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Abstract

We study the lead-lag relationship between VIX futures and SPX futures on a sample of

high-frequency data using the cross-correlation function. The analysis reveals large time-

variation in the lead-lag relation. We find that cross-market activity explains a major part of

the lead-lag relation and that days of high activity are associated with a strengthened VIX

futures lead over SPX futures. As VIX futures hedging by dealers generate cross-market

activity, this indicates that the strengthening of the VIX futures leadership could be partly

explained by dealers’ hedging activities. We also find evidence that the hedging channel

can move the SPX futures market for reasons unrelated to price discovery.
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1 Introduction

The market for VIX futures has witnessed an impressive growth since the introduction of

the first VIX futures contract in 2004 on the Chicago Board of Options Exchange (CBOE) and

the VIX index itself has become a widely recognized yardstick of stock market risk. Since

their launch, VIX futures gained popularity as tools to hedge volatility exposure or diversify

portfolios (Whaley, 2009). In 2009, the first VIX exchange-traded product (VIX ETP) hit the

market and, since then, investors have increasingly used products tied to VIX futures to spec-

ulate in future volatility outlook (Bollen et al., 2017; Bhansali and Harris, 2018). Typically,

major dealers in financial markets take the other side of the VIX futures trade. Market makers

and dealers are subject to strict risk requirements and profit from their flow of transactions and

not from risk taking. In order to hedge their positions in volatility, dealers typically employ

various options based hedging strategies (Chang, 2017). The dynamic nature of these strate-

gies entail that in order to maintain the hedge after either a change in volatility or a change

in their net position in volatility, the dealers have to trade the underlying index. Hence, the

mechanisms of the hedging activities have the potential to impact the lead-lag relation between

VIX futures and SPX futures. The observation that hedging activities can impact the lead-lag

relation between two markets if market makers in one market trade in the other market to hedge

is not new. The delta hedging by option dealers is an important example of this (Easley et al.,

1998; Chan et al., 2002; Schlag and Stoll, 2005).

In this paper we study the lead-lag relation between VIX futures and SPX futures on a

sample of transactions time-stamped down to the millisecond and collected over the period

from January 2013 to September 2020. We find that the lead-lag relation is dynamic with the

VIX futures leading SPX futures on average terms. We study the determinants of the lead-lag

relation and find that the level of cross-market trading has a positive and significant impact

on the strength of the VIX futures lead over SPX futures. Since cross-market trading can

arise from hedging by VIX futures dealers, this can be an indicator that VIX futures hedging

influences the lead-lag relationship. In addition, we estimate the aggregate net gamma position
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of market makers and find that a negative gamma position strengthens the VIX futures lead

while a positive gamma position weakens the lead. However, after controlling for the cross-

market trading the effect of the gamma position almost disappear. The literature on lead-lag

relations is mostly concerned with which markets first reflect new information (where informed

traders prefer to trade), and hedging can be a channel through which information is transmitted

to the market for the asset that is used as hedging instrument (see e.g. Kaul et al. (2004);

Hu (2014)). However, a lead-lag relation generated by hedging activities does not necessarily

reflect the diffusion of information. Rather it might materialize if VIX futures market makers’

hedging activities have market impact on the instrument used for hedging. To discriminate

between the two hedging-based explanations of the lead-lag relation, we exploit the presence of

uninformed VIX futures trading by VIX ETPs to analyze the nature of the VIX futures hedging

channel. We find that the trades move the SPX futures market in the direction expected under

the VIX futures hedging mechanisms. Since the trades in VIX futures performed by the VIX

ETPs are uninformed, this indicates a market impact which is driven by factors other than the

transmission of information across markets.

Besides the hedging-based explanations, we also connect the strength of the lead-lag rela-

tion to other more classical variables such as stock market returns, the volatility of the stock

market, and the level of liquidity in the two futures markets. The SPX index returns and the

level of the VIX index have no clear impact on the lead-lag relation when controlling for a

set of other variables. Moreover, and in line with a price discovery channel, we find that an

increase (decrease) in the liquidity of VIX futures relative to the liquidity of the SPX futures

results in a strengthening (weakening) of the VIX futures lead but again the explanatory power

appears to vanish once the cross-market trading is accounted for.

The findings have relevance for policy makers who are concerned about market fragility. If

hedging activities of VIX futures dealers have the potential to destabilize or magnify market

drops it is vital for regulators to understand the driving mechanisms behind the price move-

ments. In fact, regulators are starting to worry that, due to the rebalancing of the hedge ratios

of dealers, a sudden increase in volatility or a drop in the underlying can trigger a sell-off of the
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underlying that magnifies the market decline (Bank for International Settlements, 2018). The

market movements on February 5 2018 serve as anecdotal evidence in support of this belief.

On this day the VIX spiked and incurred the largest relative move of 116% since its inception

in 1993. The sharp increase in the VIX was accompanied by a drop to the SPX index of 4.1%.

These movements materialized despite the fact that no clear macro-economic event occurred

(Augustin et al., 2021).

Evidence of a transitory price impact from hedging activities has also been found for other

markets. For instance, Kao et al. (2018) find that VIX option trading has a temporary impact

on changes in the VIX index and attribute this to the use of VIX options for hedging by SPX

option market makers. The research is also related to the literature on stock-pinning, namely

the phenomenon that option dealers’ hedging demands can change the dynamics of the price

of the underlying security. This is shown by Avellaneda and Lipkin (2003); Ni et al. (2005);

Golez and Jackwerth (2012), who find that if the open interest of an option for a given strike

is sufficiently large, delta hedging of dealers can push the stock price to the strike price of the

option at the option expiration.

The evidence on the leadership of the VIX futures may be somewhat surprising in light

of the large and important SPX futures market. Nevertheless, the findings are consistent with

other research showing that VIX futures plays a dominant role in relation to other SPX-related

markets. In particular, several studies show that the VIX futures lead the VIX index (Shu and

Zhang, 2012; Frijns et al., 2016; Bollen et al., 2017; Chen and Tsai, 2017; Kao et al., 2018),

which by construction of the VIX index translates into VIX futures leading SPX options.1

The paper is also related to the literature on the relation between lagged stock market re-

turns and volatility: Carr and Wu (2006) study the cross-correlation function for SPX index

returns and VIX index changes at a daily frequency and find marginal evidence of SPX returns

having some predictive power for VIX index changes. Similarly, Bollerslev et al. (2006) find

significant negative correlation between the absolute value of SPX returns (volatility proxy)

1The mentioned papers interpret this in terms of greater information content in VIX futures as opposed to the
VIX index. Although not being the scope of this paper, we note here that the VIX futures lead can also be the
consequence of dealers hedging their VIX futures exposure in the SPX options markets.
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and lagged SPX returns both sampled at a five-minute frequency. At the same time, correla-

tions between returns and lagged absolute returns are close to zero. The same pattern is found

by Bollerslev et al. (2012) using the squared VIX index as the volatility measure. Their re-

sults shed light on the relevance of the leverage and volatility feedback effect as two competing

explanations for the relation between returns and volatility.

A large number of studies on lead-lag relations among SPX and its derivatives already

exist. The findings of Frijns et al. (2016) reveal that VIX futures lead the SPX index. While

it has also been shown that SPX futures lead the SPX index (Chu et al., 1999; Hasbrouck,

2003), these findings leave it unclear to which extend VIX futures lead or lag SPX futures. As

mentioned above, there is also evidence that VIX futures lead the VIX index which is equivalent

to leading SPX options. Moreover, it has been shown by Chen et al. (2016) that SPX futures

provide greater contribution to price discovery than SPX options. Thus, both VIX futures and

SPX futures lead SPX options, but again the VIX futures and SPX futures lead-lag relation

cannot be inferred from these studies. While Lee et al. (2017) show that the VIX futures basis

(the difference between VIX futures and the VIX index) has some predictable power for the

SPX futures returns, the information contained in the VIX futures price and VIX futures basis

may be distinct. We therefore contribute to the literature on lead-lag relations among the SPX-

related markets by providing the first evidence on the lead-lag relation between the VIX futures

and SPX futures market. Contrary to Lee et al. (2017) using daily data, we analyze the lead-lag

relation from high-frequency data which allows for examining its time-variation.

The remainder of the paper is structured as follows: First, Section 2 details the channels

through which VIX futures hedging can impact SPX futures. Next, we introduce the method-

ology to quantify the lead-lag relation in Section 3. Section 4 presents the data and the results

of the empirical analysis. Finally, Section 5 concludes.
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2 Hedging induced market spillovers

Market makers in VIX futures typically risk manage their volatility exposure by trading

other volatility sensitive products such as European options. For instance, a new position in

a VIX futures (VX) can be hedged with a delta-hedged position in a European option on the

SPX index. Hence, trading in VIX futures leads to subsequent trading in the underlying index,

which in the context of VIX futures, is typically carried out via SPX futures (ES). Consider

a dealer with a short position in a VIX futures with price PV X
t . The dealer hedges by buying

options on the SPX index while delta hedging using SPX futures. Denote by PES
t the price of

the SPX futures used for hedging and by Vt its instantaneous volatility. In order to obtain zero

sensitivity to changes in the SPX futures (i.e. a delta neutral hedge) to the short VIX futures

position, the dealer invests XQ
t in options (either calls or puts) with price PQ

t and XES
t in the

underlying SPX futures simultaneously. Hence, at any given point in time t the dealer faces the

two equations:

−∂PV X
t

∂Vt
+

∂PQ
t

∂Vt
XQ

t = 0 (1)

XES
t +

∂PQ
t

∂PES
t

XQ
t = 0. (2)

Solving equation (1) reveals that to obtain zero sensitivity to changes in volatility, the amount

of options the dealer has to enter equals XQ
t =

∂PV X
t /∂Vt

∂PQ
t /∂Vt

> 0. Solving (2) reveals that XES
t < 0

if call options are used to hedge the volatility exposure and XES
t > 0 if put options are used.

