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1 Introduction

A growing body of research analyzes the returns of single stock equity options, and the richness

of option data makes it possible to study a large variety of important questions. On the one

hand, there are classical issues from the area of asset pricing, like the identification of risk factors

which can explain the observed option returns, and along similar lines, the relation of option

returns to the returns of their underlying securities. On the other hand, based on these data,

one can address even more fundamental economic issues, such as, e.g., investor preferences, the

trading behavior of market participants, or the transmission of information between the stock

and option market.

Starting with Coval and Shumway (2001), virtually all studies of expected option returns

have relied on the paradigm of a pricing kernel that is monotonically decreasing in the return of

the underlying. Here, the term “pricing kernel” (PK) stands for the projection of the stochastic

discount factor (SDF) on the return of the underlying asset.

In this paper, we investigate the shape of the PK in a non-parametric fashion using re-

turns on single-stock options, and we find strong evidence for a U-shape. This is interesting and

relevant, since most asset pricing models imply that the PK is a monotonically decreasing func-

tion of the return on the underlying wealth portfolio (empirically frequently approximated by

a broad stock market index). Prominent examples are classics like the CAPM or the approach

suggested by Rubinstein (1976), but also more recent theories, such as, e.g., the long-run risk

model developed by Bansal and Yaron (2004), share this property. While many models exclu-

sively study the aggregate portfolio (i.e., the index) and remain silent about single stocks, one

can transfer the monotonicity argument to the typical stock, since all stocks taken together

must ultimately aggregate to the index. From a different perspective, also workhorse factor

models used for single stocks as e.g., the three-factor model proposed by Fama and French

(1993) and its successors, imply that the PK is monotonically decreasing in the return of the

typical single stock.

There is, however, growing evidence that the PK as a function of the returns of the index
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is non-monotonic and actually U-shaped (see, e.g., Bakshi et al. (2010), Christoffersen et al.

(2013), and Babaoğlu et al. (2017)). The typical finding is that after initially decreasing from

very high values for large negative returns, the PK is increasing again for large positive returns.

Since the index return is a weighted average of individual stock returns, this result raises the

question whether the projection of the SDF on the returns of single stocks also exhibits this

U-shaped pattern.

The answer to this question is important for at least two reasons. On the one hand, it

is informative about the relative pricing of options on the index versus options on individual

stocks. For example, Chaudhuri and Schroder (2015) argue that the two types of options are

priced by different PKs, and, while the PK for the index is non-monotonic, the analogous

quantity for the typical stock is monotonically decreasing. This results seems rather puzzling,

since it either implies pricing inconsistencies between index and single stock options, or, since

the index is aggregated from individual stocks, it would require rather counter-intuitive joint

dynamics for the stocks, first of all negatively correlated returns, for which one would have a

hard time finding empirical support. On the other hand, we know next to nothing about the

implications of a U-shaped PK for the cross-section of single stock option returns, where the

term “cross-section” refers to different underlying securities.1

Our paper offers three main contributions, where the overarching link is the relation

between the shape of the PK and expected option returns. First, via a simple test on single

stock option returns, we show that the PK as a function of the returns on a typical stock

is indeed U-shaped. Second, this finding of a U-shaped PK has far reaching implications for

the impact of volatility on expected option returns. For example, in contrast to the case of

a decreasing PK, an increase in volatility can either lead to either increasing or decreasing

expected call returns, depending on moneyness. Third, we show that a U-shaped PK offers

a risk-based explanation for a number of option return patterns considered anomalous in the

literature.

1When we refer to the properties of option returns across different strike prices, but for the same underlying
asset, we state this explicitly.
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Concerning the first result, our approach is fully non-parametric and we find that our

result is robust with respect to a large number of variations in the empirical methodology, and

it is furthermore not limited to periods of either high or low volatility, to a specific return

horizon, or to options with specific characteristics (such as low liquidity). This finding of a

U-shaped PK is important in its own right, since the PK is the key object of interest in modern

asset pricing, and its shape provides fundamental insights into the relevance of different sources

of risks and the associated risk premia, as well as into investor preferences. Furthermore, such

robust and non-parametric evidence is important in general, since the shape of the PK is still

vividly debated (see e.g. Linn et al. (2018) and Barone-Adesi et al. (2020) for recent examples).

The use of single stock option returns comes with (at least) two advantages. First, the

empirical result of a U-shaped PK becomes much more robust and consequently also more

significant in a statistical sense, since there are many more securities available compared to an

investigation based on index options. For example, for S&P 500 index options Bakshi et al.

(2010) find results which are qualitatively very similar to ours, but not statistically significant.2

Second, since we find the PK for single stocks to be also U-shaped, consistent with the index,

the two option markets do not appear to be segmented in a particularly strong fashion, as was

recently suggested by, among others, Lemmon and Ni (2014).

In our analysis we follow Bakshi et al. (2010) and rely on claims that pay off in the positive

range of the return distribution, such as calls and bull spreads. A monotonically decreasing PK

implies that expected call returns are monotonically increasing in the strike price and always

higher than the expected return of the underlying. In contrast to this, a U-shaped PK implies

expected call returns will only increase up to a certain strike and decrease again afterwards.

To test the hypothesis of a U-shaped PK, we sort call options into bins with respect to

their moneyness X (defined as the ratio of strike price to current stock price) and find exactly

the pattern of average returns consistent with this shape. In particular, average call returns

are found to be increasing in moneyness until X is between 1.025 and 1.05, but decreasing

for X greater than 1.05. In addition, for high X, the average return even turns negative and

2This is also the case for the more recent sample ranging until Dec 2017 (see Online Appendix).
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is also lower than the average return of the underlying. These results strongly contradict the

main implications of a monotonically decreasing PK, namely that expected call returns are

increasing in moneyness and always greater than the expected return of the underlying.

The theoretical explanation for the empirical pattern for the single stock PK is likely to be

similar to that proposed for the index. For example, Chabi-Yo (2012) and Christoffersen et al.

(2013) both suggest a PK which is decreasing in the return of the underlying and increasing in

the conditional return variance. The existence of a variance risk premium in combination with

a U-shaped relationship between returns and variance then induces an U-shaped projection of

the SDF onto the return of the underlying. A similar argument is brought forward by Bakshi

et al. (2019). 3

The paper closest to us with respect to testing PK montonicity using option returns is

Chaudhuri and Schroder (2015), who argue in favor of a decreasing PK. The main source for this

divergence between their result and ours, are differences in the fundamental empirical approach.

Chaudhuri and Schroder (2015) use intermediate option returns with a one week holding period,

while we study monthly, hold-until-maturity returns which is the standard in the literature on

option returns, and is furthermore widely considered as more robust in the presence of noise

in the data (Broadie et al., 2009; Duarte et al., 2019). Furthermore, Chaudhuri and Schroder

(2015) pool options with widely varying times to maturity, which have rather heterogeneous

return properties. In addition to this, they only qualitatively take the options’ moneyness into

account, while moneyness is the key variable in our analysis in a quantitative sense. We perform

extensive robustness checks and show that our results are robust with respect to a large set

of variations in the empirical approach, including those suggested by Chaudhuri and Schroder

(2015).

Our second main contribution is to show both theoretically and empirically that the shape

3A U-shaped PK can also be generated in a model with rank-dependent utility and probability weighting
(Polkovnichenko and Zhao, 2013) or cumulative prospect theory and probability weighting (Baele et al., 2019).
In contrast to these papers, we base our analysis on the aforementioned fully rational explanation, which, in
addition to matching the characteristics of index options, also captures the properties of the cross-section of
single stock option returns.
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of the PK is an important determinant for the impact of volatility on expected option returns.

