For instance,

in predicting weekly RV , we keep the MIDAS term constructed by using coefficients estimated from forecasting
weekly RV according to Eqs. (5) and (6).

14Our forecasting models are designed to use as much data as possible by fitting daily updated RV s on daily
updated features for all forecast horizons. Because of overlapping data, however, the effective sample size of the data
at the quarterly horizon is only about 1/63 of the sample size at the daily horizon.
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5.2. Machine-Learning-Based Models

Having established the initial evidence that increasing the number of features can improve forecast

performance through a simple OLS fit, we now show that performance can be further improved by

using learning algorithms other than OLS. Table 4 presents the R2
OOS ’s relative to HAR for the

five learning algorithms discussed in Section 4: LASSO, Principal Component Regression (PCR),

Random Forecast (RF), Gradient Boosted Regression Trees (GBRT), and Neural Network (NN),

and for an ensemble model based on the five individual machine learning models (AVG).15 Each

model is trained using all 118 realized and implied variance features, so OLSALL serves as a natural

benchmark. The second column of Table 4 lists the hyperparameters of each model with tuning

parameters in bold, and in the last column we report the R2
OOS ’s relative to HAR. The most obvious

pattern is that all machine learning models outperform HAR with positive relative R2
OOS ’s across

the board. We then begin assessing the out-of-sample performance of each of the five machine

learning models.

Linear machine learning models: First, we focus on the two linear learning algorithms LASSO

and PCR. The row labeled “LASSO” and “PCR” in Table 4 presents their R2
OOS ’s relative to HAR.16

The sparsity-encouraging LASSO model has higher relative R2
OOS ’s than the unregularized OLSALL

across all forecast horizons, indicating the importance of sparsity in enhancing the out-of-sample

performance. The dimension-reduction PCR approach underperforms LASSO at the daily, weekly,

and monthly forecast horizons, but exhibits better performance at the quarterly forecast horizon

with a relative R2
OOS of 7.8%.

Nonlinear machine learning models: Next, we turn our attention to the three nonlinear learning

algorithms: RF, GBRT, and NN. To train RF, we set the total number of trees to be 500 and use a

subsample of 50% of the observations randomly drawn from each training sample (i.e., subsample =

0.5). At each node split, we randomly select 5 out of the 118 features (i.e., subfeature = log(118) = 5).

Subsample and subfeature can help decorrelate the trees to reduce overfitting. The maximum tree

depth across all trees L is a tuning parameter, which can take any integer value between 1 and 20.

The relative R2
OOS of RF from Table 4 is at 3.2% for the daily forecast horizon and at 6.4% for the

15R2
OOS ’s relative to the long-run mean of RV s for machine-learning-based models are presented in Table A.4 in

the Appendix.
16For LASSO, we validate its shrinkage parameter λ from a set of 100 distinct values that covers a wide range of

sparsity levels in the corresponding LASSO estimates of regression coefficients. For PCR, we validate the number of
principal components as any integer between 1 and 20.
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weekly forecast horizon, both of which are below the corresponding metrics of OLSALL. However,

RF outperforms OLSALL at the monthly and quarterly forecast horizons with relative R2
OOS ’s at

9.5% and 5.4%, respectively. To train GBRT, we impose two early-stopping rules (whichever is

met first): 1) when the MSE of the model does not decrease after 50 consecutive iterations, and 2)

when the total number of trees reaches 20,000. Both the number of trees B and the maximum tree

depth are tuning parameters that we adaptively choose in the validation step, and the maximum

tree depth can take any integer value between 1 and 5. For the remaining hyperparameters, we

set the learning rate to be 0.001; to grow each tree, we randomly draw 50% of the observations

from the training sample; at each node split, we randomly select 5 out of the 118 features (i.e.,

subfeature = log(118) = 5). Overall, GBRT underperforms OLSALL at the daily and weekly forecast

horizons with relative R2
OOS ’s equal to 4.7% and 10.2%, but significantly outperforms OLSALL at

the monthly and quarterly horizons with relative R2
OOS equal to 10.8% and 6.3%. To train NN, we

consider two hidden layers with five and two neurons, respectively. We choose the popular rectified

linear unit (ReLU) as the activation function. In general, NN performs fairly well with relative

R2
OOS equal to 10.5%, 16.7%, 14.3%, and 4.8% at the daily, weekly, monthly, and quarterly forecast

horizons, respectively.

An ensemble model: Comparing the out-of-sample performance of the five learning algorithms,

we find that no single model strictly dominates the others. We then consider an ensemble model

that combines volatility forecasts from different models.17 We take a simple average of the five

volatility forecast models and name the model as AVG. The motivation is that averaging forecasts

from different models can improve the robustness of the model and reduce forecast variance. The

out-of-sample performance of AVG shown at the bottom of Table 4 is indeed extraordinary. This

average model outperforms the first four individual machine learning models at each forecast horizon

by a significant margin. Although the performance of AVG is comparable to or slightly weaker than

that of NN at daily to monthly horizons, it significantly dominates NN at the quarterly horizon

with an improvement in R2
OOS relative to HAR of more than 5%. Overall, the relative R2

OOS of

AVG ranges from 9.0% at the daily forecast horizon to up to 15.2% at the monthly forecast horizon,

further highlighting the advantage of combining machine learning models in forecasting RV s.
17See Timmermann (2006) for an extensive survey of forecast combination.
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5.3. Model Complexity

To help generate insights into model complexity, Figure 4 displays the chosen tuning parameters of

LASSO, PCR, RF, and GBRT for each forecast horizon and validation period. For LASSO, Panel

A shows that the number of selected features with nonzero coefficients ranges from four (at monthly

and quarterly forecast horizons by the end of 2001) to 45 (at the daily forecast horizon by the end

of 2008). Interestingly, as the forecast horizon increases, LASSO tends to select fewer features. For

PCR, Panel B shows that the number of selected principal components also varies across forecast

horizons and over time. Here we observe that, like LASSO, PCR tends to favor more components in

shorter-horizon forecasts (daily and weekly) than longer-horizon forecasts (monthly and quarterly).

For RF, Panel C of Figure 4 displays the maximum tree depth across 500 trees over time. The

average maximum tree depth is around 13 across forecast horizons and validation periods. For

GBRT, Panel D plots the number of trees B over time. The average number of trees is around 5,000

across forecast horizons and validation periods. The relatively large number of trees reflects our

choice of a small learning rate λ of 0.001, which requires a large value of B for GBRT to converge.

Note that imposing a boundary on B is recommended in the literature (e.g., Zhang and Yu, 2005)

because extremely large B can also lead to overfitting. Our choice of 20,000 seems appropriate

because this boundary is hit only once (e.g., by the end of 2006 at the quarterly forecast horizon),

and the overall out-of-sample performance of GBRT indicated in Table 4 is comparable to that of

other machine learning models.

5.4. Model Comparison

The early results reported in Table 4 reveal that different machine learning models have varying

strengths over different horizons, and the simple average of all individual machine learning models

performs quite well across horizons. To better understand how the out-of-sample forecasts from

various models are related to each other, we report pairwise correlations of forecasts between the five

machine learning models and OLSALL in Table 5. The correlations are strong, ranging from 0.909

between RF and OLSALL at the quarterly forecast horizon, to 0.997 between LASSO and OLSALL

at the daily forecast horizon. This is not surprising because all models presented here employ the

same set of features and the same set of responses. In addition, volatilities are very persistent and

hence all these predictive models have high signal-to-noise ratios. Consequently, a large part of
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each model’s prediction may well capture the easy-to-predict part of the signal, inducing strong

correlations among them.18 Looking across forecast horizons, we see that the pairwise correlations

between forecasts tend to decrease as the forecast horizon increases. For instance, the correlation

between AVG and OLSALL decreases monotonically from 0.988 at the daily forecast horizon to

0.966 at the quarterly forecast horizon.

Given the strong correlation of forecasts between models, we are interested in formally assessing

whether the differences in the out-of-sample performance between models are statistically significant

at all. In Table 6 we report the Diebold-Mariano (DM) t-statistics for pairwise comparisons of

performance for a model in the row versus a model in the column. The DM statistics are distributed

N (0, 1) under the null hypotheses of equal predictive power between models, and thus the magnitude

of the test statistics map to p-values in the same fashion as regression t-statistics; a positive t-statistic

indicates that the row model outperforms the column model; *, **, and *** denote significance at

the 10%, 5%, and 1% levels, respectively. At the shorter daily and weekly forecast horizons, we

find that the majority of the t-statistics are significant at the 5% level, indicating that a strong

correlation between forecasts at these two horizons does not necessarily translate into an insignificant

difference in out-of-sample performance. At the monthly forecast horizon, however, the t-statistics

comparing the out-of-sample performance between OLSALL and the first four individual machine

learning algorithms are generally insignificant. NN and AVG, on the other hand, significantly

outperform OLSALL and the other individual machine learning algorithms in most cases. At the

quarterly horizon, four out of the five individual machine learning models significantly outperform

OLSALL. It is worth noting that the ensemble model AVG not only outperforms OLSALL at the

1% level, but also significantly dominates each individual machine learning algorithm except for

PCR. Mirroring the results reported in Table 4, the relative strength of each stand-alone machine

learning model and OLSALL may depend on the forecast horizon. In sharp contrast, the simple

average of all machine learning models AVG performs very well across all forecast horizons at the

1% or 5% significance level in most cases.
18For example, when computed relative to the long-run mean of RV instead of HAR, the R2

OOS ’s of the models in
Tables 3 and 4 are all above 53% across forecast horizons, as shown in Tables A.3 and A.4 in the Appendix.
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5.5. Subsample

So far, we have established the superior out-of-sample performance of the learning algorithms

over the full sample period. How does the relative performance of each model change over time?

Could the 2008-2009 financial crisis disrupt the relation between features and future RV s fitted

using historical data?19 Which model performs the best in the most recent decade? To answer

these questions, we further divide the 2001–2019 testing sample into three subperiods (2001-2007,

2008-2009, and 2010-2019), and calculate the R2
OOS ’s relative to HAR for both OLS-based and

ML-based models. In Table 7 we summarize the out-of-sample performance of all models over the

three subperiods.

Panel A reports the results for the pre-crisis period between January 2001 and December 2007.

Among OLS-based models, OLSALL performs the best at daily, weekly, and monthly forecast

horizons with relative R2
OOS ’s between 5.2% and 8.5%; at the quarterly forecast horizon, HARQ-F

has the highest relative R2
OOS at 6.7%. Turning to the ML-based models, AVG exhibits superior

performance across all forecast horizons, with relative R2
OOS ’s ranging from 6.6% to 20.5%.

Panel B shows the out-of-sample performance of all models between January 2008 and December

2009, the period covering the financial crisis and its aftermath. OLSALL continues to outperform the

remaining OLS-based models at the daily and weekly forecast horizons, whereas MIDAS dominates

at the monthly horizon and HARQ-F beats other OLS-based models at the quarterly horizon.