Moreover, as providers of liquidity to SPX options demand, dealers tend to be short in

put options and long in call options (Garleanu et al., 2008; Goyenko and Zhang, 2019). High

volatility scenarios are typically associated with a distressed stock market where end user de-

mand in long put options is high. Hence, the aggregate dealer position in gamma tend to follow

the business cycle in the sense that it is negative in downturns and positive in upturns (Baltussen

et al., 2021). For this reason, market makers run the risk of being part of the feedback cycle

illustrated in Figure 1. An increase in volatility due to increased demand in long VIX futures
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Long VIX
futures demand

Upward pressure on
VIX futures price

Negative price pres-
sure on SPX futures

Option dealers with
negative gamma

position rebalance by
selling SPX futures

Upward pressure
on VIX index

1. (a) Buy SPX call options

(b) Sell SPX futures to delta hedge

2. Sell SPX futures

VIX futures dealers hedge the trade using one
of the two strategies:

Leverage
effect

Figure 1: Feedback effect from initial long demand in VIX futures.

leads to a decrease in SPX futures prices via two channels: First, the long VIX futures demand

translates into a short VIX futures position of the dealer which has to be hedged in the options

market. Being a short volatility position the dealer has to hedge with a long option position. In

principle, the dealer can enter into put or call options, however, in practice the dealer has to buy

call options since this matches the short position of the end user demand. In addition, the pos-

itive delta of the call position has to be hedged by a short SPX futures position. Alternatively,

dealers could turn to a more approximate hedge utilizing the negative correlation between VIX

futures and SPX futures prices. Under this approach, long demand in VIX futures (short po-

sition of the dealer) is simply hedged by a short position in SPX futures. In either case, this

result in negative price pressure on SPX futures. Second, the increase in volatility also impacts

the SPX futures price negatively via the leverage effect. Being in a negative gamma position,

the dealers sell additional SPX futures in order to rebalance hedges. This puts additional price

pressure on SPX futures, which again translates into increasing VIX futures prices. The full

feedback cycle materializes as increasing volatility and VIX futures prices generate additional

VIX futures demand which creates more VIX futures hedging activity.

In terms of the lead-lag relation between VIX futures and SPX futures, Figure 1 illustrates

how hedging activities may influence this relation. The long VIX futures demand triggers SPX

futures selling by VIX futures dealers. In turn, this forces option dealers to rebalance. Hence,
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the initial impact from VIX futures hedging may generate further SPX futures selling when

option dealers are negative gamma. For this reason the negative gamma position of option

dealers is a potential amplifier of the VIX futures hedging mechanism’s impact on the lead-lag

relation. However, even for the case when the net gamma position is positive, it can still be the

case that the VIX futures dealer’s hedging activities drive the lead-lag relation in the direction

of a stronger VIX futures lead via the channels depicted in the upper part of Figure 1. On the

other hand, it can also be the case that SPX futures lead VIX futures via the leverage effect.

Hence, it is an empirical question which of the channels dominate.

3 Lead-lag methodology

Many studies on lead-lag relations are concerned with assets that are closely linked together

such that a cointegrating relation of the prices can be assumed. In those settings, the informa-

tion share (Hasbrouck, 1995) or the common factor component weight approach (Gonzalo and

Granger, 1995) are often applied. However, it is inappropriate to impose the assumption of

cointegration when describing the relation between VIX futures and SPX futures. Instead we

analyze the lead-lag relationship through the cross-correlation function and the cross-market

activity measure. In section 3.1 we describe how to obtain the cross-correlation function using

the techniques of Hayashi and Yoshida (2005); Hoffmann et al. (2013), and section 3.2 presents

three different quantifications of the lead-lag relation based on the cross-correlation function.

Finally, Section 3.3 presents the methodology behind the cross-market activity measure of Do-

brev and Schaumburg (2017).
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3.1 Estimation of the cross-correlation function

Based on Hayashi and Yoshida (2005) and Hoffmann et al. (2013), the cross-correlation for

two assets, A and B, is estimated as

ρ̂HY (ϑ) =

∑
nA
i=1 ∑

nB
j=1 ∆tA

i
XA∆tB

j
XB1{

(tA
i−1,t

A
i ]∩(tB

j−1−ϑ ,tB
j −ϑ ]6= /0

}√
∑

nA
i=1

(
∆tA

i
XA
)2
√

∑
nB
j=1

(
∆tB

j
XB
)2

(3)

which we shall refer to as the HY estimator. Here ∆tk
i
Xk = Xk

tk
i
−Xk

tk
i−1

is the log-return of asset

k, and i = 1, . . . ,nk meaning that the returns entering in equation (3) are computed between

each single tick, tk
i . The product of two returns is included in the sum whenever the time

intervals over which the returns are realized is overlapping. Inspired by Dao et al. (2018),

we use Figure 2 to illustrate this. By focusing on the first two line segments, we ignore the

possibility of shifting the time-stamps so ϑ = 0. As an example, considering the three intervals

of asset B, J1, J2 and J3. J1 intersects with I2, J2 intersects with I2, while J3 intersects with I2,

I3 and I4. Thus, the contribution to the sum based on each of the three intervals is ∆tB
1
XB∆tA

2
XA,

∆tB
2
XB∆tA

2
XA and ∆tB

3
XB(∆tA

2
XA +∆tA

3
XA +∆tA

4
XA), respectively. Hence, it is possible that the

same return can contribute to the sum more than once as it will enter every time the interval

intersects with one of the intervals of the other asset. Note that when implementing equation

(3), the return over I1 will not influence the correlation as the indicator function equals zero for

intervals that do not intersect with any of the intervals of the other asset.

Repeatedly adjusting the time-stamps of the second asset by different values of ϑ , allows

us to compute the cross-correlation function. The shift of the time-stamps is illustrated in the

lower part of Figure 2. Note that only the time-stamps of one of the two assets are shifted while

the time-stamps of the other remain fixed. The returns ∆tk
i
Xk for k = A,B are invariant to the

shift of the time-stamps meaning that only the indicator function changes as ϑ changes. Thus,

it is the same returns that enter equation (3) for each ϑ but they are multiplied and summed in

different ways.
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A
tA
0 tA

1 tA
2 tA

3 tA
4

I1 I2 I3 I4

B
tB
0 tB

1 tB
2 tB

3

J1 J2 J3

B′
t ′B0 t ′B1 t ′B2 t ′B3

J′1 J′2 J′3
ϑ

Figure 2: Illustration of the time-stamp adjustment for the cross-correlation functions.

3.2 Lead-lag time, lead-lag correlation and lead-lag ratio

To measure the lead-lag relation between two assets, Hoffmann et al. (2013) define the lead-

lag time (LLT) as the value of ϑ that maximizes the absolute value of the cross-correlation

function, |ρ̂HY (ϑ) |, across all ϑ on some grid. If the absolute correlation is maximized at

a point ϑ 6= 0 then one asset is leading the other. Under certain assumptions, the point is a

consistent estimator of the true LLT (Hoffmann et al., 2013).

While LLT measures the amount of time by which an asset leads the other, knowledge of

the value of the cross-correlation function at the point corresponding to LLT is also informative

about the nature of the lead-lag relation. The value of the cross-correlation at this point is

referred to as the lead-lag correlation (LLC) (Dao et al., 2018).

Both LLT and LLC focus on a single point of the cross-correlation function. However, the

rest of the cross-correlation function also contains relevant information about the strength of

the lead-lag relation. The lead-lag ratio (LLR) of Huth and Abergel (2014) accounts exactly for

this by compressing the entire cross-correlation function into a single measure of the lead-lag

relation. Considering all the positive time-stamp adjustments (ϑ1, . . . ,ϑp), LLR is defined as

LLR =
∑

p
i=1 ρ̂2

HY (ϑi)

∑
p
j=1 ρ̂2

HY
(
−ϑ j

) . (4)

The ratio captures the relative forecasting ability of one asset over the other. When LLR> 1

it means that the correlations at positive lags are overall larger than the correlations at negative
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lags. Thus, the asset for which the time-stamps are kept fixed will lead the asset for which the

time-stamps are adjusted (asset A will lead asset B in Figure 2). The conclusion of the leader-

ship is the opposite if LLR < 1 where the asset with fixed time-stamps lags the other (asset B

leads asset A). Compared with LLT, LLR takes into account the overall predictive power of the

returns of one asset on the returns of the other asset by summing the squared correlations. The

conclusion on the lead-lag relation drawn from LLT is generally more sensitive to the shape of

the cross-correlation function as small variations in its shape could shift LLT from a positive

to negative value and vice versa. LLT may also have limited ability to capture differences in

the strength of the leadership that may exist even when two LLTs are close to each other. For

instance, consider the two cases illustrated in Figure 3 where LLT and LLC are the same but

the behavior of the cross-correlation function to the right of LLT is very different. In the plot to

the left, the cross-correlation function goes to zero very quickly while in the plot to the right,

the cross-correlation slowly decays to zero for values of ϑ higher than LLT. Hence, the lead-lag

relation depicted in the plot to the left is much stronger than the one to the right. Still LLT and

LLC will be identical and only LLR will capture this difference in the strength of the lead-lag

relation. LLR could in fact lead to a different conclusion on the lead-lag relation than LLT.