Volatility is arguably the most important variable in the context of options, and its relation to

option returns has recently received increased attention. For example, Hu and Jacobs (2020)

study the effect of total volatility on expected option returns. Aretz et al. (2018) refine the

analysis and show that idiosyncratic and systematic volatility have qualitatively different effects

on expected option returns, and a similar analysis can be found in Chaudhury (2017). However,

all these papers derive their theoretical implications in a framework with a monotonically

decreasing PK. We consider the impact of a U-shaped PK, and thus contribute to this literature

by offering comprehensive and more general theoretical and empirical analyses of the effects of

volatility on the cross-section of call option returns.

To this end, we propose a new model featuring a U-shaped PK and a cross-section of

stocks with both idiosyncratic and systematic volatility components. In the presence of a U-

shaped PK, the model shows that an increase in the idiosyncratic volatility of a stock can either

increase or decrease expected call option returns, depending on moneyness. This is in contrast

to the case of a monotonically decreasing PK, where an increase in idiosyncratic volatility

always decreases expected call returns. The intuition behind the new result is as follows: In

many option pricing models, with increasing idiosyncratic volatility, the expected return of any

call option with a positive strike converges to the expected return of the underlying. As stated

above, however, with a U-shaped PK expected call returns are positive (and higher than that

of the underlying) for low moneyness and negative (and lower than that of the underlying) for

high moneyness. Together with the previous result, this implies that with higher idiosyncratic

volatility expected call option returns will decrease for low and increase for high moneyness,

since for low moneyness, they will approach the expected return of the underlying from above,

while the opposite is true when moneyness is high. We test this prediction empirically, and find

it strongly supported by the data.

Since total volatility is highly correlated with idiosyncratic volatility in the cross-section

of stocks (see, e.g., Ang et al. (2006)), it is not surprising that, for total volatility, we find a

pattern that is very similar to the one described for idiosyncratic volatility. This is is a very
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important finding, as it implies that the results presented by Hu and Jacobs (2020) regarding

the behavior of expected returns on at-the-money calls with respect to total volatility can-

not simply be generalized to a wider range of strikes. While the pattern of results is pretty

clear for idiosyncratic and total volatility, the case is not so clear-cut for systematic volatility,

where expected returns for calls of a given moneyness can be increasing or decreasing, with the

respective moneyness ranges depending on the parameters of the data-generating process.

Finally, as our third main contribution, we revisit several anomalies documented in the

literature on option returns. Recent papers like Ni (2008), Boyer and Vorkink (2014), Byun and

Kim (2016), Blau et al. (2016), and Filippou et al. (2018, 2019) argue that investor preferences

for lottery-like (right-skewed) payoffs affect asset prices and lead to negative expected option

returns.4 These studies suggest that investors have strong preferences for lottery-like payoffs,

i.e., they seem to accept large losses on average from investing in out-of-the-money call options,

in exchange for pronounced positive skewness. Given the competitive nature of option markets

it seems somewhat unlikely, however, that it is demand pressure by retail investors that causes

higher option prices and thus lower expected returns, and not additional risk compensation

required by market participants selling these contracts.

The lottery-like character of an option has been identified in the literature mostly in two

ways, either via the ex ante skewness measure proposed by Boyer and Vorkink (2014) applied

to the options themselves or via the maximum daily past return of the underlying stock as

suggested by Bali et al. (2011). The paper then provides evidence that the expected returns on

options where these characteristics are high tend to be low.

Our findings regarding the shape of the PK also shed new light on this issue. In the

presence of a U-shaped PK, we show that after properly controlling for the effect of an op-

tion’s moneyness, the impact of ex ante skewness on expected option returns disappears almost

completely. Regarding the use of the maximum daily return, we confirm the finding that at-

4Examples for papers studying other aspects of returns on single stock option are Driessen et al. (2009),
Goyal and Saretto (2009), Muravyev (2016), and Vasquez (2017). In addition, there are several papers that
study delta-hedged option returns, which we consider an entirely different object than raw returns.
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the-money expected call option returns decrease in this variable. However, the direction of

monotonicity reverses for out-of-the-money calls. This result substantially challenges the above

gambling argument, since, if anything, the effect should be stronger for out-of-the-money calls

which exhibit even more pronounced skewness. In addition, the maximum daily return is highly

correlated with idiosyncratic and total volatility, so that the results we find for this variable

are not surprising, given the behavior of expected call returns with increasing idiosyncratic and

total volatility discussed above. In sum, our analysis suggests that the fact that options with

higher skewness have lower returns, is perfectly consistent with a risk-based explanation, which

we offer via the U-shaped PK.

The remainder of the paper is organized as follows. Section 2 presents the setup and

result of the test for a U-shaped PK. Section 3 analyzes the effect of the U-shaped PK on the

cross-section of single stock option returns at the example of the underlying’s stock volatility,

and Section 4 examines these effects in existing findings in the literature. In Section 5 we

present robustness analyses, and Section 6 concludes. The appendix contains detailed additional

information on our analysis. In addition, we provide an online appendix.5

2 Pricing Kernel for the Typical Stock

2.1 Theoretical considerations

The fundamental research question in this paper is whether the PK for the typical stock, i.e., the

projection of the SDF on single stock returns, is U-shaped or monotonically decreasing. Bakshi

et al. (2010) point out that only contingent claims with a non-zero payoff in the range of (large)

positive returns on the underlying can be used as an instrument to distinguish between the two

potential shapes of the PK. This makes sense intuitively, since a monotonically decreasing and

a U-shaped PK share the region with high positive values for (large) negative returns of the

underlying, but differ in the right tail of the return distribution. Examples for such claims are

5https://sites.google.com/site/tsichert/.
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standard calls and digital calls (also sometimes called cash-or-nothing or binary options), where

the latter pays 1$ if the underlying at maturity is greater than or equal to the strike, and zero

otherwise. Analogously, put options are not informative in this context, and this is why we

exclusively focus our analysis on calls.

To formalize the intuition a little bit more, we rely on the properties of expected option

returns under the two alternative PK scenarios. As shown by Coval and Shumway (2001), under

a monotonically decreasing PK, (i) expected call returns are monotonically increasing in the

strike, (ii) expected digital option returns are monotonically increasing in their strike, and (iii)

expected digital option returns are always below call returns for the same strike.

The situation is very different under a U-shaped pricing kernel, as shown by Bakshi et al.

(2010). There, (i) expected call returns are increasing in the strike price until a certain point

K∗, and then monotonically decreasing for K > K∗, (ii) expected digital call returns are

increasing in the strike until a certain point K∗∗ > K∗, and then monotonically decreasing,

and (iii) expected digital call returns are below expected call returns for K < K∗, and higher

afterwards.

Figure 1 illustrates the relationships for the two cases graphically, and one can see that

the structure of expected call returns across strikes is basically inverse to that of the PK. This

in turn implies that the pattern of expected option returns across strikes is a useful device to

distinguish between the competing hypotheses of a monotonically decreasing and a U-shaped

PK in the data.

2.2 Empirical analysis

2.2.1 Data

For the empirical analysis we use all available single stock options from OptionMetrics IvyDB

US. The data contain information on the entire exchange-traded U.S. single stock options

market and include the daily closing bid and ask quote as well as implied volatility, Greeks,
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trading volume, and open interest for the period from from January 1996 until December

2017. We obtain return data for the underlying stocks from CRSP, and accounting data from

Compustat. We apply a series of standard data filters to the option data, which are described

in detail in Appendix A. Most importantly, since we are interested in reliable returns of deep

out-of-the-money options, we exclude options that have a best bid of zero or a mid-price below

1/8$. In addition, we exclude options which violate standard no-arbitrage bounds, have zero

open interest6 or with a bid-ask spread lower than the minimum tick size. Since single stock

options are of the American type, we exclude options that pay a dividend during the holding

period to mitigate effects from the early exercise premium.