Among ML-based models, NN performs the best at the daily forecast horizon with a relative R2
OOS

equal to 13.4%, and it performs on par with LASSO at the weekly horizon with a relative R2
OOS

equal to 14.9%. LASSO dominates at the monthly horizon with a relative R2
OOS of 9.5%. At

the longer quarterly horizon, PCR achieves the highest relative R2
OOS equal to 5.7%. The overall

winning model remains, however, the ensemble model AVG. Although AVG cannot beat all of

the stand-alone models at a given forecast horizon, it consistently delivers top performance across

horizons.

Panel C presents the relative R2
OOS ’s for each model during the post-crisis period between

January 2010 and June 2019. Interestingly, the performance of OLSALL during this period is

quite impressive with relative R2
OOS ’s equal to 7.5%, 13.5%, 20.2%, and 15.5% at the daily, weekly,

19Schwert (2011) suggests that the financial crisis was associated with high levels of stock market volatility, but
volatility exhibits more mean-reversion than in the past.
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monthly, and quarterly horizons. In contrast, the relative R2
OOS ’s of the popular RV forecasting

models are all below 6%. A natural question is, what explains the stellar performance of OLSALL?

We conjecture that much of the gain comes from the better quality of the implied variance features

in recent years. For example, the average daily dollar trading volume for stock options has increased

steadily over the past two decades, implying that the overall option market is becoming more efficient

in incorporating information about future price movements. To mention more direct evidence, the

relative R2
OOS ’s of OLSIV during the post-crisis period all become positive, in sharp contrast to

the mostly negative values in the pre-crisis and crisis periods. This trajectory sheds additional

light on the importance of including implied variance predictors in forecasting RV s. Meanwhile,

the ML-based models exhibit even more extraordinary predictive power across forecast horizons

than OLSALL in the last decade. In particular, the ensemble model AVG is associated with relative

R2
OOS ’s of 10.4%, 18.7%, 29.6%, and 27.5% at daily, weekly, monthly, and quarterly horizons, all

dominating OLSALL by significant margins. Taken together, the subsample results further highlight

the importance of using machine learning techniques to exploit the rich information content in the

giant feature set.

6. Utility Gains

We have demonstrated the statistical improvement in terms of relative R2
OOS achieved by using

many features and machine learning algorithms for forecasting RV . A natural question is then to

what extent the increase in relative R2
OOS ’s can translate into economic gains. In this section, we

gauge the utility gains of a mean-variance investor who invests in a risky asset with time-varying

volatility and a constant Sharpe ratio.

6.1. Framework

Following the framework of Bollerslev, Hood, Huss, and Pedersen (2018), we assume that the

investor’s expected utility at time t under mean-variance utility can be expressed as Et(u(Wt+1)) =

Et(Wt+1) − 1
2γAV art(Wt+1), where γA reflects the investor’s absolute risk aversion. Assuming that

the investor allocates a ωt fraction of his wealth to the risky asset with return rt+1 and the remaining

fraction to the risk-free asset with return rf
t , his wealth in period t+1 is Wt+1 = Wt(1+rf

t +ωtr
e
t+1),
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where re
t+1 ≡ rt+1 − rf

t is the excess return. After dropping constant terms that depend only on

time t variables, the expected utility is:

U(ωt) =Wt

(
ωtEt(re

t+1) − γ

2 ω2
t V art(re

t+1)
)

= Wt

(
ωtEt(re

t+1) − γ

2 ω2
t Et(RVt+1)

)
, (22)

where γ ≡ γAWt denotes the investor’s relative risk aversion. Assuming a constant conditional

Sharpe ratio SR ≡ Et(re
t+1)/

√
Et(RVt+1) = 0.4 and γ = 2, Bollerslev, Hood, Huss, and Pedersen

(2018) show that the expected utility per unit of wealth (after dropping constant terms) under

model θ can be expressed as:

U(ωθ
t )/Wt = 8%

√
Et(RVt+1)√
Eθ

t (RVt+1)
− 4% Et(RVt+1)

Eθ
t (RVt+1)

. (23)

Replacing Et(RVt+1) with the true and observed RVt+1, we obtain the realization of the expected

utility per unit of wealth, referred to as the realized utility:

RU(ωθ
t ) = U(ωθ

t )/Wt = 8%
√

RVt+1√
Eθ

t (RVt+1)
− 4% RVt+1

Eθ
t (RVt+1)

. (24)

The upper bound of the average realized utility over stocks and time is 4% when the risk model

perfectly predicts the realized RV in each period, or Eθ
t (RVt+1) = RVt+1. To put the 4% figure

into perspective, from Eq. (22), U(0) = 0 when ωt = 0 or the investor allocates 100% of his wealth

to the risk-free asset. Thus, the investor is willing to give up 4% of his wealth to have access to a

perfect risk model instead of investing only in the risk-free asset.

In addition to the above frictionless setting, we consider the cost of implementing the risk-targeted

positions. As in Bollerslev, Hood, Huss, and Pedersen (2018), we focus on the monthly forecast

horizon and assume that transaction costs (TC) are linear in the absolute magnitude of the change

in the positions. For the benchmark transaction cost estimate, we use the median bid-ask spread

for each stock over the last 90 trading days of the sample. Note that one-way transactions are often

assumed in the literature to cost half of the bid-ask spread. We use the full spread as Bollerslev,

Hood, Huss, and Pedersen (2018) to account for the market-impact component of the transaction

cost. The realized utility after TC is simply the difference between the realized utility and the

transaction cost. We take the average of the realized utilities before/after TC over stocks and the
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testing sample to obtain the final average numbers.

6.2. Results

In Panel A of Table 8 we summarize the average realized utilities before TC based on risk models

OLSALL and AVG. The column labeled “All stocks” reports the results for all 173 stocks in our

main sample. OLSALL and AVG deliver average realized utilities of 3.47% and 3.71%, respectively,

with a utility difference of 0.24% reported in the third row. To further assess the utility gain of AVG

over OLSALL among stocks with varying levels of volatility, we sort the 173 stocks into quintiles

based on their median monthly RV over the testing sample, and compute the average realized utility

for each quintile of stocks. The utility difference between the two models for the lowest volatility

quintile is 0.19% and that for the highest volatility quintile is 0.34%, indicating that the utility

gained by using AVG over OLSALL is more pronounced for high-volatility stocks. The last row

reports the DM t-statistics contrasting AVG with OLSALL, all of which are significant at the 1%

level for various stock universes. The average realized utilities after TC reported in Panel B exhibit

similar patterns: AVG generates significantly higher realized utility over OLSALL across various

stock samples and the gain is more remarkable for more volatile stocks.

Another important factor that can be used to gauge the economic significance is the performance

of a risk model during turbulent periods when volatility forecasting is more challenging. In Figure

5, we present a scatter plot of the average realized utilities per calendar month obtained using AVG

and OLSALL. Most of the data points are above the 45-degree line, indicating that AV G typically

generates higher realized utility than OLSALL. While both models produce realized utility close to

the 4% maximum during the majority of the periods, the utility gained by using AVG as opposed

to OLSALL is more pronounced when OLSALL generates utility that is considerably below 4% (i.e.,

the periods when volatility is hard to predict).

7. Feature Importance

7.1. Which Features Matter?

We rely on the group importance measure described in Section 4.9 to assess the importance of

each group of features for forecasting future RV s while simultaneously controlling for the rest of
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the feature groups. Specifically, we divide the 118 features into three groups. The first group

“MIDAS & ExpRV” includes the MIDAS feature, ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, and

ExpGlRV , all of which are smoothly weighted sums of lagged daily RV ’s. The second group “RV&

RQ” includes RV d, RV w, RV m, RV q, RV P d, RV Nd, RV d
√

RQd, RV w
√

RQw, RV m
√

RQm, and

RV q
√

RQq, all of which are based on simple RV and/or RQ terms. And the third group “Implied

Variance” includes 102 implied variance features. For each forecast horizon and each model, we

estimate the reduction in R2 from permutating all values of a feature group within each training

sample, and then average the reductions in R2 over all training samples to obtain a single group

importance measure. As our group importance measures for each forecast horizon are normalized to

sum to one, we can interpret the importance measure of each group as its relative contribution to

the overall importance in percentage.

Panels A to F in Figure 6 display the group importance across various forecast horizons for

LASSO, PCR, RF, GBRT, NN, and AVG, respectively. This figure reveals several interesting

findings. First, all three groups of features contribute significantly to the forecast across different

horizons and learning algorithms. For example, each feature group contributes at least 10% in

almost all settings with the only exception being “RV& RQ” for fitting LASSO at monthly and

quarterly horizons. Second, the MIDAS and ExpRV terms tend to be more important for LASSO,

jointly contributing around 70% to the overall prediction. This might be because the MIDAS and

ExpRV features are already well-engineered through smoothing and denoising the raw data. Unlike

the raw features such as IV s, MIDAS and ExpRV terms can be viewed as competent encoders

that represent the predictive structure in the data and thus are more likely to be directly picked

up by linear models. Third, the implied variance features become more important over forecasting

horizons. Since IV -based features all have maturities between one and three months, it may not be

surprising that they can better predict longer-term RV s.

To further assess the relative importance of each feature group over time, we focus on AVG and

report its group importance based on 118 features across forecast horizons for each training sample

in our out-of-sample analyses. Our first training sample is from January 1996 to December 1999,

and our last training sample is from January 1996 to December 2017. By the end of each training

sample, we calculate group importance based on the reduction in R2 from permutating all values

of a given group of features within that training sample, and then normalize group importance
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per each training sample and each forecast horizon to sum to one. Figure 7 displays the group

importance for each training sample. Overall, implied variance features grow increasingly important

over time for all forecast horizons. At the daily (weekly) forecast horizon, the group importance of

“IV” terms increases from 13.52% (14.56%) for the first training sample to 49.14% (55.92%) for the

last training sample, and the trend is similar at longer monthly and quarterly forecast horizons. In

the meanwhile, the importance of the other two feature groups shrinks significantly over time. For

example, at the monthly forecast horizon, the importance of “MIDAS & ExpRV” terms decreases

from 60% by the end of year 1999 to 25.86% by the end of year 2017, and that of “RV& RQ” terms

decreases from 23.5% to 15.39%. These observations are consistent with the stellar performance of

the pure IV -based OLS model during the most recent period reported in Panel C of Table 7, and

further highlight the crucial role implied variance features played in forecasting realized variances.

7.2. Firm Characteristics and Pure Noise Features

Our 118 features are all volatility-based features and, given the persistence of volatility, they are

naturally strong predictors of future RV s. One may wonder about how our new system can handle

other features such as weak features or even pure noise features. To address these questions,

we consider two new feature sets: firm characteristics and pure random noises. In the volatility

forecasting literature, firm characteristics have not been widely documented as useful predictors

of future realized volatility. On the other hand, it might be reasonable to hypothesize that firm

characteristics such as size might be indirectly (through interaction or nonlinearity) helpful in

volatility forecasting. To examine firm characteristics, we consider six features: Size, BM , Mom,

Retd, Retm, and ILLQm. Size is the product of the closing price and the number of shares

outstanding, updated each day. BM is the book-to-market ratio in June of year t, which is

computed as the ratio of the book value of common equity in fiscal year t − 1 to the market value

of equity in December of year t − 1. Mom is the cumulative returns from prior day 252 to day 21

for a given day t. Retd and Retm refer to past daily and 21-day returns. ILLQm is the illiquidity

measure of Amihud (2002), which is the average daily ratio of the absolute stock return to the dollar

trading volume over the past 21 days.