In order to strengthen the robustness of our results, LLR is therefore considered an important

measure of the lead-lag relation in the following analysis.

LLT

LLC

ϑ

ρ

LLT

LLC

ϑ

ρ

Figure 3: Illustration of cross-correlation functions.
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3.3 Measuring cross-market activity

While the lead-lag measures of Section 3.2 are based on prices, we here present another

measure of the lead-lag relation based on Dobrev and Schaumburg (2017) which is model-free

and does not utilize prices. Instead the time-stamps of a well-defined activity, such as trading

are used. The idea is to identify all so-called active time-stamps. A time-stamp is active if

the specified activity takes place at that time-stamp. The total number of time-stamps with

simultaneous activity is then summed over the trading day and shows how often both markets

are active at the same time. Assuming that ϑ = 0, this number can be obtained as

X raw
ϑ =

N−|ϑ |

∑
i=|ϑ |+1

1{market A active in period i}∩{market B active in period i+ϑ} (5)

where N is the total number of time-stamps. With data at millisecond frequency, this is the

total number of milliseconds over the trading day. The number of cross-active time-stamps

can be scaled by the total number of active time-stamps in the least active market to measure

cross-market activity as a proportion of the total activity

X rel
ϑ =

X raw
ϑ

min
{

∑
N−|ϑ |
i=|ϑ |+1 1{market A active in period i},∑

N−|ϑ |
i=|ϑ |+1 1{market B active in period i+ϑ}

} . (6)

In order to capture only the activity which has a cross-market dimension, a further adjustment

is implemented to account for the simultaneous activity which would occur simply by random-

ness. This gives cross-market activity in excess of what would be expected by coincidence

given that activity in the two markets is independent of each other. It is defined as

Xϑ = X rel
ϑ −X rel

∞ (7)

where the adjustment term is defined as X rel
∞ = 1/(2(T2−T1))∑

T2
|ϑ |=T1+1 X rel

ϑ
for sufficiently

large T2 > T1. In addition to simultaneous activity where ϑ = 0, time-stamps are shifted forward

or backward in time when considering non-zero values of ϑ . For a set of different values of
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ϑ , a full curve for the proportion of cross-market activity can be obtained. We illustrate this

in Figure 4, and denote the value of the time-stamp shift corresponding to the maximum of the

curve by the cross-market activity time (CMAT), while the peak cross-market activity (PCMA)

is the value of the cross-market activity, Xϑ , at the point.

CMAT

PCMA

ϑ

X

Figure 4: Illustration of cross-market activity function.

4 Empirical analysis

In this section, we detail the empirical analysis of the paper. First, Section 4.1 describes

the data used for the analysis. Next, Section 4.2 presents the results on the overall lead-lag

relationship between VIX futures and SPX futures. Section 4.3 shows the results of the cross-

market activity analysis. In Section 4.4, we introduce the regression model for the dynamics

of the lead-lag relation and present the regression results. Finally, Section 4.5 examines if VIX

futures hedging impacts the SPX futures market through an uninformed channel.

4.1 Data

For the analysis we collect data over the period from January 2013 to September 2020.

Tick-by-tick trade data on E-mini S&P 500 futures and VIX futures are obtained from the Tick

Data database. For each sample date, the VIX futures contract used for the analysis is the

one closest to an expiry of 30 days and the SPX futures contract used is the one closest to

13



Table 1: Descriptive statistic of VIX futures and SPX futures markets

VIX futures SPX futures

Trading volume

Mean 78,224 1,292,320
Median 68,311 1,199,596
Min 18,432 286,808
Max 386,637 3,983,301
Std. dev. 43,221 465,899

Dollar volume (in mm)

Mean 1,355 149,368
Median 1,113 136,824
Min 280 29,911
Max 10,365 567,136
Std. dev. 941 60,032

Statistics are computed from daily observations over the sample period. For
each sample date, the VIX futures contract used is the one with an expiry closest
to 30 days. The SPX futures contract is the one closest to expiration except when
this is less than six days. Trading and dollar volume are obtained over the time
interval 9:30-16:15 EST.

Table 2: VIX exchanged-traded products

Ticker Name Leverage First day of trading Last day of trading

VXX iPath Series S&P 500 VIX Short Term Futures ETN 1 20090130
VIXY ProShares VIX Short-Term Futures ETF 1 20110104
VIIX VelocityShares Daily Long VIX Short-Term ETN 1 20101130 20200702
VMAX REX VolMAXX Long VIX Futures Strategy ETF 1 20160503 20180724
UVXY ProShares Ultra VIX Short-Term Futures ETF 2a 20111004
TVIX VelocityShares Daily 2x VIX Short-Term ETN 2 20101130 20200702
IVO iPath Inverse S&P 500 VIX Short-Term Futures ETN -1 20110114 20110916
IVOP iPath Inverse S&P 500 VIX Short Term Futures ETN -1 20110919 20180323
SVXY ProShares Short VIX Short-Term Futures ETF -1b 20111004
XIV VelocityShares Daily Inverse VIX Short-Term ETN -1 20101130 20180215
VMIN REX VolMAXX Short VIX Futures Strategy ETF -1 20160503 20181126

a The target leverage was changed from 2 to 1.5 as of February 28, 2018.
b The target leverage was changed from -1 to -0.5 as of February 28, 2018.

expiry except when time to expiry is less than six days where we shift to the next contract. We

focus only on trades during the regular trading hours of VIX futures, 9:30-16:15 EST. Any date

where the exchanges closed earlier is removed from the sample. Trades with a negative price

are removed. For the purpose of computing the lead-lag measures of Section 3, trades sharing

the same time-stamp are replaced by a single trade with a price equal to the median price of the

trades. Table 1 shows trading and dollar volume for VIX futures and SPX futures. Clearly, SPX

futures are more heavily traded than the VIX futures both when measured in terms of trading

and dollar volume.

Time series of the SPX index, the VIX index, and VIX futures closing prices and open

interest are collected from the CBOE homepage. Dates of scheduled release of information on
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the U.S. Consumer Price Index, Producer Price Index, Employment Situation or Gross Domes-

tic Product are obtained from Archival Federal Reserve Economic Data (ALFRED). The net

gamma position of dealers is estimated utilizing daily options data provided by OptionMetrics.

Daily data on the assets under management (AUM) and prices of VIX ETPs are obtained from

Bloomberg. Table 2 contains a list of the VIX ETPs included in the sample.

4.2 The lead-lag relationship based on the cross-correlation function

In this section, we present the overall results on the lead-lag relation based on the mea-

sures of the lead-lag relation detailed in Section 3.1 and 3.2. For the computation of cross-

correlations, we keep the time-stamp of the SPX futures trades fixed and shift the time-stamps

of the VIX futures trades. To estimate the cross-correlation function, the grid of ϑ is chosen

such that it is finer around zero and less dense as we move away from zero. This is since we

expect that the lead-lag time to be small so we want to be able to capture variations in the

correlation at a higher detail around zero. Hence, the grid is chosen as

−60,−59.9,...,−1.1,−1,−0.99,...,−0.11,−0.1,−0.099,...,−0.001,0,0.001,...,0.099,0.1,0.11,...,0.99,1,1.1,...,59.9,60

where the numbers are in seconds and where the largest value (±60 seconds) reflect the max-

imum allowed lead-lag. When the grid is most narrow, the length between two grid points is

one millisecond which corresponds to the precision at which the trades are measured.

Figure 5 depicts the median of the cross-correlation. The peak of the function is around a

lag of zero and the cross-correlation function is close to zero for lags greater than approximately

20 seconds in absolute value. Zooming in on lags within 2 seconds, we observe a skewed shape

of the cross-correlation function with more weight on the left part of the curve. On average,

this translates into a LLR measure less than 1. Hence, on average VIX futures lead the SPX

futures.

Figure 6 shows the time series of the three lead-lag measures of Section 3.2 together with

time series of the VIX index and the SPX index. The shaded areas of the chart represent

the dates with a VIX level belonging to the 60% upper quantile corresponding to values above
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(a) ±60 seconds (b) ±2 seconds

Figure 5: Median cross-correlation functions.

15.14%. Inspection of the upper panel of Figure 6 confirms what Figure 5 indicates, namely that

on most dates the VIX futures lead the SPX futures (LLR less than one). We also notice some

interesting features of the lead-lag measures on dates of high volatility: First, LLR seems to

be more stable and around a level of approximately 0.8. Second, LLT is erratic when volatility

is low while close to zero in high volatility regimes. Third, LLC gets more pronounced when

volatility is high.