On average, the final sample contains 1,566 unique underlying stocks per month, and in

a typical month the aggregate market value of these stocks represents around 62% of the total

CRSP market capitalization (which contains the market value of equity of many stocks that

are not optionable).

Given the theoretical considerations outlined above, we limit our analysis to call options.

In the context of our paper, it is interesting to note that for single stocks, in contrast to major

stock market indices, calls are more actively traded than puts in terms of volume. They also

feature a larger number of available traded strikes and higher open interest.

2.2.2 Benchmark analysis

In our benchmark analysis, we use non-overlapping (roughly) one-month option returns to ma-

turity, computed from the Monday after the third Friday in the given month to the third Friday

in the next month (which is the expiration date following the standard monthly expiration cy-

cle).7 We focus on these options, since they usually represent the most liquid contracts. The

6All return patterns documented in the following are also found when options with zero volume are excluded,
but the findings are not always statistically significant, as the number of option contracts drops significantly.
Nevertheless, we believe that positive open interest is a sufficient criterion, since the prices are always closing
quotes, and a few trades during the course of the day need not to have any implications on the closing quote.

7Using hold-until-maturity returns mitigates the concerns regarding microstructure noise in daily option
returns pointed out by Duarte et al. (2019).

9



options are bought on the first trading day each third Friday to avoid expiration day effects. We

use returns until maturity, since the above theoretical results only apply to maturity returns,

where the payoff is purely a function of the return of the underlying and state variables like

volatility are irrelevant.

We sort call options into 11 moneyness bins spanning a range for X ≡ K/S0 from 0.9 to

2, where the cutoff points for the bins are chosen such that the intervals are roughly equally

populated.8 In case there is more than one option for a given stock in a given moneyness bin

in a given month, we only retain the option with the strike price closest to the midpoint of the

bin.

We prefer this larger number of moneyness bins to provide a more detailed picture of the

results. This comes at the potential cost of a loss of a statistical power, since with more bins

each bin will necessarily contain fewer observations, but we provide results for alternative cuts

of the data in the section on robustness checks.

To give an idea about the data quality behind our analyses, Table 1 reports averages of

monthly trading volume, open interest and number of options for each moneyness bin. One

might be concerned that out-of-the-money options are substantially less liquid and less actively

traded than at-the-money contracts. This is not the case, however, as the table clearly shows.

At least until Bin 8 there is a sizable number of call each month. Furthermore, out-of-the-money

calls (X > 1.05) exhibit even slightly larger volume and open interest on average. This shows

that out-of-the-money calls with higher strikes are definitely actively traded and sufficiently

liquid assets. A usual concern about option prices are the relatively large bid-ask spreads. In

a robustness analysis where we account for transaction costs by buying the options at the ask

price we find even stronger results. This is due to the fact that relative bid-ask spreads tend to

increase with moneyness, so that average returns are even lower for out-of-the-money options.

We calculate the average option return in a given moneyness bin over the full sample by

8The cutoff points are 0.9, 0.95, 0.975, 1, 1.025, 1.05, 1.1, 1.2, 1.3, 1.4, 1.6, and 2. We include deep-out-of-
the-money calls in our analysis, as some papers in the literature (in particular those we refer to in Sections 4
and 5.1.2) use the full moneyness spectrum in their analysis. Our results, however, also hold up when we restrict
the analysis to calls with a moneyness up to 1.3.
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first calculating equally weighted returns for each month and then averaging over all months.

This approach mimics the standard approach in the asset pricing literature on stock returns,

and allows to interpret the results as returns to an implementable trading strategy. In addition,

to test for monotonicity, we calculate the differences in returns between adjacent moneyness

bins. Due to sometimes smaller sample sizes and the pronounced skewness of option returns,

one may have concerns with respect to the use of standard statistical tests. That is why we base

our inference on bootstraps using 100,000 i.i.d. draws for time series analyses and i.i.d. pairwise

draws for differences.9

The limited number of available strike prices for many individual stocks poses a challenge

for our approach. In an ideal setting, one would perform a monotonicity test for each stock

separately, in the same way as Bakshi et al. (2010) do it for the S&P 500 index. However, only

few stocks offer a sufficient number of actively traded strikes to perform that kind of analysis.

There are, of course, different approaches to this issue. Chaudhuri and Schroder (2015),

e.g., sort options based on moneyness and then assign them to portfolios based on the ordinal

moneyness value. This means, with at-the-money options in Bin 3 according to the convention

used in Chaudhuri and Schroder (2015), the option with the next higher strike would be assigned

to Bin 4 irrespective of the numerical value of K, then the next one to Bin 5, and so on. This

approach has the advantage that, for a given stock, there will be options in consecutive bins by

definition, so that one could basically perform monotonicity tests at the stock level. However,

one can directly see that this will lead to options with potentially very different moneyness

values being assigned to the same bin. As we will show below, this approach, in combination

with the actual non-monotonicity in average call option returns as a function of moneyness,

can in fact be problematic.

Our benchmark approach of sorting options into bins based on their actual (cardinal)

moneyness values seems the most natural one to us. Of course, we then have to deal with the

9We choose i.i.d. draws, since the Ljung-Box test for up to 30 lags cannot reject the null of zero autocorrelation
in the time series of option returns. We also calculated t-statistics based on a Newey and West (1987) adjustment
and found that they are very similar.
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problem that adjacent bins will not contain options on exactly the same stocks. However, as

long as the availability of strike prices is not correlated with the expected option return, this

will not be a major problem in the context of our analysis.10

Table 1 shows the results of our benchmark analysis, which fully support the hypothesis of

a U-shaped PK. First, one can see from the numbers in Panel A that average call option returns

increase in moneyness until X between 1.025 and 1.05, and then decrease again to eventually

approach zero. As stated above, such a pattern is one of the key implications of a U-shaped

PK. The inflection point is in a moneyness area where there are many traded options, with

high turnover and open interest. The difference in returns is negative already between Bin 4

and 5, and statistically significantly so between Bins 5 and 6.

The second implication of a U-shaped PK relates to the behavior of expected returns on

digital call options across the moneyness spectrum. Since digital options are not traded directly,

we approximate a digital call option by a portfolio consisting of one call long with strike K1

and one call short with the next available strike K2 > K1. We then take the average strike of

the two calls to represent the strike of the digital call.

The results in Panel B of Table 1 show that, in line with the implications of a U-shaped

PK, the average returns of the synthetic digital calls exhibit an inflection point in the moneyness

dimension, and that this point is located further to the right on the moneyness axis than that

for calls.

The third key implication of U-shaped pricing kernel is that the difference in expected

returns between calls and digital calls is positive for low moneyness values and then changes

sign as X increases. Panel C of Table 1 shows that this is exactly what we find in the data,

since average call returns are greater than average digital call returns around the money, i.e.,

for X ≈ 1.05, but lower for values of X greater than 1.05.

Since returns of call options written on different stocks are averaged in our analysis, the

interpretation is that the PK is U-shaped as a function of the return of the “typical” stock.

10We provide extensive robustness checks with respect to our approach of assigning options to moneyness
categories in Section 5.1 below.
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There is, however, strong evidence in the data against the hypotheses that this result might be

driven by certain special types of stocks. In Section 5 below we repeat the analysis for various

subsamples with respect to stock characteristics such as stock volatility, stock liquidity, or stock

size, and the pattern of average call option returns across the moneyness spectrum obtained

in our benchmark analysis always prevails.11 In sum, one can conclude that the finding of a

U-shaped PK for the typical stock is very robust with respect to a large set of variations of the

empirical approach.