The second new feature set is pure noise, with which we can test how well our system handles

false positives. We generate six random noise terms that mimic the distributional properties of the
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volatility-based features. Let ri,j,t denote the j-th noise term for stock i on day t. We simulate the

panel of noises for each 1 ≤ i ≤ N and each 1 ≤ j ≤ 6 from the following model:

ri,j,t = 0.2(1 − ρj) + ρjri,j,t−1 + ui,j,t, ui,j,t ∼ N (0, 0.252(1 − ρ2
j )), (25)

where ρj ∈ {0.2, 0.4, 0.6, 0.8, 0.9, 0.99} is the first-order autocorrelation of noise j. By construction,

each noise term will have a mean of 0.2 and a standard deviation of 0.25, and they cover a wide

range of persistence levels.

Panel B of Table 9 presents the R2
OOS ’s relative to HAR for fitting OLSALL and the ML-based

models to the newly expanded set of 130 features. In Panel A of the same table we replicate the

results reported in Table 4 using the original 118 features for ease of comparison. Overall, the

augmented feature set generates very similar results to these using the original 118 features across

different models. For OLSALL, the additional features slightly improve the relative R2
OOS ’s at daily,

weekly, and monthly horizons, but reduce the relative R2
OOS at the quarterly horizon as a result of

overfitting more predictors. For LASSO, PCR, and RF, the average performance of each model over

forecast horizons stays about the same using either 118 or 130 features. For GBRT, the R2
OOS ’s

based on 130 features are higher across all horizons, but the improvement over the original feature

set is rather small, ranging from 0.2% at the quarterly horizon to 0.9% at the weekly horizon. For

NN, the additional features produce higher relative R2
OOS ’s at the daily and weekly horizons, but

deliver worse performance at the monthly and quarterly horizons. For the ensemble model AVG,

the additional features show minimal improvement in the relative R2
OOS ’s at the first three horizons,

and identical relative R2
OOS ’s at the quarterly horizon.

Figure 8 displays the group importance plots based on all 130 features for each individual ML

model and the ensemble model AVG. In addition to the three groups of features from the original

118-feature set, we include two new groups, “Firm Char” and “Noise,” each of which contains six

firm characteristics and six pure noise terms, respectively. There are several intriguing observations.

First, the importance of the first three groups is largely aligned with what Figure 6 shows based on

118 features. Secondly, firm characteristics as a group contribute modestly to RV prediction, with

group importance ranging from 0.31% for LASSO at the quarterly horizon to 4.2% for NN at the

same quarterly horizon. Across models, the contribution of firm characteristics is relatively greater
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for nonlinear models RF, GBRT, and NN at around 3% over various forecast horizons compared with

around 1% for linear models LASSO and PCR. One possible explanation is that firm characteristics

can help predict future RV only as interaction terms with existing RV predictors. Lastly, the noise

features contribute almost nothing to model prediction, indicating that our ML-based models and

the associated group importance metrics effectively control for false positives.

8. Predicting Realized Variances for S&P 500 Stocks

We have demonstrated that our machine-learning-based automatic system can improve volatility

forecasting performance both statistically and economically. Is the learning system scalable to more

stocks? In this section, we examine the out-of-sample performance of our system on a broader set

of S&P 500 stocks. To speed up fitting nonlinear models, we transfer tuning parameters already

learned from the original S&P 100 stock universe to the new S&P 500 universe. We find that tuning

parameters learned from the original stock sample transfer well to the new sample and the resulting

automatic system consistently generates significant gains.

To this end, we consider 663 unique stocks listed on NYSE/AMEX/NASDAQ that have ever

been included in the S&P 500 index but are not members of the S&P 100 index between January

1996 and June 2019, and apply the same data filters as described in Section 2.1 to this stock sample.

Because hyperparameter tuning for nonlinear models becomes more time-consuming as the sample

grows, we directly transfer the tuning parameters for RF (i.e., maximum tree depth) and GBRT

(i.e., # of trees and maximum tree depth) obtained from 173 S&P 100 stocks to 663 S&P 500

stocks, and retrain both models without validating these tuning parameters.20 The idea is inspired

by transfer learning, which is designed to explore the possibility that learned knowledge from one

sample can be applied to a new sample.21 The remaining ML-based as well as OLS-based models

can be estimated efficiently and thus are completely recalibrated using the S&P 500 stock sample

without hyperparameter transfer.

Table 10 summarizes the out-of-sample performance of all models for 663 S&P 500 stocks.

Among OLS-based models, OLSALL using all 118 predictors outperforms the remaining models at
20All hyperparameters for NN are pre-specified and thus do not require hyperparameter tuning.
21Jiang, Kelly, and Xiu (2021b) apply the image-based convolutional neural networks (CNNs) trained using daily

data to lower-frequency and international data for return prediction problems. See Pan and Yang (2009) for a
comprehensive survey on transfer learning.
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daily, weekly, and monthly forecast horizons with R2
OOS ’s relative to HAR between 4.9% and 8.6%.

OLSALL slightly underperforms HARQ-F at the quarterly forecast horizon but beats the rest of

the OLS-based models across horizons, indicating that the 118 features identified earlier remain

powerful volatility predictors for this broader universe. Note that the relative R2
OOS ’s of OLSIV

become more negative between −13.6% and −20.3% for the S&P 500 stock sample in contrast to

the relative R2
OOS ’s between −2.1% and −9.8% for the S&P 100 sample as reported in Table 4.

This is likely because S&P 500 stocks tend to have fewer liquid option contracts than S&P 100

stocks and the associated implied variance features are prone to measurement errors and biases.

Yet, we find that implied variance features for S&P 500 stocks still contain information orthogonal

to the realized features, as evident by the better performance of OLSALL over that of OLSRM at

each forecast horizon.

Turning to the ML-based models, LASSO outperforms OLSALL across all horizons by small

margins, while NN outperforms OLSALL by wide margins with relative R2
OOS ’s ranging from 4.3%

to 15.1%. The other three ML models PCR, RF, and GBRT produce out-of-sample performance

comparable to OLSALL, indicating the success of hyperparameter transfer for the latter two models.

For the ensemble model AVG, it consistently delivers higher relative R2
OOS than OLSALL across

forecast horizons, and the pairwise Diebold-Mariano t-statistics comparing the out-of-sample forecast

performance between AVG and OLSALL are all significant at the 1% level. Moreover, we find that

the average realized utility derived from AVG is 0.44% higher than that from OLSALL for the S&P

500 stocks, in comparison to the 0.24% utility difference between AVG and OLSALL for the S&P

100 stocks as reported in Table 8. In a nutshell, our automatic system continues to perform well on

this broader S&P 500 stock universe.

9. Conclusion

This paper proposes an automatic system for forecasting realized volatility RV . The system consists

of two components: feature engineering and learning algorithm fitting. The feature engineering

component includes many features that potentially contain predictive information pertaining to

future RV . The learning component consists of linear and nonlinear learning algorithms for

estimating the predictive relation between volatility and features. This system is automatic in that
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requires little human intervention for choosing predictors and models. Using 118 features and five

machine learning algorithms (LASSO, PCR, RF, GBRT, and NN) to forecast realized volatility for

173 S&P 100 stocks spanning two decades, we show that the automatic system delivers robust and

superior performance across forecasting horizons and time periods. A simple average ensemble model

combining all machine learning algorithms produces out-of-sample R2’s relative to HAR model

predictions equal to 9.0%, 14.3%, 15.2%, and 10.0% at daily, weekly, monthly, and quarterly forecast

horizons over the full sample. In the most recent decade, the corresponding out-of-sample R2’s

relative to HAR jump to 10.4%, 18.7%, 29.6%, and 27.5%, indicating the importance of forecasting

volatility via such a powerful automatic system in the next decade.

Based on a utility framework, we further demonstrate that the improvement in out-of-sample

prediction accuracy can translate into nontrivial economic gains for a mean-variance investor. Among

all features we study, implied variance features increasingly contribute more to RV prediction in

the recent period, perhaps due to their improved quality as the overall option market becomes more

liquid. After augmenting our feature set by including six firm characteristics and six pure noise

terms, we find that firm characteristics that are important in return prediction do not contribute

much to volatility forecasting and the importance of noise terms is nearly zero, indicating that our

system effectively controls for false positives. Lastly, we show that tuning parameters learned from

S&P 100 stocks transfer well to a different set of S&P 500 stocks and our learning system is scalable

to this broader universe.
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Panel A: Implied variance from call options Panel B: Implied variance from put options

Fig. 3 Average implied variance from call and put options
This figure plots the average implied variance from call and put options for the entire panel of stocks in our sample as
functions of delta. Panel A (B) displays the average implied variance from call (put) options with maturity equal to
one month (30 days), two months (60 days), and three months (91 days). Delta ranges from 0.1 (-0.9) to 0.9 (-0.1) for
implied variances from call (put) options with 0.05 increment.
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Panel A: LASSO Panel B: PCR

Panel C: RF Panel D: GBRT

Fig. 4 Model complexity over time
This figure displays the complexity of LASSO, Principal Component Regression (PCR), Random Forest (RF), and
Gradient Boosted Regression Trees (GBRT) validated using each training and validation sample in our out-of-sample
analyses across various forecast horizons. Our first training sample is from January 1996 to December 1999 and our
first validation sample is from January 2000 to December 2000; our last training sample is from January 1996 to
December 2017 and our last validation sample is from January 2018 to December 2018. By the end of each validation
sample, we report the number of selected features with nonzero coefficients for LASSO, the number of principal
components for PCR, the maximum tree depth for RF, and the total number of trees for GBRT.
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Fig. 5 Realized utility: AVG versus OLSALL

This figure shows the average realized utilities per calendar month obtained using AVG on the y-axis and OLSALL

on the x-axis. AVG denotes the simple average of five individual machine learning models, and OLSALL denotes
the simple OLS model with all 118 realized and implied variance features as joint predictors. Realized utilities are
calculated without transaction costs according to Eq. (24).
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Panel A: LASSO Panel B: PCR

Panel C: RF Panel D: GBRT

Panel E: NN Panel F: AVG

Fig. 6 Group importance based on 118 Features
This figure displays the group importance based on 118 features for LASSO, PCR, RF, GBRT, NN, and AVG across various
forecast horizons. The first group “MIDAS & ExpRV” includes the MIDAS term for the corresponding forecast horizon, ExpRV 1,
ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV . The second group “RV& RQ” includes RV d, RV w, RV m, RV q, RV P d,
RV Nd, RV d