Table 3 reports descriptive statistics on the three lead-lag measures. Based on the observa-

tions connected to Figure 6, we also compute the statistics conditioned on the volatility being

in the upper quartile. Additionally, we split the sample into the period before and after the

beginning of the covid-19 crisis using February 20, 2020 as the cut-off date. In terms of the

mean and median values, the LLR measure is relative stable across all four samples. How-

ever, the variability in the LLR measure is much lower conditioned on the volatility being high.

Considering LLT, the picture is more extreme. On the full sample, LLT varies in the interval

[−60 seconds,60 seconds] but with an average/median value of -0.63/-0.01 seconds. In com-

parison and on the high volatility sample, LLT is much more concentrated around 0 with a

minimum value of -2.90 seconds and a maximum value equal to 0.66 seconds. Focusing on the

two sub-periods defined by the onset of the covid-19 crisis, it seems that the covid-19 period is

associated with a much tighter lead-lag time and with much lower variability in all the lead-lag

measures. However, we note that with respect to the LLT measure, the covid-19 period differs
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Figure 6: LLR, LLT, LLC and VIX and SPX index over the sample period. The shaded areas
represent the dates with a level of the VIX index belonging to the 60% upper quantile.



Table 3: Descriptive statistic of lead-lag measures.

Full sample VIX upper quartile Before covid-19 Covid-19 period
LLR LLT LLC LLR LLT LLC LLR LLT LLC LLR LLT LLC

Mean 0.84 -0.63 -0.09 0.78 -0.01 -0.19 0.84 -0.68 -0.07 0.82 0.01 -0.28

Median 0.80 -0.01 -0.06 0.77 0.00 -0.17 0.80 -0.02 -0.06 0.83 0.02 -0.27

Min 0.27 -59.70 -0.50 0.51 -2.90 -0.50 0.27 -59.70 -0.34 0.57 -0.59 -0.50

Max 2.27 58.70 0.03 1.16 0.66 -0.02 2.27 58.70 0.03 0.97 0.04 -0.05

Std. dev. 0.20 10.55 0.08 0.10 0.16 0.09 0.21 11.00 0.06 0.08 0.05 0.10

The covid-19 period covers all sample dates after February 20, 2020.

from the sample conditioned on a high volatility level, where the measure based on the former

sample is on average slightly positive while slightly negative in the latter.

We illustrate in Figure 7 kernel densities of the three measures of lead-lag strength com-

puted for the sample conditioned on the VIX index being above and below its upper quartile.

The figure confirms the findings reported in Table 3. When the level of volatility is high, the

densities associated with LLT and LLR are more peaked with the mass more concentrated

around the mean of the distribution. Focusing on the third chart, we see that LLC gets more

pronounced in high volatility regimes in comparison to regimes with low VIX index values.

Hence, the lead-lag relation is strengthened (measured by LLC and LLR) but is short-lived

during high volatility (measured by LLT). A similar result is found in Buccheri et al. (2021),

where the lead-lag correlation is found to strengthen among stocks when volatilities are high,

while being more erratic in low volatility regimes. Other studies find that correlations at a daily

frequency tend to increase between the VIX index and the SPX index when market movements

are big (Cont and Kokholm, 2013; Todorov and Tauchen, 2011). The connection between the

lead-lag relationship and the level of volatility can possibly be prescribed to different types of

trading. First, in the context of high-frequency observations, Buccheri et al. (2021); Zhang

(2010); Dobrev and Schaumburg (2017) argue that the relation between high-volatility and

lead-lag relationships can be ascribed to high-frequency traders exploiting statistical depen-

dencies across markets appearing when the volatility is high. In relation to VIX futures and

SPX futures, this means that stronger negative correlation in periods of high volatility is pos-

sibly exploited by high-frequency traders reducing LLT to almost zero. Alternatively, in high
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Figure 7: Kernel densities of lead-lag measures.

volatility regimes the demand for long positions in volatility tend to be high, with resulting high

level of VIX futures hedging activities performed by market makers. These hedging activities

could strengthen the VIX futures lead while pushing LLT towards zero.

4.3 Cross-market trading analysis

In this section, we quantify the cross-market activity described in Section 3.3 by using

trading as the activity of interest. The measure is computed with a time-shift, ϑ , within

[−1000,1000] where increments are of one millisecond and with T1 = 500 and T2 = 1000

as in Dobrev and Schaumburg (2017). For each sample date, Figure 8 plots the millisecond

at which the cross-market activity peaks (CMAT) and the value of cross-market activity at the

peak (PCMA) together with the VIX and SPX index. From the third panel showing PCMA,

we see a clear connection with the level of the VIX index as the peak of cross-market activ-

ity increases during periods of high VIX indicated by the shaded areas. PCMA reaches its

highest level at the beginning of the covid-19 pandemic. To the extend that cross-market ac-

tivity is driven by high-frequency trading, the relation between cross-market activity and VIX

is consistent with a feedback effect between volatility and high-frequency trading described by

Dobrev and Schaumburg (2017). Heightened levels of volatility attracts more high-frequency

trading and the increased presence of high-frequency traders generates even higher levels of

volatility. Comparing this with LLC in Figure 6, we see that they appear be to negatively re-
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Figure 8: CMAT (milliseconds at peak), PCMA (peak cross-market activity) and VIX and SPX
index over the sample period. The shaded areas represent the dates with a level of the VIX
index belonging to the 60% upper quantile.



Figure 9: Comparison of LLT and CMAT. The subsamples are based on the level of the VIX
index. The red line is a 45-degree line meaning that when points are above (below) the line,
LLT indicates a greater (smaller) lead of the VIX futures compared to CMAT. The values of
both LLT and CMAT are shown in milliseconds.

lated, and a computation of the correlation between the two time series reveals a value of -0.84.

If high-frequency trading is a source of cross-market trading, this means that high levels of

high-frequency trading, strong negative correlation and high volatility occurs simultaneously.

On the other hand, if VIX futures hedging is a source of cross-market trading, the observations

are also consistent with PCMA rising due to increasing VIX futures hedging activity spurred

by the demand for VIX futures under high volatility.

As shown in the first panel of Figure 8, CMAT fluctuates at a level of approximately 560

milliseconds during the first part of the sample and hereafter exhibit a clear shift to values

around zero. Possibly the break can be attributed to some technological change affecting la-

tencies or is a result of how trades are registered.2 The second panel zooms in on CMAT to

examine its fluctuations after the break. Except for a few dates, the series appear to be bounded

within the range of [-20,+30] milliseconds as indicated by the dotted lines. During sub-periods,

2Due to this observation, we exclude sample dates before August 26, 2013 in the remainder of the analysis.
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CMAT seems to be further bounded within even narrower ranges. For instance, the period from

mid-2019 to the end of the sample roughly contains no values outside [-5,+30] milliseconds.

There is also a tendency for the observations to cluster around certain values such as -20, +20,

+30 and values slight below and above zero as indicated by Figure 8 and 9. Possibly this reflects

the true lead-lag time or it may be the result of fluctuations in latencies over time. As indicated

by the shaded areas of Figure 8, CMAT does not show any clear pattern under periods of high

volatility. This contrasts with the LLT measure which exhibits a clear dependence on the VIX

index as illustrated in Figure 6. The difference is also highlighted in Figure 9 where the range

of LLT is significantly narrowed when conditioning on high VIX while the same does not occur

for CMAT which continues to span the same range of values. The overweight of points above

the 45-degree line indicates that on a given sample date CMAT is generally higher than LLT.

4.4 The dynamics of the lead-lag relationship

In order to understand the drivers of the lead-lag relationship, we run a regression where we

choose each of the three measures of the lead-lag relation, LLR, LLT, and LLC as the dependent

variable. Section 4.4.1 introduces the model and presents the argumentation for inclusion of

the independent variables. Next, Section 4.4.2 presents the results of the regressions.

4.4.1 Regression model

Letting LLMt denote the chosen measure of the lead-lag relation, the regression model is

LLMt =β0 +β1PCMA+
t +β2PCMA−t +β3NGP+

t−1 +β4NGP−t−1 +β5LQRt

+β6V IXt +β7SPXt +β8Dnews
t +β9ExpiryV X

t +β10ExpiryES
t + εt .

(8)

Below we present in detail the variables considered in the regression (8):

• Peak cross-market trading activity, PCMAt : The trading activity in the two markets obvi-

ously could have some impact on the lead-lag relationship. In particular, trading activity

which emerge from trading strategies involving both markets should matter. If price
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movements of VIX futures and SPX futures are sufficiently negatively correlated, high-

frequency traders may employ trading strategies akin to statistical arbitrage. Trading

in the two markets may also be linked if market makers hedge their VIX futures ex-

posure using SPX futures. That is, after having provided liquidity in the VIX futures

market, market makers implement their hedge by trading in the SPX futures market as

detailed in Section 2. To proxy the part of the trading activity which is related to these

type of activities, we use the cross-market activity measure introduced by Dobrev and

Schaumburg (2017) and detailed in Section 3.3. For each sample date, our measure of

cross-market trading is the peak of the cross-market activity curve computed from (7).