3 U-shaped PK: Impact of Volatility on Expected Op-

tion Returns

3.1 Motivation

The existence of a U-shaped PK has fundamental implications for the cross-section of option

returns, i.e., for the structure of expected option returns across underlying stocks which differ

with respect to important characteristics. In the context of option pricing, the most important

of these characteristics is arguably the return volatility of the underlying stock. In the following

we therefore investigate the impact of idiosyncratic, systematic, and total volatility on expected

option returns.

In a recent study, Hu and Jacobs (2020) provide empirical evidence for expected returns

of at-the-money call options being monotonically decreasing in total (i.e., systematic plus id-

iosyncratic) volatility. They motivate their analysis by showing that in both the BSM model

(Black and Scholes, 1973; Merton, 1973) and the Heston (1993) model, this pattern is implied

theoretically. However, both Chaudhury (2017) and Aretz et al. (2018) point out that the Hu

and Jacobs (2020) result crucially depends on the assumption that higher volatility is not com-

11As further robustness checks, we conduct double sorts on moneyness and other stock or option characteris-
tics, investigate various subsamples with respect to time, and consider alternative return horizons and sorting
approaches. The above findings turn out to be extremely robust with respect to these variations in our empirical
approach. Details can be found in Section 5.4.

13



pensated by higher expected stock returns, which seems somewhat counterintuitive. In the basic

versions of the two models analyzed in Hu and Jacobs (2020), there is no distinction between

systematic and idiosyncratic volatility, and in addition, the model-implied PK is monotonically

decreasing in the return of the underlying. These issues motivate us to separately study the

impact of the different types of volatility on expected call returns, with a particular focus on

the impact of a U-shaped PK.

3.2 Model

To guide our empirical analysis and to gain deeper insights regarding the link between the

different types of volatility and expected call option returns, we build on the model proposed

by Christoffersen et al. (2013) (CHJ, henceforth). We choose this model, since it can generate

a U-shaped PK with reasonable parameter values. Next, we extend the model to accommodate

idiosyncratic volatility as well as different levels of systematic volatility.

In the model, daily log returns are conditionally normally distributed, with a time-varying

volatility represented via GARCH processes. The dynamics of the model are given as follows:
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Here, St,i is the price of stock i at time t and r is the daily continuously compounded interest

rate. The shocks zt and yt are assumed to be independent, and they are the systematic (priced)

and idiosyncratic (unpriced) return innovations, respectively. hz,t and hy,t represent the system-

atic and the idiosyncratic conditional variance, respectively, while bi and ci control the exposure

of the stock to the different sources of risk. We model different exposures to systematic risk in a
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“CAPM style”, i.e., different stocks have different exposures bi to the market factor
√
hzz. The

stock’s return volatility has two components, a systematic one represented by the exposure to

z, and an unpriced, idiosyncratic one given by the exposure to y. Furthermore, note that an

increase to the market factor always implies an increase in the expected stock return.

We follow CHJ and employ an SDF with the following functional form:

Mt = M0

(
St,I
S0,I

)φ
exp

[
δt+ η

t∑
s=1

hz,s + ξ (hz,t+1 − hz,1)

]
, (5)

where I denotes the index, i.e., an asset with bI = 1 and cI = 0 in (1). This SDF is monotonically

decreasing in the return of the asset and monotonically increasing in variance for ξ > 0. However,

the PK, i.e., the projection of this SDF on the asset’s return, is U-shaped. The reason is that

volatility is not only high for large negative returns, but also for large positive returns. For these

large positive returns, the negative variance risk premium (represented by the free parameter

ξ > 0, as shown in CHJ) dominates the positive equity premium, so that the projection is

increasing again. For a more detailed description of the model, we refer to the original paper.

The solution for the parameters φ, δ, and η are provided in Appendix C.1.

The original CHJ model for the stock market index is nested in the above specifica-

tion with bI = 1 and cI = 0. Since we use the model for qualitative predictions only, we use

the parameters provided by the CHJ estimation for the index. For simplicity, we use the in-

dex’ GARCH parameters ωz, αz, βz, γz also for the idiosyncratic volatility GARCH parameters

ωy, αy, βy, γy. To ensure the robustness of our results, we perform an extensive simulation study

and many different set of parameter value (see Appendix C.2).

To simulate a cross-section of expected option returns written on stocks with different

levels of idiosyncratic volatility (IV OL) and systematic volatility (SV OL), we need to specify

values for the coefficients bi and ci. For the individual stocks, we choose levels of IV OL and

SV OL close to the 10th, 50th and 90th percentiles of the distribution of these quantities in our

sample. The details on the parameterization and simulation are provided in Appendix C.2.
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As a benchmark example for a monotonically decreasing PK we use the BSM model.

This model has the advantages that all quantities of interest are available in closed form. We

slightly modify the model in order to be able to study cross-sectional effects.12 The stock price

dynamics are as follows:

dSt,i
St,i

= µidt+ σidBt, (6)

µi = r + bi(µ− r), (7)

σi =
√
b2
iσ

2
z + c2

iσ
2
y . (8)

The volatility specification is qualitatively equivalent to the one shown above in (1).

3.3 Idiosyncratic volatility

First, to study the impact of a pure variation in idiosyncratic risk (IV OL), we keep systematic

risk constant. We then simulate our model and study expected one-month hold-until-maturity

option returns for different levels of moneyness and IV OL, by fixing bi = 1 and varying ci in

{0, 1, 2, 4}.

The results are shown in Figure 2, with the solid line representing the expected return of

the underlying stock. First observation is that with increasing IV OL, the expected call returns

approach the expected stock return, as can be seen from the high IV OL line approaching the

solid black line. This observation is maybe not very surprising, as it is for example a well-

known property of the BSM model. The second observation is more striking: since out-of-the

money expected call returns are negative, the expected returns of these option approach the

expected stock return from below, i.e., they are increasing in IV OL. Hence, in the presence

12Note that for ξ = 0 the GARCH based model also implies a monotonically decreasing PK. In fact, for ξ = 0
the model nests the BSM model in a one period setting. Therefore, when restricting the model to ξ = 0, we
find that the implication of our model on expected option returns are quantitatively very similar to those of the
BSM model. However, we prefer to use the latter model, as is allows for closed form solutions, especially of the
sensitivity to parameter changes.
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of a U-shaped PK, the relationship between expected call returns and IV OL depends on the

options’ moneyness. In contrast, in models with a monotonically decreasing PK, such as the

BSM model, the relationship between IV OL and expected call returns is negative for all levels

of moneyness (see Hu and Jacobs, 2020), as illustrated in the first plot in Figure 2. For the

interested reader we provide a more detailed analysis of the relationship between expected call

returns and IV OL in both models in Appendix D.

These insights lead to our main hypothesis concerning the impact of IV OL on expected

call option returns. When the expected return of any call option approaches the expected return

of the underlying for increasing IV OL, it must do so from above for calls with higher expected

returns than the underlying, and from below for those calls which exhibit lower expected returns

than the underlying.

In the context of a U-shaped PK, the first group of options will be those with low strike

prices, while those with high strikes will be in the second group. Our hypothesis thus is that

for calls with low moneyness, we should find expected returns to decrease with increasing

idiosyncratic volatility, while we should obtain the opposite result for calls with high strikes.

Of course, different stocks will have different expected returns, so that expected call

returns will not tend towards a uniform constant for all stocks. We do not consider this a

major issue in the context of our analysis though, since option returns are typically orders

of magnitudes larger than stock returns, so that cross-sectional differences in expected stock

returns should be negligible.