√
RQd, RV w

√
RQw, RV m

√
RQm, and RV q

√
RQq . The third group “Implied Variance” includes CIV jm,δ and

P IV jm,−δ, where j = 1, 2, 3, and δ = 0.1, 0.15, ..., 0.9. To calculate group importance, we first compute the reduction in R2

from permutating all values of a given group of features within each training sample, and then average the reductions of R2 over
all training samples to obtain a single group importance measure. Group importance for each forecast horizon is normalized to
sum to one. 40



Panel A: Daily forecast Panel B: Weekly forecast

Panel C: Monthly forecast Panel D: Quarterly forecast

Fig. 7 Group importance for AVG over time
This figure displays the group importance based on 118 features for AVG across forecast horizons for each training sample in our
out-of-sample analyses. Our first training sample is from January 1996 to December 1999, and our last training sample is from
January 1996 to December 2017. The first group “MIDAS & ExpRV” includes the MIDAS term for the corresponding forecast
horizon, ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV . The second group “RV& RQ” includes RV d, RV w, RV m,
RV q, RV P d, RV Nd, RV d

√
RQd, RV w

√
RQw, RV m

√
RQm, and RV q

√
RQq. The third group “Implied Variance” includes

CIV jm,δ and P IV jm,−δ, where j = 1, 2, 3, and δ = 0.1, 0.15, ..., 0.9. By the end of each training sample, we calculate group
importance based on the reduction in R2 from permutating all values of a given group of features within that training sample.
Group importance per each training sample and each forecast horizon is normalized to sum to one.
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Panel A: LASSO Panel B: PCR

Panel C: RF Panel D: GBRT

Panel E: NN Panel F: AVG

Fig. 8 Group importance based on 130 Features
This figure displays the group importance based on 130 features for LASSO, PCR, RF, GBRT, NN, and AVG across different
forecast horizons. The 130-predictor feature set includes the 118 features used in the main analyses, six firm characteristics, and
six noise terms. The first group “MIDAS & ExpRV” includes the MIDAS term for the corresponding forecast horizon, ExpRV 1,
ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV . The second group “RV& RQ” includes RV d, RV w, RV m, RV q, RV P d,
RV Nd, RV d

√
RQd, RV w

√
RQw, RV m

√
RQm, and RV q

√
RQq . The third group “Implied Variance” includes CIV jm,δ and

P IV jm,−δ, where j = 1, 2, 3, and δ = 0.1, 0.15, ..., 0.9. The fourth group “Firm Char” includes Size, BM , Mom, Retd, Retm,
and ILLQm. The last group “Noise” includes six noise terms generated according to Eq. (25). To calculate group importance,
we first compute the reduction in R2 from permutating all values of a given group of features within each training sample, and
then average the reductions of R2 over all training samples to obtain a single group importance measure. Group importance for
each forecast horizon is normalized to sum to one.
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Table 1 Descriptive statistics
This table reports the descriptive statistics for all realized features and selective implied variance features with absolute delta
equal to 0.5. Statistics for implied variances with absolute delta ranging from 0.1 to 0.9 are presented in Tables A.1 and A.2 in
the Appendix. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P
100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades
greater than or equal to 100, and at least five years of data on all features and response variables. Superscripts d, w, m, and q

are abbreviations of daily, weekly, monthly, and quarterly construction intervals or forecast horizons. MIDASk (k = d, w, m, q)
denotes the smoothly weighted moving average of 50 lagged realized variances using validated polynomials from Eqs. (5) and (6)
in forecasting realized variance at horizon k. RV k (k = d, w, m, q) is the daily, weekly, monthly or quarterly realized variance.
RV P d and RV Nd are the daily realized positive and negative semivariances, respectively. RV k

√
RQk (k = d, w, m, q) is the

product of the realized variance and the square root of the realized quarticity with the same construction interval k. ExpRV i

(i = 1, 5, 25, 125) is the exponentially weighted moving average of the past 500-day realized variances using the corresponding
center-of-mass i from Eq. (12). ExpGlRV is the exponentially weighted moving average of the global risk factor with a 5-day
center-of-mass from Eq. (13). CIV jm,0.5 and P IV jm,−0.5 are implied variances from call and put options with absolute delta
equal to 0.5 and maturity equal to j months (j = 1, 2, 3).

Mean Std Skewness Kurtosis P1 P5 Median P95 P99 AR(1) AR(5) AR(21) AR(63)

MIDASd 0.145 0.243 7.575 106.664 0.012 0.019 0.076 0.478 1.143 0.969 0.839 0.629 0.457
MIDASw 0.145 0.236 7.428 102.063 0.013 0.020 0.078 0.471 1.116 0.985 0.905 0.688 0.489
MIDASm 0.145 0.233 7.344 99.184 0.013 0.020 0.079 0.468 1.103 0.991 0.933 0.725 0.508
MIDASq 0.145 0.228 7.217 94.686 0.014 0.021 0.081 0.464 1.089 0.995 0.960 0.780 0.534
RV d 0.144 0.299 9.249 152.262 0.009 0.014 0.065 0.507 1.349 0.581 0.466 0.366 0.280
RV w 0.148 0.265 7.899 115.693 0.011 0.017 0.073 0.509 1.258 0.945 0.656 0.508 0.382
RV m 0.150 0.247 8.076 119.655 0.014 0.021 0.081 0.487 1.135 0.993 0.945 0.682 0.482
RV q 0.151 0.235 7.504 97.368 0.017 0.024 0.087 0.471 1.103 0.999 0.989 0.910 0.612
RV P d 0.072 0.158 11.268 251.878 0.004 0.006 0.031 0.255 0.684 0.513 0.414 0.324 0.248
RV Nd 0.070 0.155 10.070 189.623 0.003 0.006 0.030 0.252 0.687 0.495 0.400 0.317 0.238
RV d

√
RQd 0.257 3.111 45.794 3351.632 0.000 0.000 0.007 0.504 4.198 0.259 0.169 0.116 0.079

RV w√
RQw 0.281 2.272 25.820 1024.559 0.000 0.001 0.012 0.733 5.394 0.853 0.281 0.180 0.116

RV m√
RQm 0.285 2.023 29.907 1495.195 0.000 0.001 0.020 0.964 4.888 0.973 0.837 0.315 0.176

RV q√
RQq 0.287 1.820 29.610 1455.167 0.001 0.002 0.031 1.026 4.252 0.994 0.962 0.783 0.291

ExpRV 1 0.148 0.274 8.341 128.445 0.011 0.017 0.072 0.508 1.269 0.875 0.625 0.477 0.357
ExpRV 5 0.149 0.254 8.064 120.020 0.013 0.020 0.079 0.496 1.168 0.976 0.863 0.626 0.445
ExpRV 25 0.151 0.235 7.447 97.015 0.017 0.024 0.087 0.476 1.093 0.997 0.978 0.869 0.624
ExpRV 125 0.154 0.200 5.232 42.188 0.021 0.029 0.097 0.464 1.017 1.000 0.997 0.978 0.890
ExpGlRV 0.178 0.294 6.849 81.002 0.021 0.030 0.094 0.603 1.454 0.993 0.942 0.743 0.520
CIV 1m,0.5 0.126 0.167 5.913 63.823 0.015 0.022 0.077 0.384 0.819 0.972 0.921 0.793 0.635
CIV 2m,0.5 0.123 0.158 5.953 65.884 0.016 0.023 0.076 0.367 0.771 0.982 0.946 0.840 0.670
CIV 3m,0.5 0.118 0.146 5.643 57.782 0.016 0.023 0.075 0.348 0.719 0.988 0.959 0.868 0.700
P IV 1m,−0.5 0.132 0.200 11.795 305.546 0.016 0.023 0.079 0.395 0.860 0.977 0.930 0.803 0.642
P IV 2m,−0.5 0.129 0.191 12.798 359.667 0.018 0.025 0.080 0.377 0.807 0.985 0.953 0.852 0.681
P IV 3m,−0.5 0.126 0.181 13.983 431.430 0.019 0.027 0.080 0.359 0.755 0.990 0.965 0.880 0.714
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Table 2 Feature correlation
This table reports the correlations of all realized features and selective implied variance features with absolute delta equal to
0.5. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index
between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater
than or equal to 100, and at least five years of data on all features and response variables. Superscripts d, w, m, and q are
abbreviations of daily, weekly, monthly, and quarterly construction intervals or forecast horizons. MIDASk (k = d, w, m, q)
denotes the smoothly weighted moving average of 50 lagged realized variances using validated polynomials from Eqs. (5) and (6)
in forecasting realized variance at horizon k. RV k (k = d, w, m, q) is the daily, weekly, monthly or quarterly realized variance.
RV P d and RV Nd are the daily realized positive and negative semivariances, respectively. RV k

√
RQk (k = d, w, m, q) is the

product of the realized variance and the square root of the realized quarticity with the same construction interval k. ExpRV i

(i = 1, 5, 25, 125) is the exponentially weighted moving average of the past 500-day realized variances using the corresponding
center-of-mass i from Eq. (12). ExpGlRV is the exponentially weighted moving average of the global risk factor with a 5-day
center-of-mass from Eq. (13). CIV jm,0.5 and P IV jm,−0.5 are implied variances from call and put options with absolute delta
equal to 0.5 and maturity equal to j months (j = 1, 2, 3).

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)

(1) MIDASd 1.00
(2) MIDASw 0.99 1.00
(3) MIDASm 0.98 1.00 1.00
(4) MIDASq 0.96 0.99 1.00 1.00
(5) RV d 0.86 0.82 0.80 0.77 1.00
(6) RV w 0.97 0.95 0.94 0.91 0.81 1.00
(7) RV m 0.92 0.95 0.96 0.98 0.73 0.88 1.00
(8) RV q 0.82 0.86 0.88 0.90 0.65 0.77 0.89 1.00
(9) RV P d 0.80 0.77 0.75 0.73 0.90 0.76 0.68 0.62 1.00