When CMATt < 0 the maximum cross-market activity is associated with trades in VIX

futures followed by trades in SPX futures and vice versa when CMATt > 0. According

to Figure 1, cross-market trading associated with a negative CMATt would be consis-

tent with VIX futures hedging while cross-market trading with a positive CMATt would

correspond to cross-market trading motivated by other activities. Hence, we use the

two variables PCMA+
t = PCMAt1{CMATt>0} and PCMA−t = PCMAt1{CMATt≤0} in order

to separate the cross-market trading into a component consistent with the VIX futures

hedging strategy (PCMA−t ) and a component which would generally not be consistent

with hedging (PCMA+
t ).

On days where VIX futures hedging is the main source for cross-market activity, we

expect that CMATt < 0 and that higher cross-market activity strengthens the lead of the

VIX futures, i.e. PCMA−t has a negative impact on LLR. We also expect that the hedging

activities would introduce additional negative correlation between returns as buying in

the VIX futures market is accompanied by selling in the SPX futures market and vice

versa. Hence, we should expect to see stronger negative correlation on days of sizable

VIX futures hedging activities, meaning that PCMA−t has a negative impact on LLC.

When CMATt > 0 the cross-market trading can to a lesser extent be attributed to VIX

futures hedging activities of dealers. Instead a high level of cross-market trading can be

an indicator of a significant amount of high-frequency traders present in the two markets.
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For high-frequency trading, we have no expectation of which direction the lead-lag re-

lation will be pushed but we expect that it will strengthen the negative correlation, i.e.

PCMA+
t has a negative impact on LLC.

• Net gamma position of dealers, NGPt−1: As illustrated in Figure 1, an aggregate negative

gamma position of dealers has the potential to amplify market movements and possible

feedback effects from VIX futures hedging as the option dealers delta hedge in the same

direction as the market. In contrast, a positive position in gamma works in the opposite

direction, since the position implies that in order to maintain the hedge after a market

drop, dealers have to buy SPX futures, and reversely, when the stock index increases

they should sell SPX futures. Hence, we include a variable NGP−t−1 composed of all

the days where the gamma position is negative and a variable NGP+
t−1 for all the days

where the position is positive. We lag the variable by one day so it measures the dealers’

gamma position by the beginning of day t. We retrieve closing prices on options from

OptionMetrics and estimate the daily net gamma position making some assumptions:

First, we assume that end user demand in put options is long and on call options short.

This claim is empirically justified by Garleanu et al. (2008); Goyenko and Zhang (2019).

Using this assumption and similar to the analysis in Baltussen et al. (2021); Barbon and

Buraschi (2020), we construct our proxy for the net gamma position at time t as

NGPt =
NC

t

∑
i=1

Γ
BS
t (Ci)OIt(Ci)−

NP
t

∑
i=1

Γ
BS
t (Pi)OIt(Pi),

where NC
t is the number of call options traded at time t with open interest greater than 0

and NP
t the equivalent counterpart on the put side. ΓBS

t (Ci) denotes the Black and Scholes

gamma of call option i and OIt(Ci) is the option’s open interest. Similar notation holds

for put options.

Figure 10 depicts the estimated gamma position throughout the sample period. The

gamma of the options position fluctuates around zero. However, when markets are in

turmoil, as measured by a high level of the VIX index, the position is mostly negative
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Figure 10: Dealer net gamma position. The shaded areas represent the dates with a level of the
VIX index belonging to the 60% upper quantile.

and the gamma can move rapidly from positive to negative when volatility increases.

• The relative liquidity of the two markets, LQRt : We define the relative liquidity of

the two markets as the Amihud liquidity measure (Amihud, 2002) computed for the

SPX futures market relative to the same measure computed for the VIX futures mar-

ket, LQRt = AMHES
t /AMHV X

t . For each of the two markets, the Amihud measure is

obtained as

AHMt =
1
N

N

∑
i=1

|ri|
Vol$

i

with N being the number of 5-minute intervals during the trading day, and ri and Vol$
i

is the return and dollar volume, respectively, over the ith interval. Traditionally, price

discovery tends to occur in the market with the highest level of liquidity (Kyle, 1985).

Hence, the relative liquidity in the two markets could be an important driver of the lead-

lag relationship. Since the Amihud measure is inversely related to the level of liquidity

we expect that an increase (decrease) in LQRt leads to a stronger (weaker) VIX futures

lead.

• The VIX index, V IXt : There are at least two reasons why the VIX index should be in-

cluded as regressor. First, there is mixed evidence on whether informed trading occurs

at the index level. Pan and Poteshman (2006) do not find evidence that index option
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trading is informative about future changes in the index while Li et al. (2017) find that

informed SPX option trading take place during the financial crisis. Informed trading can

arise due to better information processing skills or different views about the same pub-

licly available information which may be more common during volatile periods (Ciner

and Karagozoglu, 2008). If informed trading is present at the index level and increases

with the amount of volatility then informed traders preferring to trade VIX (SPX) fu-

tures means that higher VIX will negatively (positively) impact LLR and LLT. Second,

a short SPX futures position provide a hedge against stock market crashes and with a

negative correlation between the SPX and the VIX index, so does a long VIX futures

position (Moran and Dash, 2007; Szado, 2009; Hilal et al., 2011). Thus, high volatility

or uncertainty could create SPX futures selling pressure and VIX futures buying pres-

sure. Whether investors prefer to insure against crashes with one or the other of the

futures contracts under high volatility will be revealed by the sign of the coefficient on

VIX. With investors’ increasing demand for protection at times of high VIX, we then

expect that LLC decreases in response to an increase in VIX. Furthermore, other lead-lag

studies have shown the importance of volatility. For instance, Chen et al. (2016) show

a dependence on volatility as the relative informativeness of SPX futures and SPY is re-

versed under high volatility. In the present study, inspection of Figure 6 also indicates

a clear pattern related to the volatility: Under high volatility, LLR is slightly below one

while more erratic in periods of low volatility. LLT is generally close to zero under high

volatility but otherwise extremely erratic. Moreover, LLC tend to be stronger and more

negative in high volatility regimes. To account for all this, we also include the level of

the VIX index in the set of regressors.

• SPX return, SPXt : Ren et al. (2019) suggest that the lead-lag relation between index op-

tions and the index is reversed when the index is not stable or up-trending. Lee et al.

(2017) show how the predictability of the VIX futures basis on SPX futures returns

changes across the SPX return distribution. These results indicate the SPX return could

influence the lead-lag relation. Hence, we include the daily SPX return in the regression.
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Table 4: LLR

LLR (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Constant
0.893∗∗∗ 0.921∗∗∗ 0.928∗∗∗ 0.825∗∗∗ 0.851∗∗∗ 0.837∗∗∗ 0.883∗∗∗ 0.907∗∗∗ 0.917∗∗∗ 0.847∗∗∗ 0.861∗∗∗ 0.854∗∗∗ 0.882∗∗∗ 0.899∗∗∗ 0.917∗∗∗

(80.284) (45.123) (45.291) (97.290) (38.513) (44.206) (70.885) (43.768) (44.155) (64.175) (36.927) (40.482) (69.003) (42.735) (44.081)

PCMA+
t

-1.627∗∗∗ -1.938∗∗∗ -1.715∗∗∗ -1.515∗∗∗ -1.904∗∗∗ -1.647∗∗∗ -1.530∗∗∗ -2.062∗∗∗ -1.697∗∗∗

(-6.026) (-5.849) (-6.242) (-4.834) (-5.297) (-5.079) (-4.698) (-5.540) (-5.063)

PCMA−t
-3.835∗∗∗ -4.080∗∗∗ -3.948∗∗∗ -3.698∗∗∗ -3.997∗∗∗ -3.859∗∗∗ -3.718∗∗∗ -4.098∗∗∗ -3.933∗∗∗

(-11.982) (-11.748) (-12.278) (-10.088) (-10.459) (-10.367) (-9.954) (-10.629) (-10.353)

NGP+
t−1

0.093∗∗ 0.087∗∗ 0.093∗∗ 0.070∗ 0.072∗ 0.067 0.070∗ 0.075∗ 0.068
(2.122) (1.981) (2.131) (1.651) (1.724) (1.608) (1.661) (1.776) (1.630)

NGP−t−1
0.074∗∗∗ 0.065∗∗∗ 0.074∗∗∗ -0.004 -0.005 -0.008 -0.004 -0.013 -0.008
(5.262) (4.646) (5.285) (-0.280) (-0.352) (-0.601) (-0.267) (-0.876) (-0.549)

LQRt
-22.626∗∗ -19.095∗ -22.701∗∗ 0.798 -7.009 2.353
(-2.334) (-1.710) (-2.394) (0.167) (-1.255) (0.480)

V IXt
0.001 -0.001 0.001∗ -0.001 0.002∗∗

(1.428) (-1.361) (1.802) (-0.654) (2.457)

SPXt
-0.512∗∗ 0.263 -0.485∗ 0.190 -0.647∗∗

(-1.986) (1.250) (-1.837) (0.631) (-2.490)

Dnews
t

-0.001 -0.001 -0.001 -0.000 -0.001 -0.001 -0.000 -0.000 0.000 -0.000
(-0.054) (-0.073) (-0.048) (-0.025) (-0.050) (-0.078) (-0.045) (-0.039) (0.005) (-0.028)

ExpiryV X
t

-0.001∗ -0.001∗ -0.000 -0.000 -0.001∗ -0.001∗ -0.000 -0.000 -0.001∗ -0.001∗

(-1.826) (-1.778) (-0.429) (-0.407) (-1.706) (-1.663) (-0.511) (-0.491) (-1.717) (-1.693)

ExpiryES
t

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000
(-0.680) (-0.563) (-0.444) (-0.540) (-0.726) (-0.583) (0.050) (0.081) (-0.642) (-0.648)

Adj. R2 (%) 8.69 8.74 8.77 2.64 2.58 2.48 8.92 8.97 8.96 1.42 1.24 1.22 8.84 8.98 8.92
No. of Obs. 1772 1772 1772 1768 1768 1768 1768 1768 1768 1766 1766 1766 1762 1762 1762

Newey-West t-statistics are in parenthesis. ∗∗∗, ∗∗, ∗ indicates 1%, 5% and 10% significance, respectively. Due to the break in CMAT shown in Figure 8, we
exclude the first part of the sample making August 26, 2013 the first sample date. The regression model is shown in (8).