Following Ang et al. (2006), we measure idiosyncratic volatility for stock i at day t as

IV OLi,t =

√√√√ 251∑
j=0

e2
i,t−j, (9)

where ei,t are the residuals from a regression of the daily returns on stock i on the three Fama-

French factors MKT, HML, and SMB.13 We use one year (252 trading days) of data here as well

13Using the latest five Fama-French factors gives very similar results.
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as for all other variables as a compromise between having enough observations to estimate the

variables reliably, and being flexible enough to pick up structural changes in the relationship

between returns and the factors.14

We then perform independent double sorts for the options in our sample with respect to

moneyness and the most recent underlying stock IV OL.15 More precisely, at a given date we

form quintiles with respect to underlying stocks IV OL and within each quintile assign options

to moneyness bins like in our benchmark analysis. Again we use at most one option per stock

and per bin each month, namely the one that is closest to the midpoint of the respective bin.

Finally, we calculate average call returns for all moneyness-IV OL portfolios, in exactly the

same way as in the benchmark approach. We therefore can interpret the results as returns to

an implementable trading strategy.

The first graph in Figure 3 confirms our fundamental hypothesis that expected call returns

should be decreasing in IV OL for low to medium moneyness levels, but increasing in this

variable for higher X. The dashed red line for the low IV OL portfolio is above the dashed

yellow line for moneyness up to 1.12, and, when crossing into negative territory, the ordering

switches. In addition, we also plot average S&P 500 index call returns sorted by moneyness as a

proxy for stocks without any IV OL. As predicted by our model, they have the highest returns

for in-the-money and at-the-money calls, and the highest curvature, i.e., steepest decreasing line

for out-of-the money calls. The second graph of Figure 3, that focuses on the return difference

between the high and the low IV OL portfolio in a given moneyness bin, confirms that the

differences are also statistically significant. Furthermore, the average return spread decreases

monotonically until the option return-moneyness inflection point (X ≈ 1.05), where it is most

negative, and subsequently monotonically increasing in X.

Of course, due to the pronounced volatility of option returns, we cannot expect these

differences to be uniformly significant. Still, for X up to a value of around 1.05, we obtain

14Our results remain valid when we use alternative return windows of 21, 42, 63, 126, 504 and 1260 days.
15We exclude the deepest out-of-the-money bin [1.6, 2], since it is too thinly populated for meaningful double

sorts.
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significance even at the 1% level, and the same is true for X greater than roughly 1.35. In sum,

the results in the data are very much in line with the above considerations. A more detailed

analysis is provided Section 3.5.

3.4 Systematic volatility

We next turn to the analysis of systematic volatility (SV OL). In order to get an idea of the

relationship between expected call option returns and SV OL, we again perform a simulation

analyses of our model, but now vary both ci and bi in (1) and (6). To study the impact of

a pure variation in SV OL, we fix a level of idiosyncratic and vary only the systematic risk

component. More specifically, we fix a ci from the set {0, 1, 2, 4}, and then choose a bi from

{0.5, 1, 2}. Further details regarding the simulation study are provided in Appendix C.

Figure 4 shows the results. For very low strikes, average call returns must basically increase

in SV OL, since in the limiting case of a zero strike, a call option simply corresponds to the

underlying stock. This is exactly what we see in all plots of Figure 4: For all specifications,

average call returns are increasing in SV OL until a moneyness level of at least 0.9. However,

for higher moneyness levels the relationship is not always monotonic, and in addition depends

on the level of IV OL.

With respect to this, the figure shows an important difference between a model with a

U-shaped PK relative to one where the PK is monotonically decreasing. When comparing the

two models for a given level of IV OL, one can see that for the relevant moneyness range, i.e.,

for moneyness between roughly 0.9 and (depending on IV OL) 1.02 to 1.8, SV OL has opposite

effects on expected call returns for the two types of PKs. The reason for this is solely the negative

variance-risk premium (see Appendix D.3 for more details). To the right of the moneyness levels

where the curves intersect a second time monotonicity again reverses. However, in our model,

the probability that the terminal stock return exceeds those levels of moneyness is very low,

such that these scenarios are of only minor relevance. For example, in the case with medium

IV OL, only (at most) 1% of the terminal returns are in that moneyness range. In the other
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cases, these numbers are comparable.16

For our empirical analysis, we define the systematic volatility of stock i at day t, SV OLi,t,

as

SV OLi,t =
√
TV OL2

i,t − IV OL2
i,t,

where TV OL denotes total volatility measured as

TV OLi,t =

√√√√ 251∑
j=0

r2
i,t−j −

(
251∑
j=0

ri,t−j

)2

,

and IV OL is given by (9). A natural starting point for an empirical test of the effect of SV OL

on expected call returns would be an independent double support with respect to IV OL and

SV OL. However, disentangling the effects of these two variables is complicated by the relatively

high correlation. The time-series average of the cross-sectional correlation between IV OL and

SV OL is about 54%. The results for this double sort are shown in the online Appendix and

qualitatively support our predictions, but are not statistically significant. We therefore turn to

a regression analysis in the next section.

3.5 Fama-MacBeth regressions

We perform Fama-MacBeth (1973) regressions to disentangle the effects of SV OL and IV OL,

while controlling for other variables that are known to affect expected call returns. We follow

Hu and Jacobs (2020) in their selection of risk factors and characteristics, but omit their

options-based variables such as delta, vega and gamma, since they are all highly correlated

with moneyness.

16All these patterns are observed consistently across a wide range of different parameter vectors, and it is
also not simply a representation of the IV OL effect discussed above. We provide further details regarding these
rich patterns in Appendix D.
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Every month, we run the following cross-sectional regression:

RC
t,i = γ0,t + γ1,t IV OLt−1,i + γ2,t SV OLt−1,i + γ′3,tZt−1,i + εt,i,

where RC
t,i is the hold-until-maturity return of a call option on stock i from month t − 1 to

month t, and Zt−1,i is a vector of controls including momentum, reversal, the variance risk

premium, and illiquidity. We do not separately include the CAPM-β, size and book-to-market

as controls, as they are already in a certain sense included in SV OL. The exact definitions of

these variables can be found in Appendix B.

To make our results comparable to the literature we choose a linear baseline specification.

Our model, however, suggests a decreasing marginal relationship between IV OL and expected

call returns for all moneyness levels. We therefore also include a version where we use ln(IV OL).

For consistency, we also do so for SV OL, although the model’s implications from Figure 4

regarding the marginal relationships are ambiguous.

We run the analysis separately for three broad moneyness categories which subsume our

finer moneyness grid used above. We focus our discussion on the results for out-of-the-money

call returns with a moneyness X between 1.1 and 1.6.17, as here the U-shaped PK is most

important. Results for the other moneyness categories are presented in Appendix E. For each

underlying stock, we keep the call with moneyness X closest to 1.25. Table 2 reports the time-

series averages of the γ coefficient estimates, together with t-statistics based on Newey and

West (1987) standard errors.

The results in Columns (2) - (9) show that IV OL always has a positive and statistically

significant effect on expected out-of-the-money call returns. The effect is even stronger for

the log-transformed variable, which is consistent with our model. For SV OL, we also find a

positive and statistically significant effect.18 Here the log-transformation does not lead to a

17The results remain quantitatively unchanged when using 1.4 or 1.5 as upper moneyness limit.
18We also run the regression separately for the IV OL portfolios 1 − 5 from Section 3.3. We find that the

coefficients for both IV OL and SV OL, as well as ln(IV OL) and ln(SV OL), decrease from portfolio 1 to
portfolio 5, which is in line with the model predictions. However, these decreases are not statistically significant.
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stronger effect. The inclusion of SV OL in the regression leads to a smaller effect of IV OL,

due to the pronounced correlated of the two variables discussed above. Still, both SV OL and

IV OL have separate effects on expected call returns, and these effects also remain significant

when we include several well-known cross-sectional determinants of stock and option returns

in the regression (see Columns (8) and (9)).