(10) RV Nd 0.78 0.75 0.73 0.71 0.90 0.74 0.67 0.61 0.65 1.00
(11) RV d

√
RQd 0.49 0.44 0.42 0.39 0.72 0.46 0.37 0.30 0.64 0.61 1.00

(12) RV w
√

RQw 0.70 0.67 0.65 0.62 0.59 0.78 0.61 0.48 0.54 0.52 0.54 1.00
(13) RV m

√
RQm 0.67 0.70 0.71 0.71 0.53 0.66 0.79 0.63 0.49 0.47 0.39 0.71 1.00

(14) RV q
√

RQq 0.59 0.61 0.63 0.65 0.46 0.56 0.68 0.80 0.43 0.42 0.29 0.50 0.71 1.00
(15) ExpRV 1 0.96 0.93 0.91 0.88 0.93 0.95 0.84 0.74 0.85 0.84 0.59 0.72 0.63 0.53 1.00
(16) ExpRV 5 0.98 0.98 0.98 0.97 0.82 0.96 0.95 0.84 0.76 0.75 0.45 0.72 0.74 0.62 0.94 1.00
(17) ExpRV 25 0.90 0.93 0.94 0.96 0.71 0.85 0.96 0.97 0.67 0.66 0.35 0.57 0.73 0.76 0.82 0.92 1.00
(18) ExpRV 125 0.76 0.79 0.80 0.83 0.60 0.71 0.80 0.90 0.57 0.56 0.26 0.40 0.50 0.62 0.68 0.76 0.89 1.00
(19) ExpGlRV 0.62 0.63 0.64 0.64 0.50 0.58 0.60 0.57 0.48 0.47 0.20 0.28 0.30 0.29 0.56 0.60 0.60 0.59 1.00
(20) CIV 1m,0.5 0.83 0.85 0.85 0.86 0.69 0.79 0.84 0.82 0.63 0.65 0.32 0.50 0.58 0.58 0.77 0.84 0.85 0.78 0.59 1.00
(21) CIV 2m,0.5 0.82 0.84 0.85 0.86 0.67 0.78 0.83 0.83 0.62 0.63 0.31 0.49 0.58 0.58 0.76 0.83 0.86 0.79 0.59 0.98 1.00
(22) CIV 3m,0.5 0.82 0.84 0.85 0.86 0.67 0.77 0.84 0.84 0.62 0.62 0.31 0.48 0.58 0.59 0.75 0.82 0.87 0.81 0.60 0.97 0.99 1.00
(23) P IV 1m,−0.5 0.78 0.80 0.80 0.81 0.64 0.75 0.80 0.79 0.59 0.60 0.32 0.53 0.63 0.63 0.73 0.80 0.82 0.73 0.52 0.90 0.89 0.88 1.00
(24) P IV 2m,−0.5 0.77 0.78 0.79 0.80 0.62 0.73 0.79 0.79 0.58 0.58 0.31 0.52 0.62 0.64 0.71 0.78 0.82 0.74 0.51 0.88 0.88 0.88 0.99 1.00
(25) P IV 3m,−0.5 0.75 0.77 0.78 0.79 0.61 0.72 0.78 0.79 0.57 0.56 0.31 0.50 0.61 0.64 0.69 0.77 0.81 0.74 0.50 0.85 0.86 0.87 0.98 0.99 1.00
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Table 3 Out-of-sample prediction relative to HAR: OLS-based models
This table reports the out-of-sample R2 relative to the HAR model for OLS-based volatility forecasting models across different
forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the
S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of
trades greater than or equal to 100, and at least five years of data on all features and response variables. The full out-of-sample
evaluation period is from January 2001 to June 2019. Superscripts d, w, m, and q are abbreviations of daily, weekly, monthly,
and quarterly construction intervals or forecast horizons. MIDAS denotes the smoothly weighted moving average of 50 lagged
realized variances using validated polynomials from Eqs. (5) and (6) for the corresponding forecast horizon. RV k (k = d, w, m, q)
is the daily, weekly, monthly or quarterly realized variance. RV P d and RV Nd are the daily realized positive and negative
semivariances, respectively. RV k

√
RQk (k = d, w, m, q) is the product of the realized variance and the square root of the

realized quarticity with the same construction interval k. ExpRV i (i = 1, 5, 25, 125) is the exponentially weighted moving average
of the past 500-day realized variances using the corresponding center-of-mass i from Eq. (12). ExpGlRV is the exponentially
weighted moving average of the global risk factor with a 5-day center-of-mass from Eq. (13). CIV jm,δ and P IV jm,−δ are
implied variances from call and put options with absolute δ = 0.1, 0.15, ..., 0.9 and maturity equal to j months (j = 1, 2, 3). Our
OLS-based models include MIDAS, SHAR, HARQ-F, HExpGl, OLSRM (i.e., simple OLS model with all 16 realized features as
predictors), OLSIV (i.e., simple OLS model with all 102 implied variance features as predictors), and OLSALL (i.e., simple
OLS model with all 118 realized and implied variance features as joint predictors). R2

OOS for each model is calculated relative
to the prediction from HAR using the entire panel of stocks according to Eq. (21).

Model cccccccccccccccccccccFeatures Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

MIDAS MIDAS term for the corresponding forecast horizon 1.1% 3.8% 4.4% 1.5%

SHAR RV P d, RV Nd, RV w, RV m, RV q 1.5% 1.6% 1.3% 0.6%

HARQ-F RV d, RV w, RV m, RV q, 2.1% 2.8% 3.4% 4.8%
RV d

√
RQd, RV w√

RQw, RV m√
RQm, RV q√

RQq

HExpGl ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 0.1% 2.6% 2.2% -1.4%

MIDAS term for the corresponding forecast horizon,
RV d, RV w, RV m, RV q, RV P d, RV Nd,

OLSRM RV d
√

RQd, RV w√
RQw, RV m√

RQm, RV q√
RQq, 4.9% 6.5% 5.4% 1.9%

ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV
(# of features = 16)

OLSIV CIV jm,δ and P IV jm,−δ, j = 1, 2, 3, δ = 0.1, 0.15, ..., 0.9 -9.8% -7.4% -2.8% -2.1%
(# of features = 102)

OLSALL All 118 Features (16 realized features + 102 IV features) 7.6% 11.6% 7.3% -0.6%
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Table 4 Out-of-sample predictions relative to HAR: Machine-learning-based models
This table reports the out-of-sample R2 relative to the HAR model for machine-learning-based volatility forecasting models
across different forecast horizons.The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been
included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000,
daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables. The
full out-of-sample evaluation period is from January 2001 to June 2019. The features of each model consist of all 118 predictors
detailed in Table 3. Our machine-learning-based models include LASSO, Principal Component Regression (PCR), Random
Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts from the five
individual machine learning models (AVG). Tuning parameters for each model are reported in bold. R2

OOS for each model is
calculated relative to the prediction from HAR using the entire panel of stocks according to Eq. (21).

Model Hyperparameter (Tuning parameter in bold) Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

LASSO # of shrinkage parameters (λ): 100 8.0% 12.1% 11.3% 2.6%
λmin/λmax: 0.001

PCR # of components: 1, 2, ..., 20 5.5% 4.8% 8.1% 7.8%

Maximum tree depth (L): 1, 2, ..., 20
RF # of trees: 500 3.2% 6.4% 9.5% 5.4%

Subsample: 0.5
Subfeature: log(# of features)

# of trees (B)
Maximum tree depth (L): 1, 2, ..., 5
Learning rate: 0.001

GBRT Subsample: 0.5 4.7% 10.2% 10.8% 6.3%
Subfeature: log(# of features)
Early-stopping rules (whichever met first):
1) No reduction in MSE after 50 iterations
2) Max # of trees hits 20,000

# of hidden layer: 2
NN # of neurons: (5, 2) 10.5% 16.7% 14.3% 4.8%

Activation function: ReLU

AVG 9.0% 14.3% 15.2% 10.0%
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Table 5 Forecast correlation
This table reports the correlation of volatility forecasts from various models for the entire panel of stocks across forecast horizons.
The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between
January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal
to 100, and at least five years of data on all features and response variables. The full out-of-sample evaluation period is from
January 2001 to June 2019. The features of each model consist of all 118 predictors as detailed in Table 3. Our models include
a simple OLS model using all features (OLSALL), LASSO, Principal Component Regression (PCR), Random Forest (RF),
Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts from the five individual
machine learning models (AVG).

Panel A: Daily forecast

OLSALL LASSO PCR RF GBRT NN AVG
OLSALL 1.000
LASSO 0.997 1.000
PCR 0.985 0.990 1.000
RF 0.953 0.958 0.953 1.000
GBRT 0.963 0.967 0.967 0.982 1.000
NN 0.986 0.987 0.979 0.971 0.977 1.000
AVG 0.988 0.991 0.989 0.983 0.989 0.994 1.000

Panel B: Weekly forecast

OLSALL LASSO PCR RF GBRT NN AVG
OLSALL 1.000
LASSO 0.991 1.000
PCR 0.968 0.974 1.000
RF 0.947 0.957 0.955 1.000
GBRT 0.963 0.973 0.968 0.986 1.000
NN 0.987 0.985 0.970 0.970 0.979 1.000
AVG 0.983 0.989 0.985 0.985 0.992 0.992 1.000

Panel C: Monthly forecast

OLSALL LASSO PCR RF GBRT NN AVG
OLSALL 1.000
LASSO 0.981 1.000
PCR 0.963 0.977 1.000
RF 0.938 0.957 0.959 1.000
GBRT 0.952 0.972 0.971 0.989 1.000
NN 0.981 0.979 0.971 0.968 0.976 1.000
AVG 0.974 0.988 0.987 0.985 0.993 0.990 1.000

Panel D: Quarterly forecast

OLSALL LASSO PCR RF GBRT NN AVG
OLSALL 1.000
LASSO 0.975 1.000
PCR 0.954 0.971 1.000
RF 0.909 0.932 0.941 1.000
GBRT 0.936 0.959 0.961 0.984 1.000
NN 0.976 0.974 0.966 0.947 0.966 1.000
AVG 0.966 0.983 0.984 0.976 0.990 0.987 1.000
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Table 6 Forecast comparison using Diebold-Mariano tests
This table reports pairwise Diebold-Mariano t-statistics comparing the out-of-sample forecast performance among seven models
across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been
included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000,
daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables. The
full out-of-sample evaluation period is from January 2001 to June 2019. The features of each model consist of all 118 predictors
detailed in Table 3. Our models include a simple OLS model using all features (OLSALL), LASSO, Principal Component
Regression (PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple
average of forecasts from the five individual machine learning models (AVG). Positive numbers indicate that the model denoted
by the label to the left of a given row outperforms the model denoted by the label above the corresponding column. *, **, and
*** indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Daily forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 3.30***
PCR -7.02*** -8.87***
RF -4.62*** -5.06*** -2.32**
GBRT -4.93*** -5.88*** -1.20 2.27**
NN 10.67*** 9.95*** 13.09*** 8.68*** 11.97***
AVG 4.75*** 4.07*** 10.16*** 8.17*** 12.28*** -6.86***

Panel B: Weekly forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 1.05
PCR -3.22*** -3.36***
RF -2.22** -2.42** 1.15
GBRT -0.90 -1.48 3.07*** 2.38**
NN 7.36*** 6.13*** 6.1*** 5.25*** 5.88***
AVG 2.64*** 2.23** 6.27*** 5.16*** 5.45*** -3.69***

Panel C: Monthly forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 1.62
PCR 0.19 -1.12
RF 0.64 -0.53 0.48
GBRT 1.12 -0.18 1.13 0.94
NN 3.26*** 1.51 2.31** 2.00** 2.04**
AVG 2.63*** 2.07** 3.32*** 2.81*** 4.29*** 0.74

Panel D: Quarterly forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 1.38
PCR 2.71*** 1.66*
RF 1.92* 0.89 -0.68
GBRT 1.95* 1.30 -0.5 0.46
NN 1.72* 0.89 -1.03 -0.24 -0.74
AVG 3.09*** 3.12*** 0.83 1.78* 2.71*** 2.78***
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Table 7 Out-of-sample prediction relative to HAR: Subsample analysis
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and machine-learning-based volatility
forecasting models across different forecast horizons over three subsample periods. The sample consists of 173 stocks listed on
NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between January 1996 and June 2019 with share
code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal to 100, and at least five years of
data on all features and response variables. The full out-of-sample evaluation period is from January 2001 to June 2019. The
features of each model consist of all 118 predictors detailed in Table 3. Our OLS-based models include MIDAS, SHAR, HARQ-F,
HExpGl, OLSRM (i.e., a simple OLS model with all 16 realized features as predictors), OLSIV (i.e., a simple OLS model
with all 102 implied variance features as predictors), and OLSALL (i.e., a simple OLS model with all 118 realized and implied
variance features as joint predictors). Our machine-learning-based models include LASSO, Principal Component Regression
(PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of
forecasts from the five individual machine learning models (AVG). R2

OOS for each model is calculated relative to the prediction
from HAR using the panel of stocks included in each subsample period according to Eq. (21). Panels A, B and C report R2

OOS

relative to HAR for the pre-crisis (2001-2007), crisis (2008-2009), and post-crisis (2010-2019) periods, respectively.