• News announcements, Dnews
t : Frino et al. (2000) show that the leadership of stock index

futures relative to the stock index itself is strengthened around the time of macroeco-

nomic announcements, while Chen and Tsai (2017) find that VIX futures lead the VIX

index more on the days of the release. Based on the possible variations in the lead-lag

relationship around these announcements, we also include a dummy variable equal to

one on the days of U.S. macroeconomic news release. The announcement dates are the

dates of scheduled release of information on the Consumer Price Index, Producer Price

Index, Employment Situation or Gross Domestic Product.

• Time to expiry, ExpiryV X
t and ExpiryES

t : We further control for the time to expiration of

the VIX futures and SPX futures contracts used to compute the lead-lag measure.

4.4.2 Regression results

In this section we run the regression specified in equation (8) and report the results of the

regressions with each of the lead-lag measures as the dependent variable.

The results of the regression with LLR as the dependent variable are shown in Table 4. All

the coefficients on the cross-market activity variables are significant and suggest that a higher
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Figure 11: Average cross-correlation function for subsamples of positive CMAT-days. Quar-
tiles of PCMA is found for the subsample where CMAT is positive. The average is taken over
the cross-correlation function for the subsample where PCMA is above (below) the respective
quartiles and where CMAT is positive. The two figures are identical except for the finer scale
on the right figure.

proportion of cross-market trading relative to the total amount of trading strengthens the lead

of the VIX futures. Since PCMA−t captures cross-market activity with CMATt < 0, it measures

activity only on days where VIX futures trading is followed by SPX futures trading. According

to the hedging strategy, any changes in the VIX futures exposure of dealers would be hedged in

the SPX futures market making the SPX futures trades lag the VIX futures trades. We take the

strong significance of PCMA−t as an indication that VIX futures hedging activities are driving

the strengthening of the VIX futures lead on these days. The coefficient on the level of cross-

market trading conditioned on CMATt > 0 is less intuitive. A positive CMATt means that SPX

futures trading is followed by VIX futures trading. This is an indication of SPX futures leading

VIX futures. However, when the cross-market activity increases for days with CMATt > 0

we observe a negative impact on LLR meaning that the VIX futures lead is strenghtened (or

the SPX futures lead is weakened). Figure 11 depicts the average cross-correlation function

conditioned on CMATt > 0 and PCMAt being in the lower and upper quartile, respectively.

Notice, when cross-market activity increases, the cross-correlation function shifts downwards

and becomes more skewed to the left. In particular, the change in skew is reflected in a decrease

in LLR. Hence, even in the case when cross-market activity is high and arise from SPX futures

trades leading the VIX futures trading, the VIX futures returns are more informative about
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Figure 12: Average cross-correlation function for subsamples of positive and negative positions
in gamma. The two figures are identical except for the finer scale on the right figure.

future SPX futures returns in comparison to the reverse direction.

We now focus on the two regressors associated with the net gamma position in column (4)-

(6). A negative gamma position is associated with a stronger VIX futures lead while a positive

position moves LLR in the opposite direction. Moreover, consistent with the observation that a

negative gamma amplifies market movements, we observe from column (4)-(6) in Table 6 how

LLC becomes more negative when the net gamma is negative. In contrast, when the gamma

position is positive, the LLC measure increases and approaches zero from below. Both effects

are clearly illustrated in Figure 12, where the average cross-correlation curves are depicted

conditioned on NGPt−1 > 0 and NGPt−1 ≤ 0, respectively. In particular, the stronger VIX

futures lead for negative gamma positions seems to arise from the curve becoming even more

skewed to the left when NGPt−1 ≤ 0. This observation, is aligned with the negative gamma

position amplifying market movements due to hedge positions being rebalanced as illustrated

in Figure 1. However, after including the cross-market activity variables in column (7)-(9) of

Table 4, especially the negative net gamma position is insignificant. This indicates that the

source of the VIX futures leadership is more likely to be related to VIX futures hedging than

the feedback loop associated with option market makers rebalancing of hedges.

The coefficient on the relative liquidity ratio in column (10)-(12) is negative and signifi-

cantly different from zero. Hence, when the relative liquidity improves in favor of the VIX
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futures market, the VIX futures lead is strengthened while the opposite holds for the reverse

scenario. This is a relation which also exists after controlling for the level of VIX and SPX

returns and the pattern would be consistent with investors preferring to trade in the most liquid

market. However, column (13)-(15) shows that once additional variables are included in the

regression, the relative liquidity is no longer significant in explaining LLR.

The pattern in Figure 6 showed that periods of high VIX are characterized by LLR less

than one. However, when other variables are accounted for in the regressions there is no clear

relation between LLR and the level of the VIX index. The same holds for the SPX return

which has a negative coefficient and is significant only in the regressions including the cross-

market variables. Since the level of the VIX index could say something about the amount of

private information, as described in Section 4.4.1, the lack of a clear relation between LLR

and the level of the VIX index thus does not provide further evidence of informed investors

preferring one market over the other. Likewise, for the inclusion of the VIX index motivated

by an attempt to measure investors’ preferences for obtaining protection at times of market

turmoil, the regressions do not reveal that the market generally prefers one of the contracts over

the other for different levels of VIX.

The regression results for LLT are shown in Table 5 and are less appealing to interpret. A

quick glance at Figure 6 reveals that LLT is fluctuating wildly around zero during low volatility

periods, while being close to zero when volatility is high. This can explain why the R-squared

is close to zero across all the LLT regressions. Hence, as argued in Section 3.2, LLR is the more

robust measure of the lead-lag relation and we therefore mainly rely on results from Table 4

when drawing conclusions regarding the lead-lag relation.

The LLC measure is different from the other two measures as it does not say anything

about which asset is the leader. Instead it measures the value of the cross-correlation at the

peak located at LLT (see Figure 3). If we focus on the regressions of column (1)-(3) in Table

6 we observe some interesting features: For both of the cross-market trading variables we see

that when they increase, the negative correlation between VIX futures and SPX futures returns

gets more pronounced. With investors buying (selling) VIX futures and VIX futures dealers
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Table 5: LLT

LLT (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Constant
-1.677∗∗ -3.025∗∗∗ -2.918∗∗∗ -0.679∗ -2.382∗∗ -1.656 -1.416∗∗ -2.714∗∗ -2.619∗∗ -1.311∗∗∗ -2.692∗∗∗ -2.163∗∗ -1.542∗∗ -2.586∗∗ -2.646∗∗

(-2.490) (-2.816) (-2.619) (-1.885) (-2.225) (-1.607) (-2.068) (-2.384) (-2.197) (-2.718) (-2.729) (-2.224) (-2.209) (-2.344) (-2.214)

PCMA+
t

37.609∗∗ 36.199∗∗ 37.904∗∗ 35.768∗∗ 36.938∗∗ 35.961∗∗ 31.735∗ 38.875∗∗ 32.358∗∗

(2.516) (2.172) (2.544) (2.250) (2.085) (2.262) (1.923) (2.143) (1.981)

PCMA−t
35.329∗∗ 35.041∗∗ 35.533∗∗ 32.782∗ 34.706∗ 32.880∗ 28.953 34.948∗ 28.633
(2.078) (1.967) (2.090) (1.814) (1.822) (1.816) (1.571) (1.815) (1.573)

NGP+
t−1

-2.004 -1.679 -1.978 -1.796 -1.704 -1.749 -1.699 -1.694 -1.669
(-0.911) (-0.766) (-0.897) (-0.826) (-0.785) (-0.803) (-0.780) (-0.778) (-0.768)

NGP−t−1
-0.864∗ -0.412 -0.874∗ 0.202 0.277 0.198 0.412 0.500 0.320
(-1.757) (-1.014) (-1.763) (0.523) (0.729) (0.518) (1.039) (1.145) (0.784)

LQRt
500.540∗∗ 218.982 492.935∗∗ 214.915 245.201 182.957

(2.172) (0.885) (2.187) (1.168) (1.009) (1.044)

V IXt
0.009 0.049∗∗ 0.004 0.049 -0.018

(0.423) (2.078) (0.198) (1.528) (-0.620)