Comparing Columns (1) and (2) of Table 2 shows that is not enough to condition the

analysis on a certain moneyness category, but moneyness X itself must also be included as a

control. As soon as X is included as a regressor the coefficient for IV OL becomes positive and

highly statistically significant. The results in Column (3) show that the exact way how X is

included is of minor relevance for the significance of IV OL. Controlling for moneyness thus

identifies the autonomous effect of IV OL much more clearly. The reason is that the further

out-of-the money a call, the higher is the likelihood that it is written on a stock with high

(idiosyncratic) volatility.

We conclude that the results in Table 2 are fully consistent with our model predictions

from the previous two sections. Regarding SV OL, the results that out-of-the-moeny call returns

are increasing in this variable are in line with the bottom left plot of Figure 4.

We perform the analogous Fama-MacBeth regressions for in-the-money (0.8 ≤ X < 0.95)

and at-the-money calls (0.95 ≤ X < 1.05), where the mid-point is used as the reference

moneyness level to select calls. The results are reported Tables F.1 and F.2 in the appendix.

We find that in both cases IV OL has a strongly negative and statistically significant effect on

expected call returns, and this effect is also present after including control variables. The effect

of SV OL is positive for in-the-money calls, which is in line with the model predictions, but not

statistically significant. For at-the-money calls, the effect of SV OL is statistically insignificant

and rather ambiguous, as it switches sign depending on the specification. These findings are

also consistent with our model’s prediction regarding turning points and non-monotonicities

around X = 1.
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3.6 Total volatility

To ensure robustness, we want to make sure that the effect of IV OL on expected call returns

is not driven by TV OL. First, when performing an independent double sort on moneyness and

stocks’ TV OL, we find almost the same pattern as for the analogous IV OL analysis in Figure

3. However, when we perform a dependent double sorts on first TV OL and then IV OL we find

no effect of TV OL on average call returns.19 When we switch the order and first sort on IV OL

and then on TV OL, we find a statistically significant effect of IV OL on average call returns

as in Section 3.3 above, at least for in-the-money calls. The results are displayed in Figures

F.1-F.3 in the Appendix.

4 U-shaped Pricing Kernel: Option Return Anomalies

We now take a closer look on what our findings regarding the shape of the PK imply for option

return anomalies documented in the literature. Our main result here is that the assumption

of a monotonically decreasing PK, which implies expected call returns were increasing with

moneyness, can obstruct a clear view of the phenomena actually present in the data and thus

lead to questionable conclusions and interpretations.

We illustrate this point based on the two most common measures for lottery character-

istics, namely the ex ante skewness measure suggested by Boyer and Vorkink (2014) and the

MAX measure of Bali et al. (2011), used for options in Byun and Kim (2016). In both of

these papers, option returns are used as a basis for the claim that investors’ preferences for

19The major challenge in disentangling TV OL and IV OL empirically is the high correlation of the two
variables in the cross-section of stocks (see, e.g., Ang et al. (2006)). Indeed, in our sample, the time series
average of this cross-sectional correlation exceeds 98%. Hence, independent double sorts are unlikely to be
a promising empirical strategy. Therefore, we follow the approach proposed by Bali et al. (2011) for such a
situation and use dependent double sorts.

For this, we first sort all underlying stocks into quintiles based on IV OL. Then, within IV OL quintile j, we
sort stocks into quintiles based on TV OL. Next, for each moneyness bin, we compute the average call return
across all IV OL quintiles for a given TV OL quintile. For example, for moneyness bin 1 and TV OL quintile 1, we
compute the average across IV OL quintiles 1 to 5. The key quantity of interest for a given moneyness bin then
is the difference of these averages between TV OL quintiles 5 and 1, i.e., the average return on a high-minus-low
portfolio. When we sort on IV OL and control for TV OL, we switch the role of the two variables.
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lottery-like assets do affect asset prices. The basic argument is this type of investors is willing

to accept on average large losses on investments in (overpriced) call options, when they are

compensated with large positive return skewness.

Options are indeed suitable instruments to study such preferences, since they offer highly

skewed return distributions. As we will show in our analysis below, however, the patterns

in the data which the authors of the two studies cited above take as evidence supporting

certain behavioral biases, are perfectly in line with a U-shaped PK and thus with a risk-

based explanation. Given that there are hardly any short-selling restrictions in the options

market, professional investors could arbitrage away the potential mispricing rather easily, which

makes this risk-based interpretation of the data appear more appealing than a behavioral story.

Furthermore, if limits to arbitrage were to be the driver of these results, the effects should mostly

come from stocks with pronounced trading frictions such as small or illiquid stocks. However,

in our robustness analysis below, we find no such patterns.

Boyer and Vorkink (2014) construct a measure for the ex ante skewness of option returns

and use this measure to argue that there is a negative relation between the lottery-like char-

acteristics of options (measured by this ex ante skewness) and subsequent option returns. The

measure they propose relies on the assumption of lognormal stock returns, and it uses as inputs

the mean and the variance of stock returns based on daily data over the preceding six months.

The ex ante skewness of the option return is then given in closed form as a function of only

the expected stock return, stock return volatility, the time to maturity of the option, and its

moneyness.

We start with a replication of the main result in Boyer and Vorkink (2014) and, like them,

we now also consider all call options without any restrictions on moneyness.

Table 3 contains the average call returns of five portfolios sorted on the ex ante skewness

measure proposed by the authors (BV Skew henceforth). The results exactly confirm the pattern

documented in the original paper, namely that returns exhibit a hump-shaped pattern across

the portfolios and are highly negative (although not significantly so) for the portfolio with high
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BV Skew.

There is, however, another very important point to be taken from Table 3. As one can see,

BV Skew seems to be very highly positively correlated with moneyness. In fact, the measure

is a highly convex function of moneyness and more sensitive to this than to any other of the

variables, as also indicated by Figure 1 in Boyer and Vorkink (2014). In the context of a U-

shaped PK, this is a crucial observation. Given such a PK, the expected returns on calls with

high moneyness will be negative only due to the specific properties of the PK, irrespective of

any behavioral biases on the part of investors.

To test if it is indeed just moneyness which is responsible for the observed return pattern,

we perform a dependent double sort on moneyness and BV Skew by first sorting on moneyness,

and then within each moneyness bin, generating skewness portfolios of equal size. We prefer

dependent double sorts here, since the strong correlation between BV Skew and moneyness

would produce many poorly populated portfolios for an independent double sort.

Figure 5 shows that when controlling for moneyness via the double sort, average returns

are not decreasing in BV Skew anymore. As one can see, the return differential between the

high and the low BV Skew portfolio is not significantly different from zero for any level of

moneyness. This is a first strong indication that BV Skew does not offer explanatory power for

average call returns beyond moneyness.

Boyer and Vorkink (2014) also perform Fama-MacBeth regressions. When we perform the

analogous analyses, the results again show in a very strong fashion that, once moneyness is

properly controlled for, the effect of the BV Skew disappears. We use the same set of controls

as the original paper, and in addition add illiquidity and the variance risk premium, as they

are known to be strong predictors of option returns.