Panel A: Pre-crisis (2001-2007) ccc Panel B: Crisis (2008-2009) ccc Panel C: Post-crisis (2010-2019)

Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

OLS

MIDAS -0.4% 1.0% -2.4% -0.9% 3.9% 7.1% 8.3% 2.1% 0.4% 3.1% 5.1% 4.3%
SHAR 1.1% 1.3% 1.1% 0.6% 2.1% 2.1% 1.5% 0.6% 1.5% 1.2% 1.1% 0.8%
HARQ-F 1.9% 3.0% 3.9% 6.7% 3.4% 3.6% 3.2% 4.0% 1.1% 1.4% 3.0% 5.3%
HExpGl 0.2% 2.5% 3.5% 3.1% -0.3% 3.6% 1.3% -4.2% 0.3% 1.1% 2.6% 6.0%
OLSRM 4.0% 5.8% 4.3% 2.3% 6.6% 7.2% 4.8% 0.6% 4.4% 6.3% 10.2% 10.3%
OLSIV -12.5% -13.0% -1.5% 2.9% -15.4% -11.9% -8.4% -5.6% 0.4% 8.4% 15.5% 9.1%
OLSALL 5.2% 8.5% 5.6% -1.6% 11.2% 13.5% 4.8% -2.5% 7.5% 13.5% 20.2% 15.1%

ML

LASSO 5.7% 8.9% 9.3% 4.4% 11.8% 14.9% 9.5% -1.0% 7.4% 12.8% 22.3% 23.0%
PCR 2.6% 7.0% 8.7% 8.1% 10.1% -2.2% 4.5% 5.7% 5.3% 12.1% 20.0% 21.9%
RF 0.6% 1.9% 9.9% 7.9% 0.0% 2.0% 4.0% 1.6% 10.8% 20.2% 29.2% 25.3%
GBRT -0.5% 3.6% 9.2% 10.9% 7.6% 11.7% 7.0% 1.9% 9.8% 18.1% 28.4% 24.3%
NN 8.1% 16.6% 20.2% 16.1% 13.4% 14.9% 6.6% -2.2% 11.1% 19.6% 30.1% 23.4%
AVG 6.6% 13.7% 19.5% 20.5% 11.3% 12.1% 8.8% 3.4% 10.4% 18.7% 29.6% 27.5%
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Table 8 Realized utility
This table reports the average realized utilities from holding volatility-targeted positions based on the out-of-sample predictions
of monthly RV from OLSALL (i.e., a simple OLS model using all 118 features) and AVG (i.e., a simple average of forecasts
from the five individual machine learning models). Average realized utilities are calculated by averaging the realized utility
from Eq. (24) over the testing sample and a given stock universe. The column labeled “All stocks” includes all 173 stocks in
our main analyses. We further sort stocks into quintiles based on their median monthly RV over the entire testing sample,
and report the average realized utilities for each subgroup. Panels A and B present the average realized utilities before and
after transaction costs (TC). The row labeled “Utility difference btw AVG and OLSALL” reports the utility difference between
AVG and OLSALL. The row labeled “DM test contrasting AVG and OLSALL” reports the Diebold-Mariano (DM) t-statistics
comparing the average realized utility of AVG with that of OLSALL. Positive numbers indicate that AVG generates higher
average realized utility than OLSALL. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Realized utility before TC ccc Panel B: Realized utility after TC

All stocks Low-Vol 2 3 4 High-Vol All stocks Low-Vol 2 3 4 High-Vol

OLSALL 3.47% 3.49% 3.53% 3.56% 3.32% 3.42% 3.34% 3.35% 3.40% 3.44% 3.18% 3.29%

AVG 3.71% 3.68% 3.69% 3.69% 3.73% 3.76% 3.63% 3.62% 3.62% 3.62% 3.66% 3.68%

Utility difference btw
AVG and OLSALL 0.24% 0.19% 0.16% 0.13% 0.41% 0.34% 0.29% 0.27% 0.22% 0.18% 0.47% 0.38%

DM test contrasting
AVG and OLSALL 8.06*** 7.51*** 6.37*** 6.94*** 5.68*** 2.69*** 9.46*** 9.73*** 8.14*** 8.81*** 6.19*** 2.95***
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Table 9 Out-of-sample prediction relative to HAR: Firm Characteristics and noise terms
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and machine-learning-based volatility
forecasting models across different forecast horizons using all 130 predictors, including 118 predictors used in the main analyses,
six firm characteristics, and six pure noise terms. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have
ever been included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and
$1000, daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables.
The full out-of-sample evaluation period is from January 2001 to June 2019. In Panel A we replicate the results reported in
Table 4 for 118 features, and in Panel B we report the results based on 130 features. Firm characteristics include Size, BM ,
Mom, Retd, Retm, and ILLQm. Size is the product of the closing price and the number of shares outstanding, updated each
day. BM is the book-to-market ratio in June of year t, which is computed as the ratio of the book value of common equity in
fiscal year t − 1 to the market value of equity in December of year t − 1. Mom is the cumulative returns from prior day 252
to day 21 for a given day t. Retd and Retm refer to the past daily and 21-day returns. ILLQm is the illiquidity measure of
Amihud (2002), which is the average daily ratio of the absolute stock return to the dollar trading volume over the past 21 days.
The noise terms are generated according to Eq. (25). Our machine-learning-based models include LASSO, Principal Component
Regression (PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple
average of forecasts from the five individual machine learning models (AVG). Tuning parameters for each model are reported in
bold. R2

OOS for each model is calculated relative to the prediction from HAR using the entire panel of stocks according to Eq.
(21).

Model Hyperparameter Panel A: 118 Features Panel B: 130 Features

Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly

R2
OOS Relative to HAR

OLSALL 7.6% 11.6% 7.3% -0.6% 7.8% 12.0% 7.4% -2.0%

LASSO # of shrinkage parameters (λ): 100 8.0% 12.1% 11.3% 2.6% 8.1% 12.5% 11.4% 2.2%
lambdamin/λmax: 0.001

PCR # of components: 1,2,. . . ,20 5.5% 4.8% 8.1% 7.8% 5.3% 3.4% 7.9% 8.0%

Maximum tree depth: 1,2,. . . ,20
RF # of trees: 500 3.2% 6.4% 9.5% 5.4% 2.9% 5.7% 10.0% 5.8%

subsample: 0.5
subfeature: log(# of features)

# of trees (B)
Maximum tree depth (L): 1, 2, ..., 5
Learning rate: 0.001

GBRT Subsample: 0.5 4.7% 10.2% 10.8% 6.3% 5.2% 11.3% 11.1% 6.5%
Subfeature: log(# of features)
Early-stopping rules (whichever met first):
1) No reduction in MSE after 50 iterations
2) Max # of trees hits 20,000

# of hidden layer: 2
NN # of neurons: (5, 2) 10.5% 16.7% 14.3% 4.8% 10.7% 17.1% 12.9% -0.3%

activation function: ReLU

AVG 9.0% 14.3% 15.2% 10.0% 9.4% 14.9% 15.5% 10.0%
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Table 10 Out-of-sample predictions relative to HAR for S&P 500 stocks
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and ML-based volatility forecasting
models across different forecast horizons for a different set of S&P 500 stocks. The sample consists of 663 stocks listed on
NYSE/AMEX/NASDAQ that have ever been included in the S&P 500 index but not members of the S&P 100 index between
January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater than or
equal to 100, and at least five years of data on all features and response variables. The full out-of-sample evaluation period is
from January 2001 to June 2019. The features of each OLS-based model consist of either model-specific predictors or all 118
predictors as detailed in Table 3, and those of each ML-based model consist of all 118 predictors. Our ML-base models include
LASSO, Principal Component Regression (PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural
Network (NN), and a simple average of forecasts from the five individual machine learning models (AVG). Hyperparameters for
each ML-based model are provided in Table 4. We directly transfer the resulting tuning parameters for RF (i.e., maximum tree
depth) and GBRT (i.e., # of trees and maximum tree depth) based on the original 173 S&P 100 stocks to this different set of
663 S&P 500 stocks and retrain both models without validating these tuning parameters. The remaining ML-based as well as
OLS-based models are completely recalibrated using the new stock sample without hyperparameter transfer. R2

OOS for each
model is calculated relative to the prediction from HAR using the entire panel of stocks according to Eq. (21).

Model Tuning parameters transferred Daily Weekly Monthly Quarterly

R2
OOS Relative to HAR

MIDAS 0.2% 1.5% 0.7% -0.8%
SHAR 0.8% 1.0% 0.8% 0.4%
HARQ-F 1.2% 1.7% 1.3% 1.1%

OLS HExpGl 0.5% 2.0% 1.7% -0.3%
OLSRM 3.3% 5.2% 3.4% 0.5%
OLSIV -15.1% -20.3% -18.4% -13.6%
OLSALL 4.9% 8.6% 6.5% 0.8%

LASSO 5.0% 9.1% 7.8% 2.2%
PCR 4.3% 7.6% 3.6% 4.5%
RF Maximum tree depth 4.7% 7.2% 5.1% 3.2%

ML GBRT # of trees & maximum tree depth 5.1% 9.1% 5.6% 1.7%
NN 8.5% 15.1% 12.0% 4.3%
AVG 7.3% 12.8% 10.8% 6.6%
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Appendix

A.1. High-Frequency Data Cleaning

We begin by removing entries that satisfy at least one of the following criteria: a price less than

or equal to zero; a trade size less than or equal to zero; corrected trades (i.e., trades with Correction

Indicator, CORR, other than 0, 1, or 2); and an abnormal sale condition (i.e., trades for which the

Sale Condition, COND, has a letter code other than @, *, E, F, @E, @F, *E, or *F). We then assign

a single value to each variable for each second. If one or multiple transactions have occurred in that

second, we calculate the sum of volumes, the sum of trades, and the volume-weighted average price

within that second. If no transaction has occurred in that second, we enter zero for volume and

trades. For the volume-weighted average price, we use the entry from the nearest previous second.

Motivated by our analysis of the trading volume distribution across different exchanges over time,

we purposely incorporate information from all exchanges covered by the TAQ database.

A.2. Additional Results

Tables A.1 and A.2 provide descriptive statistics for implied variance features across deltas from

call and put options, respectively. Tables A.3 and A.4 present the out-of-sample performance of

OLS-based and machine-learning-based forecasting models using R2
OOS relative to the long-run

mean of RV .