SPXt
-13.740 -23.291∗∗ -14.645 -26.982∗∗ -20.851∗∗

(-1.485) (-2.210) (-1.561) (-2.436) (-2.009)

Dnews
t

-0.102 -0.103 -0.081 -0.092 -0.095 -0.095 -0.082 -0.084 -0.094 -0.087
(-0.181) (-0.183) (-0.143) (-0.163) (-0.168) (-0.168) (-0.147) (-0.150) (-0.167) (-0.154)

ExpiryV X
t

0.030 0.030 0.023 0.022 0.029 0.029 0.024 0.023 0.029 0.028
(1.378) (1.390) (1.041) (1.009) (1.335) (1.322) (1.089) (1.047) (1.329) (1.292)

ExpiryES
t

0.006 0.007 0.005 0.006 0.006 0.007 0.004 0.004 0.006 0.006
(0.600) (0.641) (0.495) (0.595) (0.605) (0.634) (0.396) (0.363) (0.520) (0.534)

Adj. R2 (%) 0.25 0.12 0.14 0.09 0.02 -0.02 0.20 0.06 0.08 0.17 0.03 0.05 0.17 0.02 0.05
No. of Obs. 1772 1772 1772 1768 1768 1768 1768 1768 1768 1766 1766 1766 1762 1762 1762

Newey-West t-statistics are in parenthesis. ∗∗∗, ∗∗, ∗ indicates 1%, 5% and 10% significance, respectively. Due to the break in CMAT shown in Figure 8, we
exclude the first part of the sample making August 26, 2013 the first sample date. The regression model is shown in (8).

Table 6: LLC

LLC (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Constant
0.018∗∗∗ 0.071∗∗∗ 0.034∗∗∗ -0.073∗∗∗ 0.046∗∗ -0.083∗∗∗ 0.011∗∗∗ 0.069∗∗∗ 0.027∗∗∗ -0.026∗∗ 0.072∗∗∗ -0.049∗∗∗ 0.023∗∗∗ 0.085∗∗∗ 0.029∗∗∗

(5.536) (6.705) (4.144) (-11.768) (2.387) (-6.365) (3.304) (6.164) (3.267) (-2.518) (6.094) (-3.543) (5.584) (11.972) (3.872)

PCMA+
t

-4.431∗∗∗ -2.609∗∗∗ -4.443∗∗∗ -4.344∗∗∗ -2.642∗∗∗ -4.352∗∗∗ -3.898∗∗∗ -2.354∗∗∗ -3.887∗∗∗

(-20.308) (-11.984) (-20.199) (-16.151) (-11.133) (-15.762) (-17.590) (-15.945) (-17.155)

PCMA−t
-3.660∗∗∗ -2.364∗∗∗ -3.669∗∗∗ -3.544∗∗∗ -2.386∗∗∗ -3.549∗∗∗ -3.152∗∗∗ -2.178∗∗∗ -3.127∗∗∗

(-27.888) (-12.464) (-26.797) (-20.883) (-11.862) (-19.649) (-19.315) (-18.262) (-18.843)

NGP+
t−1

0.063∗∗∗ 0.014 0.065∗∗∗ 0.040∗∗∗ 0.016∗∗ 0.040∗∗∗ 0.031∗∗∗ 0.011 0.031∗∗∗

(3.367) (1.274) (3.544) (4.062) (1.968) (3.953) (3.394) (1.600) (3.403)

NGP−t−1
0.124∗∗∗ 0.043∗∗∗ 0.125∗∗∗ 0.001 -0.005 0.001 -0.021∗∗ 0.006 -0.020∗∗

(8.996) (4.866) (9.247) (0.110) (-0.887) (0.107) (-2.178) (1.067) (-1.991)

LQRt
-52.741∗∗∗ 7.614 -53.570∗∗∗ -21.603∗∗∗ 9.868∗∗∗ -21.444∗∗∗

(-5.995) (1.096) (-6.576) (-4.810) (2.856) (-4.971)

V IXt
-0.006∗∗∗ -0.009∗∗∗ -0.006∗∗∗ -0.011∗∗∗ -0.007∗∗∗

(-6.028) (-7.832) (-5.976) (-15.367) (-13.835)

SPXt
0.075 1.089∗∗∗ 0.108 0.949∗∗∗ 0.242

(0.464) (3.823) (0.628) (3.868) (1.520)

Dnews
t

-0.001 0.001 -0.002 0.000 -0.001 0.001 -0.002 -0.001 -0.001 0.000
(-0.419) (0.367) (-0.782) (0.090) (-0.504) (0.320) (-0.975) (-0.250) (-0.670) (0.117)

ExpiryV X
t

-0.000 -0.000 0.000∗∗∗ 0.001 -0.000 -0.000 0.000∗∗ 0.001∗∗ -0.000 -0.000
(-0.263) (-1.432) (2.901) (1.460) (-0.240) (-1.212) (2.337) (1.993) (-0.225) (-0.783)

ExpiryES
t

-0.000 -0.000∗ 0.000 -0.000 -0.000 -0.000∗ 0.000 0.000 -0.000 -0.000
(-0.789) (-1.774) (0.610) (-0.700) (-0.792) (-1.793) (0.511) (1.262) (-1.362) (-0.636)

Adj. R2 (%) 73.27 85.69 73.53 24.79 74.16 27.04 73.80 85.76 74.04 38.95 76.03 40.67 77.66 87.89 77.74
No. of Obs. 1772 1772 1772 1768 1768 1768 1768 1768 1768 1766 1766 1766 1762 1762 1762

Newey-West t-statistics are in parenthesis. ∗∗∗, ∗∗, ∗ indicates 1%, 5% and 10% significance, respectively. Due to the break in CMAT shown in Figure 8, we exclude
the first part of the sample making August 26, 2013 the first sample date. The regression model is shown in (8).



responding to this by selling (buying) SPX futures, the hedging mechanisms would create a

greater negative correlation explaining the negative coefficient on PCMA−t . This means that

VIX futures hedging activities could be creating a tighter link between the two markets. We also

observe that LLC has a significant negative relation to the level of the VIX index which confirms

the relation between LLC and VIX from Figure 6. Not only for the regressions involving LLC

but also the other two dependent variables, the dummy for the macro-economic announcement

dates and the time to expiration of the contracts generally are insignificant.

Overall, we note that across all the regressions with LLR and LLC as the dependent vari-

able, cross-market activity is the variable that provides the largest contribution to R-squared.

This indicates its importance for the lead-lag relation. If hedging activity is captured by cross-

market activity, this supports the role of hedging by VIX futures dealers in driving the lead-lag

relation between VIX futures and SPX futures.

4.5 Market impact from uninformed VIX futures trading

While the above section indicates that VIX futures hedging influences the lead-lag relation,

it remains unclear whether the hedging channel increases or decreases efficiency of the SPX

futures market. In this section, we look into this issue by exploiting the presence of uninformed

VIX futures trading by VIX ETPs.

If the leadership of the VIX futures is partly explained by hedging activities of dealers, this

may be due to two different mechanisms: If VIX futures trading is informative the lead of the

VIX futures indicates that the hedging activities of VIX futures market makers help transmit

information from the VIX futures to the SPX futures markets. On the other hand, if VIX futures

trading is uninformative the leadership of the VIX futures implies that hedging activities could

push SPX futures prices away from their true value. Ultimately, the hedging activities exert

a potential systemic risk through its adverse effect on the index futures market at times of

large-scaled SPX futures selling by VIX futures market makers.

In the VIX futures market, the rebalancing trades by VIX ETPs is a potentially large source

of uninformed trading. Based on the structure of the products, issuers of VIX ETPs have
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an incentive to rebalance their hedge as close as possible to close of the VIX futures market

(Alexander and Korovilas, 2013).3 This means that even if VIX ETP trading has an informative

component throughout the day, the corresponding rebalancing trades by VIX ETP issuers are

postponed to the end of the trading day and can therefore be viewed as a channel of uninformed

trading. This view is supported by studies showing how the rebalancing by VIX ETPs impacts

the VIX futures market. Fernandez-Perez et al. (2019) show that VIX futures market is less

informationally efficient on days of large VIX ETP rebalancing flows especially leading up

to close where VIX ETPs are expected to implement most of their hedging. Brøgger (2021)

documents a transitory price impact in the VIX futures market from rebalancing by VIX ETPs.

Todorov (2021) finds a connection between the size of the non-fundamental component in VIX

futures prices and VIX ETP rebalancing.