Table 4 presents the results. We perform the regression for subsamples with in-the-money

and at-the-money options in one group (X ≤ 1.02) and out-of-the-money options in the other

(X > 1.02). The choice of the cutoff point between the two groups is motivated by the results

shown in Figure 5.
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First, the simple regression for the full sample indeed confirms a significantly negative

link between BV Skew and call returns. The sample split, however, casts serious doubts on

whether BV Skew is the true return driver. For the subsample with X ≤ 1.02, the associated

coefficient is insignificant in the specification without controls, but even significantly positive

in the regression with stock and option controls. Moneyness on the other hand has a positive

impact for this subsample, which is again in line with the notion of a U-shaped PK. For the

subsample with out-of-the-money calls, we find BV Skew to be insignificant as soon as we

control at least for moneyness, and the picture does not change when we consider the larger

set of control variables. Note that X here has a significantly negative coefficient, which again

supports our fundamental hypothesis of a U-shaped PK.

The second option return anomaly in the context of lottery-like assets is documented in

Byun and Kim (2016). They find evidence for average call returns to be lower when the underly-

ing stock exhibits more pronounced lottery characteristics. The proxy for lottery characteristics

used by the authors is the MAX measure introduced by Bali et al. (2011), i.e., the average

of the ten highest daily stock returns over the past quarter. The authors conclude from their

analyses (based on at-the-money and slightly out-of-the-money options) that there is a strongly

negative relationship between a stock’s lottery characteristics and average call option returns.

In the context of U-shaped PK we can shed new light on this link by considering also

options with higher moneyness than those used in the original paper. Figure 6 graphically

presents the return difference between the high and the low MAX portfolio across all our

moneyness bins together with the bootstrapped 99% confidence intervals.

Indeed, for low values for X the spread in average call returns between the high and the

low MAX portfolio is negative, and significantly so. For X around 1.1, however, the effect

starts to go the other way, and for deep-out-of-the-money calls, we finally find the spread to

have the opposite sign relative to the predictions in the Byun and Kim (2016) paper.

Overall, one can see from our analyses of option return anomalies related to BV Skew

and MAX that in the light of a U-shaped PK, the observed patters for average call returns are
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either not anomalous anymore, as in the case of BV Skew, or they even even change direction,

as in the case of MAX.20

5 Robustness

5.1 Discussion of alternative moneyness sorts

5.1.1 Pre-defined moneyness bins (cardinal sort)

In our benchmark approach we use all call options satisfying our filtering criteria and sort them

into bins according to their numerical, i.e., cardinal, moneyness value. As indicated above in

Section 2.2.2, the advantage of this approach is that it relies on a large amount of data, but on

the other hand it is very likely that the sets of stocks in two adjacent bins are not the same. In

this section we provide a number of robustness checks with respect to the procedure applied in

our main analysis.

A stricter approach would be to compute the return differences between options on the

same underlying in adjacent bins, since the pattern of these (average) differences across mon-

eyness bins would represent a potentially more direct test of the hypothesis regarding the

monotonicity the PK. In the extreme case, one would actually require literally the same stocks

to be in all bins. The key problem here is that for many individual stocks, in contrast to the

index, only few strikes are available. Table 5 illustrates this problem. It shows that, on average

in our final sample, there is only one call option for 39% of the stocks, and only two for another

30%.21

20Byun and Kim (2016) also use Fama-MacBeth regressions to support their finding. We replicate their
approach, and confirm their results for at-the-money call returns. However, for out-of-the-money calls we again
find that the relation between MAX and call returns switches sign. The results are shown in the Tables F.3
and F.4 in the appendix.

21Since we allow only one call in any given bin per underlying at each formation date, these numbers poten-
tially even overstate the number of actually available strikes, due to the fact that more than one strike of a
given stock may fall in a given moneyness bin. Furthermore, we only consider standard calls in the following
robustness analyses, since due to the approximation of digital calls via a portfolio of two standard calls, the
data requirements in terms of strike availability would even be tougher for digital calls.
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Instead of computing average call returns in each moneyness bin and then testing for

the significance of the difference between adjacent bins as in our benchmark analysis, we now

directly focus on the differences in returns between two call options on the same underlying in

adjacent bins. This means that the average return difference between the two bins is computed

on the basis of calls on only those underlying stocks which are contained in both bins. Never-

theless, the set of such stocks may vary depending on which bins are considered. Due to this

stricter data requirement, we have to combine two adjacent bins from the original set into one,

with the special case of an at-the-money bin containing the strike prices previously assigned to

Bins 3, 4 and 5.

Table 6 presents the results, which strongly confirm the findings from the benchmark

analysis. For lower values of X, average call returns are increasing in moneyness, as indicated

by a significantly positive average return difference of 4.4% per month between the bin with

X ∈ [0.975, 1.050] and that with X ∈ [0.900, 0.975]. For higher moneyness levels, the differences

become significantly negative, which shows that for out-of-the-money calls, average returns are

decreasing in moneyness. The two results together provide strong support for the hypothesis of

a U-shaped PK for the typical stock.

In the extreme case, one might require that, at a given date, the differences across bins

are computed based on calls on only those underlying stocks, which are represented in all of

the bins. This even stricter data requirement only allows for two meaningfully populated bins

in the end, one for at-the-money calls with X ∈ [0.9, 1.1] and one for out-of-the-money options

X ∈ [1.1, 1.5]. As before, we only include the call closest to the midpoint of the respective bin.

This leaves us with on average 511 observations per month, which still represents more than

50% of the on average 950 stocks for which one could at least potentially compute a difference

in option returns between moneyness bins (see Table 5).

The results in Table 7 again clearly support the notion of a U-shaped PK with a strongly

significant average return difference between at-the-money and out-of-the-money calls of −17%

per month. Furthermore, these results lends strong credibility to our benchmark approach,

which features a finer moneyness grid.
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5.1.2 Ordinal moneyness sort

As pointed out above, Chaudhuri and Schroder (2015) propose a different procedure for assign-

ing options to moneyness bins. In their portfolio formation, they treat moneyness as an ordinal

variable. In detail, they first identify the option with a strike closest to the current stock price

and assign it to a reference bin (Bin 3 in their case).22 The next higher strikes for each stock are

assigned to Bins 4 and 5, the next lower ones to Bins 2 and 1. It is important to note that this

assignment takes place irrespective of the numerical value of moneyness. This approach has the

advantage that even with the requirement that return differences are computed from calls on

only those underlyings which are present in two adjacent bins, the analysis can be based on a

fairly large sample, since for many stocks at least a few strikes are available.

This approach offers a number of degrees of freedom, e.g., the choice of the reference

point for the start of the sort. Chaudhuri and Schroder (2015) start their procedure with the

at-the-money bin, but one might as well pick any other reference point on the moneyness axis.

We no investigate the impact of this aspect of the methodology and present the first

results for such an “ordinal sort” in Table 8. Here, we use the full sample of all calls satisfying

the basic data filters described in Section 2. The reference point for the start of the assignment

of options to bin is at-the-money, and we consider only bins with increasing strikes, i.e., we

move from at-the-money to out-of-the-money calls.

Again, the results are strongly in favor of a U-shaped PK. The average return difference

between any pair of adjacent bins is negative, and between Bins 2 and 1, and Bins 3 and 2, this

difference is also strongly statistically significant.

Table 8 also highlights a potential problem with the ordinal sorting approach. The reported

moneyness statistics clearly show that this procedure of assigning options to bins can have

rather undesirable side effects, since the range of X in the different bins can be huge. Already

in Bin 2, there can be options with values of X which would be considered extremely far

22If there is no option for a given stock in this pre-defined at-the-money range, that stock is discarded on
that formation date.
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out-of-the-money, while the minimum moneyness would usually be considered almost exactly

at-the-money.