53



Table A.1 Descriptive statistics of implied variances from call options
This table reports the descriptive statistics for implied variances from call options with delta ranging from 0.1 to 0.9. The
sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between
January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater than or
equal to 100, and at least five years of data on all features and response variables. CIV jm,δ denotes the implied variance from
call options with maturity equal to j months (j = 1, 2, 3) and delta equal to δ (δ = 0.1, 0.15, ..., 0.9).

Mean Std Skewness Kurtosis P1 P5 Median P95 P99 AR(1) AR(5) AR(21) AR(63)

CIV 1m,0.1 0.132 0.162 5.073 45.518 0.018 0.026 0.083 0.399 0.809 0.959 0.887 0.735 0.606
CIV 1m,0.15 0.127 0.159 5.322 50.446 0.016 0.023 0.079 0.384 0.789 0.960 0.897 0.755 0.619
CIV 1m,0.2 0.122 0.158 5.549 55.227 0.015 0.022 0.076 0.373 0.780 0.963 0.904 0.770 0.628
CIV 1m,0.25 0.120 0.157 5.674 57.932 0.014 0.021 0.074 0.368 0.777 0.966 0.911 0.780 0.634
CIV 1m,0.3 0.120 0.158 5.724 58.915 0.014 0.021 0.073 0.367 0.778 0.970 0.917 0.787 0.638
CIV 1m,0.35 0.121 0.159 5.755 59.372 0.014 0.021 0.074 0.369 0.783 0.972 0.921 0.792 0.640
CIV 1m,0.4 0.122 0.161 5.808 60.398 0.014 0.021 0.074 0.372 0.789 0.973 0.923 0.793 0.639
CIV 1m,0.45 0.124 0.164 5.907 63.664 0.015 0.021 0.075 0.377 0.802 0.972 0.922 0.793 0.638
CIV 1m,0.5 0.126 0.167 5.913 63.823 0.015 0.022 0.077 0.384 0.819 0.972 0.921 0.793 0.635
CIV 1m,0.55 0.129 0.171 5.889 62.294 0.015 0.022 0.079 0.393 0.841 0.970 0.919 0.789 0.630
CIV 1m,0.6 0.132 0.176 5.895 62.027 0.016 0.023 0.081 0.403 0.864 0.966 0.914 0.784 0.623
CIV 1m,0.65 0.137 0.181 5.882 61.501 0.016 0.024 0.084 0.416 0.891 0.960 0.907 0.776 0.613
CIV 1m,0.7 0.142 0.187 5.861 61.276 0.017 0.026 0.088 0.433 0.925 0.948 0.896 0.764 0.599
CIV 1m,0.75 0.150 0.195 5.805 60.347 0.018 0.028 0.093 0.454 0.966 0.923 0.870 0.738 0.574
CIV 1m,0.8 0.162 0.206 5.682 58.129 0.019 0.030 0.102 0.485 1.020 0.880 0.824 0.695 0.538
CIV 1m,0.85 0.178 0.220 5.445 53.879 0.020 0.032 0.114 0.530 1.092 0.818 0.758 0.631 0.492
CIV 1m,0.9 0.198 0.239 5.103 47.650 0.021 0.035 0.126 0.591 1.184 0.751 0.688 0.560 0.445
CIV 2m,0.1 0.121 0.146 5.109 46.855 0.017 0.024 0.076 0.360 0.741 0.975 0.928 0.809 0.662
CIV 2m,0.15 0.117 0.144 5.292 50.536 0.016 0.023 0.074 0.351 0.728 0.975 0.932 0.821 0.671
CIV 2m,0.2 0.115 0.144 5.449 53.516 0.015 0.021 0.072 0.345 0.721 0.977 0.936 0.830 0.676
CIV 2m,0.25 0.114 0.145 5.544 55.179 0.015 0.021 0.071 0.344 0.721 0.978 0.940 0.836 0.678
CIV 2m,0.3 0.115 0.146 5.599 56.113 0.015 0.021 0.072 0.346 0.724 0.980 0.943 0.839 0.678
CIV 2m,0.35 0.116 0.149 5.666 57.435 0.015 0.021 0.072 0.349 0.733 0.981 0.945 0.841 0.677
CIV 2m,0.4 0.118 0.151 5.790 60.751 0.015 0.022 0.073 0.354 0.743 0.982 0.946 0.841 0.675
CIV 2m,0.45 0.120 0.154 5.884 63.347 0.015 0.022 0.075 0.360 0.755 0.983 0.946 0.841 0.673
CIV 2m,0.5 0.123 0.158 5.953 65.884 0.016 0.023 0.076 0.367 0.771 0.982 0.946 0.840 0.670
CIV 2m,0.55 0.126 0.162 5.917 64.703 0.016 0.023 0.078 0.375 0.791 0.981 0.944 0.837 0.665
CIV 2m,0.6 0.129 0.166 5.854 62.121 0.016 0.024 0.080 0.385 0.812 0.979 0.942 0.834 0.660
CIV 2m,0.65 0.133 0.171 5.800 60.035 0.017 0.025 0.083 0.397 0.838 0.976 0.937 0.828 0.653
CIV 2m,0.7 0.138 0.176 5.764 59.159 0.018 0.026 0.086 0.412 0.870 0.968 0.929 0.819 0.642
CIV 2m,0.75 0.145 0.183 5.742 59.932 0.019 0.028 0.091 0.430 0.907 0.952 0.911 0.800 0.623
CIV 2m,0.8 0.155 0.192 5.625 56.961 0.020 0.030 0.099 0.454 0.954 0.920 0.876 0.764 0.593
CIV 2m,0.85 0.169 0.203 5.395 52.099 0.020 0.033 0.110 0.490 1.012 0.863 0.817 0.704 0.548
CIV 2m,0.9 0.186 0.218 5.096 46.747 0.021 0.035 0.123 0.539 1.084 0.795 0.747 0.633 0.498
CIV 3m,0.1 0.111 0.133 5.217 50.273 0.016 0.023 0.071 0.329 0.674 0.985 0.954 0.860 0.702
CIV 3m,0.15 0.109 0.133 5.350 53.231 0.015 0.021 0.069 0.324 0.665 0.986 0.956 0.867 0.710
CIV 3m,0.2 0.108 0.133 5.457 55.509 0.015 0.021 0.069 0.322 0.660 0.987 0.958 0.871 0.714
CIV 3m,0.25 0.109 0.134 5.519 56.604 0.015 0.021 0.069 0.322 0.663 0.988 0.959 0.872 0.714
CIV 3m,0.3 0.110 0.135 5.556 57.126 0.015 0.021 0.070 0.325 0.669 0.988 0.960 0.873 0.713
CIV 3m,0.35 0.112 0.137 5.572 57.149 0.015 0.021 0.071 0.329 0.677 0.988 0.960 0.872 0.711
CIV 3m,0.4 0.113 0.140 5.593 57.318 0.015 0.022 0.072 0.335 0.689 0.988 0.960 0.871 0.707
CIV 3m,0.45 0.116 0.143 5.614 57.425 0.016 0.022 0.073 0.341 0.703 0.988 0.960 0.870 0.704
CIV 3m,0.5 0.118 0.146 5.643 57.782 0.016 0.023 0.075 0.348 0.719 0.988 0.959 0.868 0.700
CIV 3m,0.55 0.121 0.150 5.641 57.356 0.016 0.024 0.077 0.357 0.735 0.987 0.958 0.866 0.696
CIV 3m,0.6 0.124 0.154 5.646 57.158 0.017 0.024 0.079 0.366 0.756 0.986 0.957 0.864 0.691
CIV 3m,0.65 0.128 0.159 5.776 61.676 0.017 0.025 0.081 0.377 0.780 0.984 0.955 0.860 0.685
CIV 3m,0.7 0.133 0.165 5.979 70.691 0.017 0.026 0.085 0.391 0.809 0.980 0.950 0.853 0.676
CIV 3m,0.75 0.139 0.172 5.953 69.854 0.018 0.028 0.089 0.407 0.845 0.971 0.940 0.841 0.662
CIV 3m,0.8 0.148 0.179 5.696 59.898 0.019 0.030 0.096 0.430 0.888 0.947 0.914 0.813 0.635
CIV 3m,0.85 0.159 0.188 5.377 51.591 0.019 0.032 0.106 0.459 0.941 0.901 0.865 0.764 0.594
CIV 3m,0.9 0.174 0.200 5.100 46.722 0.019 0.033 0.118 0.496 1.001 0.842 0.803 0.703 0.546
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Table A.2 Descriptive statistics of implied variances from put options
This table reports the descriptive statistics for implied variances from put options with delta ranging from −0.9 to −0.1. The
sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between
January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater than or
equal to 100, and at least five years of data on all features and response variables. P IV jm,δ denotes the implied variance from
put options with maturity equal to j months (j = 1, 2, 3) and delta equal to δ (δ = −0.9, −0.85, ..., −0.1).

Mean Std Skewness Kurtosis P1 P5 Median P95 P99 AR(1) AR(5) AR(21) AR(63)