Fortunately, VIX ETP rebalancing demand is relatively easy to compute. We follow the

methodology of Todorov (2021) to estimate the aggregate demand for VIX futures among VIX

ETPs. The VIX ETPs that use the first two VIX futures contracts as the main hedging vehicle

track a 30-day constant maturity VIX futures index. We use K to denote the target maturity

of the benchmark index and hence K = 30 for the VIX ETPs in our sample (see Table 2). To

maintain a constant maturity of K, the weight in the front-month contract, ωt , must satisfy the

condition ωtTV X1
t +(1−ωt)TV X2

t = K with TV X1
t and TV X2

t being the time to maturity of the

front-month and second-month contract, respectively. VIX ETPs are also characterized by their

leverage target which we denote by L. L is 1 when the VIX ETP simply tracks the given VIX

futures index while it is 2 when they track twice the index return and -1 when tracking the

inverse index return. The front-month and second-month VIX futures dollar demand of a given

3This incentive stems from the possibility of early redemption of ETN shares. Shares are redeemed at the
closing indicative value computed from closing prices of VIX futures. Issuers of VIX ETPs wishing to hedge their
exposure therefore attemp to trade at exactly this price which can be achieved by trading at close.
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VIX ETP can be computed as

Demand$,V X1
t =− L

K
At−1

(
1+LrV X

t

)
+ωt−1At−1L(L−1)rV X

t

+

(
ωt−1−

1
K

)
Lut +ωt−1 (1− ω̂t−1)LAt−1

(
rV X2
t − rV X1

t
) (9)

Demand$,V X2
t =

L
K

At−1

(
1+LrV X

t

)
+(1−ωt−1)At−1L(L−1)rV X

t

+

(
1−ωt−1 +

1
K

)
Lut− ω̂t−1 (1−ωt−1)LAt−1

(
rV X2
t − rV X1

t
) (10)

where At is AUM of the VIX ETP and ut denotes the dollar-value of capital flows defined as

ut = At − (1+ rt)At−1 with rt denoting the return on the VIX ETP based on the price of its

shares. We also define ω̂t = ωtPV X1
t /(ωtPV X1

t +(1−ωt)PV X2
t ) with PV Xm

t denoting the VIX

futures price for m = 1,2. Finally, rV Xm
t is the return on the mth VIX futures contract, and the

return of the VIX futures benchmark index is given by

rV X
t = ω̂t−1rV X1

t +(1− ω̂t−1)rV X2
t . (11)

The total demand for each of the two contracts on date t is the sum over each of the H

VIX ETP’s demand, Demand$,V Xm,total
t = ∑

H
j=1 Demand$,V Xm, j

t . We combine the VIX futures

demand for the two contracts into a single number and measure it relative to either open interest

of the front-month and second-month contract, OIV Xm
t

DOI
t =

Demand$,V X1,total
t

cPV X1
t OIV X1

t
+

Demand$,V X2,total
t

cPV X2
t OIV X2

t
(12)

or relative to the trading volume during the rebalancing window, VolV Xm
t ,

DVol
t =

Demand$,V X1,total
t

cPV X1
t VolV X1

t
+

Demand$,V X2,total
t

cPV X2
t VolV X2

t
. (13)

Here c denotes the contract multiplier of the VIX futures.

With an estimate of the amount of uninformed VIX futures trading taking place up to the
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close of the market, we can examine the effect of uninformed VIX futures trading on the SPX

futures market during this part of the day. Thus, we analyze to which extend the VIX ETP

rebalancing demand explains SPX futures returns, rES
t,16:00→t,16:15, measured over the last 15

minutes of the regular VIX futures trading hours. The analysis is implemented using the fol-

lowing regression model

rES
t,16:00→t,16:15 = α +βDV IX ET P

t + γControlst +ut (14)

where the variable DV IX ET P
t is as in (12) or (13). If β is significantly negative, uninformed

buying in VIX futures depresses SPX futures returns. Such an effect would be consistent with

the hedging mechanisms illustrated in Figure 1 as the investors’ VIX futures buying is hedged

by selling SPX futures. Since the VIX futures buying is mechanically driven by rebalancing

needs rather than new information, this would indicate that (at least during the rebalancing

window) VIX futures hedging makes the SPX futures market less informationally efficient. On

the other hand, if there is no evidence that the VIX futures hedging trigged by uninformed

trading carries over to the SPX futures market β should be insignificant. This is what should

hold in the case where VIX futures hedging only has the function of assisting price discovery.

To limit simultaneity issues, the VIX ETP demand in (9) and (10) is computed as seen from

16:15 on day t−1 to 16:00 on day t. To account for other factors influencing late-day the SPX

futures return, we control for the SPX futures return, rES
t,09:30→t,16:00, and VIX futures index

return, rV X
t,09:30→t,16:00, computed up to the time where rebalancing is assumed to begin. These

variables allow for the continuation of a trend throughout the remainder of the trading day and

are thus related to market efficiency.

Table 7 shows that VIX ETP rebalancing negatively predicts SPX futures returns over the

last 15 minutes. Hence, when VIX ETP rebalancing involves buying more VIX futures, then on

average the SPX futures price decreases. This is what would be expected under price pressures

from hedging and indicates that the VIX futures hedging activity can move the SPX futures

market. The uninformed nature of the rebalancing by VIX ETPs supports the view that the
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Table 7: Regression results from (14)

rES
t,16:00→t,16:15 (1) (2) (3) (4)

Constant
0.007∗∗ 0.008∗∗ 0.008∗∗ 0.008∗∗

(2.405) (2.449) (2.575) (2.530)

DOI
t

-0.129∗ -0.174∗∗

(-1.941) (-2.371)

DVol
t

-0.006∗ -0.008∗∗

(-1.861) (-2.119)

rES
t,09:30→t,16:00

-0.042∗ -0.042∗

(-1.906) (-1.942)

rV X
t,09:30→t,16:00

-0.004 -0.005
(-0.854) (-1.256)

Adj. R2 (%) 1.27 4.54 0.37 3.33
No. of Obs. 1772 1772 1772 1772

Newey-West t-statistics are in parenthesis. ∗∗∗, ∗∗, ∗ indicates 1%, 5% and
10% significance, respectively. Due to the break in CMAT shown in Figure 8,
we exclude the first part of the sample making August 26, 2013 the first sam-
ple date. All returns have been multiplied by 100 and should be interpreted
in percentage terms. DOI

t and DVol
t are defined in (12) and (13), respectively,

and are measured from 16:15 on day t−1 to 16:00 on day t.

dealers’ hedging activity is not simply a channel for price discovery.

If VIX ETP rebalancing is equivalent to uninformed trading we would expect that the cor-

responding price impact in the SPX futures market is only transitory. Therefore, the following

regression model allows for examining how over-night SPX futures returns are related to the

rebalancing from the previous day

rES
t−1,16:15→t,09:30 = α +βDV IX ET P

t−1 + vt , (15)

with the lagged rebalancing variable, DV IX ET P
t−1 , being measured from 16:15 on day t − 2 to

16:15 on day t − 1. A transitory price impact from rebalancing would be consistent with a

positive value of β as this corresponds to a reversal of the initial price impact.

Table 8 shows the results from the regression in (15). The coefficients on both of the lagged

VIX ETP rebalancing variables are insignificant. The insignificant coefficients makes it less

clear whether the price impact found in Table 7 is the result of transitory price pressures from

VIX futures dealers.
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Table 8: Regression results from (15)

rES
t−1,16:15→t,09:30 (1) (2)

Constant
0.015 0.017

(0.965) (1.063)

DOI
t−1

-0.170
(-1.074)

DVol
t−1

-0.083
(-1.005)

Adj. R2 (%) 0.03 -0.00
No. of Obs. 1740 1740

Newey-West t-statistics are in parenthesis. ∗∗∗, ∗∗,
∗ indicates 1%, 5% and 10% significance, respec-
tively. Due to the break in CMAT shown in Figure
8, we exclude the first part of the sample making
August 26, 2013 the first sample date. All returns
have been multiplied by 100 and should be inter-
preted in percentage terms. DOI

t and DVol
t are de-

fined in (12) and (13), respectively, and are mea-
sured from 16:15 on day t−2 to 16:15 on day t−1.

5 Conclusion

We study the lead-lag relationship between VIX futures and SPX futures on a high-frequency

sample of transactions over the period from January 2013 to September 2020. To analyze

the lead-lag relation, we consider estimators of the cross-correlation function. The leadership

strength is computed on a daily basis using various measures of lead-lag strength. The analysis

reveals large time-variation in the lead-lag relation. Under high volatility, the markets exhibit

stronger negative correlation and a short-lived lead-lag with a tendency for VIX futures to lead

SPX futures. We find that the cross-market activity explains a major part of the lead-lag re-

lation and that days of high activity are associated with a strengthened VIX futures lead over

the SPX futures. Other variables such as the relative liquidity of the two markets also have

some explanatory power but appear to be less important for explaining the lead-lag relation

once the cross-market activity is taken into account. As VIX futures dealers can hedge their

VIX futures position through delta-hedged SPX option positions, their hedging strategy would

involve trading SPX futures after providing liquidity in the VIX futures market. We therefore

argue in favor of the hypothesis that hedging activities of VIX futures dealers are an important

source of cross-market activity and thus hedging activities could be driving part of the VIX fu-

tures lead over SPX futures. Generally, the hedging transactions could benefit the SPX futures
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market by increasing the flow of information from the VIX futures market to the SPX futures

market while the mechanical nature of hedging also raise the concern that it could destabilize

the stock market. Utilizing the presence of uninformed VIX futures trading by issuers of VIX

ETPs, we show that uninformed VIX futures trading predicts SPX futures returns in the direc-

tion consistent with the VIX futures hedging strategy. This finding indicates that VIX futures

hedging could move the SPX futures market via mechanisms unrelated to informed trading

with potentially destabilizing impact in stressed market situations.
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