P IV 1m,−0.1 0.195 0.248 7.924 131.814 0.032 0.044 0.127 0.554 1.150 0.969 0.907 0.759 0.592
P IV 1m,−0.15 0.178 0.238 8.414 149.091 0.027 0.038 0.113 0.516 1.094 0.971 0.915 0.777 0.601
P IV 1m,−0.2 0.164 0.229 8.909 168.863 0.023 0.033 0.102 0.484 1.044 0.974 0.921 0.787 0.609
P IV 1m,−0.25 0.154 0.221 9.388 189.520 0.021 0.029 0.095 0.460 0.997 0.977 0.926 0.793 0.617
P IV 1m,−0.3 0.147 0.215 9.861 211.084 0.019 0.027 0.090 0.441 0.959 0.979 0.929 0.799 0.626
P IV 1m,−0.35 0.142 0.209 10.340 233.983 0.018 0.026 0.086 0.425 0.928 0.980 0.931 0.802 0.633
P IV 1m,−0.4 0.138 0.205 10.834 258.174 0.017 0.025 0.083 0.413 0.901 0.980 0.932 0.804 0.638
P IV 1m,−0.45 0.134 0.202 11.340 283.167 0.016 0.024 0.081 0.403 0.878 0.979 0.932 0.805 0.642
P IV 1m,−0.5 0.132 0.200 11.795 305.546 0.016 0.023 0.079 0.395 0.860 0.977 0.930 0.803 0.642
P IV 1m,−0.55 0.130 0.199 12.163 322.964 0.016 0.023 0.078 0.389 0.846 0.971 0.924 0.798 0.640
P IV 1m,−0.6 0.129 0.199 12.452 335.076 0.015 0.022 0.078 0.386 0.841 0.963 0.915 0.787 0.633
P IV 1m,−0.65 0.129 0.201 12.622 340.110 0.015 0.022 0.078 0.386 0.844 0.950 0.900 0.770 0.620
P IV 1m,−0.7 0.131 0.204 12.605 336.208 0.015 0.022 0.079 0.390 0.854 0.929 0.874 0.741 0.597
P IV 1m,−0.75 0.135 0.208 12.290 318.686 0.015 0.023 0.082 0.401 0.877 0.895 0.834 0.694 0.561
P IV 1m,−0.8 0.142 0.216 11.673 288.983 0.016 0.024 0.087 0.423 0.916 0.847 0.781 0.632 0.514
P IV 1m,−0.85 0.153 0.225 10.804 250.567 0.016 0.026 0.094 0.453 0.979 0.796 0.726 0.567 0.467
P IV 1m,−0.9 0.164 0.237 9.924 213.367 0.016 0.026 0.102 0.489 1.045 0.753 0.680 0.513 0.428
P IV 2m,−0.1 0.188 0.236 8.329 148.513 0.035 0.046 0.124 0.526 1.106 0.980 0.940 0.820 0.633
P IV 2m,−0.15 0.173 0.227 8.852 169.073 0.029 0.040 0.111 0.492 1.050 0.983 0.945 0.832 0.644
P IV 2m,−0.2 0.160 0.218 9.394 192.250 0.025 0.035 0.101 0.463 0.996 0.985 0.949 0.840 0.652
P IV 2m,−0.25 0.151 0.211 9.951 217.745 0.023 0.032 0.094 0.440 0.950 0.986 0.952 0.845 0.659
P IV 2m,−0.3 0.144 0.205 10.522 244.968 0.021 0.029 0.090 0.422 0.909 0.987 0.953 0.849 0.667
P IV 2m,−0.35 0.139 0.200 11.102 273.437 0.020 0.028 0.086 0.407 0.877 0.987 0.954 0.851 0.673
P IV 2m,−0.4 0.135 0.196 11.690 303.188 0.019 0.027 0.084 0.395 0.850 0.987 0.954 0.852 0.677
P IV 2m,−0.45 0.132 0.193 12.280 333.250 0.018 0.026 0.082 0.385 0.826 0.986 0.954 0.853 0.680
P IV 2m,−0.5 0.129 0.191 12.798 359.667 0.018 0.025 0.080 0.377 0.807 0.985 0.953 0.852 0.681
P IV 2m,−0.55 0.127 0.190 13.233 381.481 0.017 0.024 0.078 0.371 0.795 0.983 0.950 0.850 0.681
P IV 2m,−0.6 0.126 0.189 13.609 398.441 0.017 0.024 0.077 0.366 0.785 0.979 0.946 0.845 0.679
P IV 2m,−0.65 0.125 0.190 13.892 408.974 0.016 0.024 0.077 0.364 0.781 0.972 0.937 0.835 0.672
P IV 2m,−0.7 0.126 0.192 14.000 409.209 0.016 0.024 0.078 0.365 0.788 0.959 0.922 0.816 0.656
P IV 2m,−0.75 0.128 0.196 13.872 397.480 0.017 0.024 0.080 0.371 0.805 0.936 0.895 0.782 0.626
P IV 2m,−0.8 0.134 0.202 13.416 370.667 0.017 0.026 0.084 0.386 0.833 0.901 0.854 0.730 0.582
P IV 2m,−0.85 0.142 0.210 12.648 331.856 0.017 0.027 0.090 0.409 0.875 0.858 0.807 0.672 0.532
P IV 2m,−0.9 0.151 0.219 11.790 291.699 0.018 0.028 0.096 0.436 0.928 0.818 0.763 0.621 0.488
P IV 3m,−0.1 0.182 0.224 8.774 167.904 0.036 0.048 0.121 0.500 1.045 0.988 0.962 0.864 0.664
P IV 3m,−0.15 0.167 0.215 9.373 194.079 0.031 0.042 0.110 0.469 0.992 0.990 0.964 0.871 0.677
P IV 3m,−0.2 0.156 0.207 10.044 225.247 0.027 0.037 0.100 0.442 0.940 0.991 0.966 0.875 0.686
P IV 3m,−0.25 0.148 0.200 10.720 258.679 0.024 0.034 0.094 0.420 0.892 0.992 0.966 0.877 0.694
P IV 3m,−0.3 0.141 0.194 11.406 294.084 0.023 0.031 0.090 0.403 0.853 0.992 0.966 0.879 0.702
P IV 3m,−0.35 0.136 0.190 12.104 330.536 0.022 0.030 0.087 0.389 0.821 0.992 0.967 0.881 0.707
P IV 3m,−0.4 0.132 0.186 12.780 366.438 0.021 0.029 0.084 0.377 0.796 0.991 0.966 0.881 0.710
P IV 3m,−0.45 0.129 0.183 13.419 400.815 0.020 0.028 0.082 0.367 0.775 0.991 0.966 0.881 0.712
P IV 3m,−0.5 0.126 0.181 13.983 431.430 0.019 0.027 0.080 0.359 0.755 0.990 0.965 0.880 0.714
P IV 3m,−0.55 0.124 0.180 14.436 454.755 0.019 0.026 0.078 0.352 0.741 0.989 0.964 0.879 0.715
P IV 3m,−0.6 0.122 0.180 14.813 470.507 0.018 0.026 0.077 0.348 0.731 0.987 0.962 0.877 0.714
P IV 3m,−0.65 0.121 0.181 15.100 478.208 0.018 0.025 0.077 0.344 0.726 0.983 0.957 0.872 0.709
P IV 3m,−0.7 0.121 0.183 15.303 479.964 0.018 0.025 0.077 0.344 0.728 0.975 0.948 0.861 0.697
P IV 3m,−0.75 0.123 0.186 15.346 474.058 0.018 0.026 0.078 0.347 0.737 0.961 0.932 0.840 0.673
P IV 3m,−0.8 0.127 0.190 15.059 452.822 0.018 0.026 0.081 0.357 0.753 0.936 0.904 0.805 0.634
P IV 3m,−0.85 0.133 0.196 14.411 416.578 0.018 0.027 0.086 0.373 0.786 0.902 0.868 0.760 0.586
P IV 3m,−0.9 0.140 0.203 13.619 376.486 0.018 0.028 0.091 0.393 0.821 0.868 0.833 0.718 0.541
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Table A.3 Out-of-sample prediction relative to long-run mean: OLS-based models
This table reports the out-of-sample R2 relative to the historical mean of realized volatilities for OLS-based volatility forecasting
models across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever
been included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000,
daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables. The full
out-of-sample evaluation period is from January 2001 to June 2019. Superscripts d, w, m, and q are abbreviations of daily, weekly,
monthly, and quarterly construction intervals or forecast horizons. MIDAS denotes the smoothly weighted moving average of
50 lagged realized variances using validated polynomials from Eqs. (5) and (6) for the corresponding forecast horizon. RV k

(k = d, w, m, q) is the daily, weekly, monthly or quarterly realized variance. RV P d and RV Nd are the daily realized positive
and negative semivariances, respectively. RV k

√
RQk (k = d, w, m, q) is the product of the realized variance and the square

root of the realized quarticity with the same construction interval k. ExpRV i (i = 1, 5, 25, 125) is the exponentially weighted
moving average of the past 500-day realized variances using the corresponding center-of-mass i from Eq. (12). ExpGlRV is
the exponentially weighted moving average of the global risk factor with a 5-day center-of-mass from Eq. (13). CIV jm,δ and
P IV jm,−δ are implied variances from call and put options with absolute δ = 0.1, 0.15, ..., 0.9 and maturity equal to j months
(j = 1, 2, 3). Our OLS-based models include MIDAS, SHAR, HARQ-F, HExpGl, OLSRM (i.e., simple OLS model with all
16 realized features as predictors), OLSIV (i.e., simple OLS model with all 102 implied variance features as predictors), and
OLSALL (i.e., simple OLS model with all 118 realized and implied variance features as joint predictors). R2

OOS for each model
at each forecast horizon is calculated relative to the long-run mean of RV using the entire panel of stocks according to Eq. (21).

Model cccccccccccccccccccccFeatures Daily Weekly Monthly Quarterly

R2
OOS relative to long-run mean

HAR RV d, RV w, RV m, RV q 57.8% 69.4% 70.0% 63.6%

MIDAS MIDAS term for the corresponding forecast horizon 58.2% 70.6% 71.3% 64.2%

SHAR RV P d, RV Nd, RV w, RV m, RV q 58.4% 69.9% 70.4% 63.9%

HARQ-F RV d, RV w, RV m, RV q, 58.7% 70.3% 71.0% 65.4%
RV d

√
RQd, RV w√

RQw, RV m√
RQm, RV q√

RQq

HExpGl ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 57.8% 70.2% 70.6% 63.1%

MIDAS term for the corresponding forecast horizon,
RV d, RV w, RV m, RV q, RV P d, RV Nd,

OLSRM RV d
√

RQd, RV w√
RQw, RV m√

RQm, RV q√
RQq, 59.8% 71.4% 71.6% 64.3%

ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV
(# of features = 16)

OLSIV CIV jm,δ and P IV jm,−δ, j = 1, 2, 3, δ = 0.1, 0.15, ..., 0.9 53.6% 67.2% 69.1% 62.9%
(# of features = 102)

OLSALL All 118 Features (16 realized features + 102 IV features) 61.0% 73.0% 72.2% 63.4%
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Table A.4 Out-of-sample predictions relative to long-run mean: Machine-learning-based models
This table reports the out-of-sample R2 relative to the historical mean of realized volatilities for machine-learning-based volatility
forecasting models across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that
have ever been included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1
and $1000, daily number of trades greater than or equal to 100, and at least five years of data on all features and response
variables. The full out-of-sample evaluation period is from January 2001 to June 2019. The features of each model consist of all
118 predictors detailed in Table 3. Our machine-learning-based models include LASSO, Principal Component Regression (PCR),
Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts
from the five individual machine learning models (AVG). Tuning parameters for each model are in bold. R2

OOS for each model
at each forecast horizon is calculated relative to the long-run mean of RV using the entire panel of stocks according to Eq. (21).

Model Hyperparameter (Tuning parameter in bold) Daily Weekly Monthly Quarterly

R2
OOS relative to long-run mean

LASSO # of shrinkage parameters (λ): 100 61.1% 73.1% 73.4% 64.6%
λmin/λmax: 0.001

PCR # of components: 1, 2, ..., 20 60.1% 70.9% 72.4% 66.5%

Maximum tree depth (L): 1, 2, ..., 20
RF # of trees: 500 59.1% 71.4% 72.8% 65.6%

Subsample: 0.5
Subfeature: log(# of features)

# of trees (B)
Maximum tree depth (L): 1, 2, ..., 5
Learning rate: 0.001

GBRT Subsample: 0.5 59.8% 72.6% 73.2% 65.9%
Subfeature: log(# of features)
Early-stopping rules (whichever met first):
1) No reduction in MSE after 50 iterations
2) Max # of trees hit 20,000

# of hidden layer: 2
NN # of neurons: (5, 2) 62.2% 74.5% 74.3% 65.4%

Activation function: ReLU

AVG 61.6% 73.8% 74.5% 67.2%
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