We next perform the ordinal sort and require options in all bins to have exactly the

same underlying stocks. Tables 9 and 10 present the result when we use four and three bins,

respectively. In both cases the reference point is at-the-money. Both variations of the approach

confirm our main finding that out-of-the-money, average call returns decrease in moneyness,

and this decrease is also often highly statistically significant.

There is no theoretical reason to use an at-the-money reference point to start the sort. In

the following, we use the deepest out-of-the-money call for each stock as this reference point, i.e.,

for each stock we identify the call with the highest strike and put it into Bin 1. The call option

with the next lower strike is then assigned to Bin 2, and so on. Since we are mainly interested in

the properties of out-of-the-money calls, we require that all options have a moneyness greater

than one. Finally, we impose the requirement that the same stock must be in all bins.

Table 11 presents the results for two and three out-of-the-money bins. The numbers again

confirm our main finding. The average returns on out-of-money calls significantly decrease with

moneyness, which is one of the main implications of a U-shaped pricing kernel.

The choice of an alternative reference point for the assignment of options to bins is also

important with respect other explanations for negative expected call returns suggested in the

literature. Chan and Ni (2018) argue that negative returns for out-of-the-money calls could also

be due to measurement error. Some option prices may be too small to be quoted, and hence

they are not included in the data.

However, the “reverse” sorting with an out-of-the-money reference point shows that this

explanation is not very likely. Even relatively far out-of-the-money, call returns decrease on

average in moneyness (and do so in a highly significant fashion), and these are, of course, the

cheapest options available. In addition, the average number of options in the sample each month

is fairly large.
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5.1.3 Alternative definition of moneyness

The same monthly stock return has a different probability to occur for stocks with different

volatilities. To account for this, we perform a robustness analysis where we replace our original

definition X = K/S0 by X̂ = (K/S0 − 1)/σ, i.e., we standardize the deviation from X = 1 by

volatility. For example, a X̂ = 3 mean that the strike is three return standard deviations away

from the current stock price. We use three alternative measures for σ, namely historical return

volatility measured from daily returns over the previous month and over the previous year, and

the implied volatility of the respective option. We scale each volatility measure with time to

maturity.

We then continue as in our benchmark approach, just with standardized moneyness. For

brevity, we again focus on return differences, and present the results in Table 12. The numbers

again confirm the hump-shaped return pattern implied by the U-shaped PK.

5.2 Alternative return horizons

As an alternative to our monthly returns, we now consider two week and six week maturity

returns. When we stick to our portfolio formation on Mondays as in the benchmark analysis,

two and six weeks effectively correspond to 18 (17 if Monday is not available) and 46 (45) days,

respectively. Furthermore, given the above considerations, we present the results for an analysis

analogous to Table 1 (using all available options) and the version where we require the same

stocks top be in all bins corresponding to Table 7.

Table 13 presents the results for these alternative return horizons when we we use all

available options. The results represent very strong support for the hypothesis of a U-shaped

PK. As in the benchmark case, average call returns are significantly increasing in moneyness

up to a level of around 1.05, and then start to decrease just as significantly for X beyond that

point. In total, we observe the same hump shape is in the benchmark case.23

23In the case of six week returns, the returns are overlapping. We consider this in the statistics and use block
bootstrap with a size of five in this case.
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In Table 14 we show the results for the case when all bins (in this case again only two)

contain exactly the same stocks at a given date. The approach is the same as described above

for the standard monthly returns, and the structure of the results is analogous to that in Table

7. The results are again strongly statistically significant. Average out-of-the-money call returns

are highly negative, and the difference between the at-the-money and the out-of-the-money

returns is negative, large in absolute terms, and strongly significant.

5.3 Weekly intermediate option returns

5.3.1 Basic considerations

Up to now, our analysis has exclusively focused on maturity option returns, i.e., options were

bought and then held until maturity. In contrast to this, Chaudhuri and Schroder (2015) con-

sider weekly intermediate returns of options with three to six weeks maturity, calculated from

Tuesday to Tuesday. When we investigate their approach in detail, we find that their results

are not really robust to variations of the empirical setup, and that overall, also weekly returns

are consistent with a U-shaped PK.24

The use of weekly intermediate option returns comes with several data-related as well as

theoretical problems. First, for most of the sample there is just one option expiry day per month,

so there are several weekly returns per month. Due to their special way of computing weekly

returns, Chaudhuri and Schroder (2015) actually have options with maturities of 3.5, 4.5 and

5.5 weeks in their sample, over the returns of which they compute averages. The characteristics

of intermediate weekly returns, however, vary with maturity, so that potentially very different

types of returns are averaged. Since the maturity choice by Chaudhuri and Schroder (2015)

seems somewhat ad hoc, we also add weekly intermediate returns on options with maturities of

2.5 and 6.5 week. On the one hand, these additional maturities correspond to those for which

24Chaudhuri and Schroder (2015) use fewer option price filters than is commonly done in the literature.
In particular, they do not require a minimum option price, positive open interest or volume, and do not im-
pose any bounds the options’ moneyness. We nevertheless follow their approach to allow for the best possible
comparability between their findings and ours.
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maturity returns are discussed in Section 5.2 above, and on the other hand, they will help to

show that intermediate weekly returns for options with different maturities actually exhibit

very different properties.25

Second, to compute a return, not only the initial, but also the terminal option price

is required, while for maturity returns it is enough to have the stock price at the maturity

date. We find that in more than 15% of the cases, the option price in the following week is

missing. More importantly, we find that option prices are not missing randomly, but that the

fact that a price is not there is correlated with returns, which obviously biases the results. A

deeper analysis shows that the problem is most severe for out-the-money calls, where prices

are frequently missing when the stock price has moved so much that the option is now very

deep out-of-the-money, and hence it is not quoted or traded anymore. The opposite is found

for in-the-money calls. This should bias the observed out-of-the-money call returns upwards,

and the observed in-the-money call returns downwards.

Finally, there is also a substantial conceptual problem with the approach of using inter-

mediate instead of maturity returns. The theoretical relationships between call returns and the

shape of the PK discussed above in Section 2.1 only apply to maturity returns, since these

returns are just a function of the underlying price at maturity, exactly like the PK, whereas

an option price before maturity is a function of the underlying price and a (potentially large)

vector of state variables. Hence, a test for the shape of the PK based on intermediate returns

is very likely to be inconclusive.

In a strict sense, the link between intermediate option returns and the shape of the PK

can only be established in a fully parameterized model. Chaudhuri and Schroder (2015) choose

the Merton jump-diffusion model, but this is a problematic choice, since the model features

a monotonically decreasing PK, which clearly favors this hypothesis over the alternative of a

U-shaped PK.

25This has also been pointed out by Broadie et al. (2009).
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5.3.2 Cardinal sort

We first present all weekly returns sorted by moneyness in Figure 7. Other than working with

a different return concept we completely follow our benchmark approach. As indicated above,

Chaudhuri and Schroder (2015) average over weekly call returns with 3.5, 4.5 and 5.5 weeks to

maturity, which is represented in the graph by the line labeled “3w-6w”.

One can see from the lines in the graph that the return patterns for different types of

average intermediate returns are indeed very different. Nevertheless, average returns for all

maturities exhibit a hump shaped pattern, albeit with different locations, and the peak of

average returns is attenuated with increasing maturity, and the moneyness level associated

with the peak shifts to the right.

There are also several striking structural differences between the intermediate returns

presented here and the maturity returns discussed above. Most importantly, now the average

returns of out-of-the-money calls are always positive. Furthermore, average in-the-money call

returns are negative, which is puzzling. The average weekly stock return in our sample is

positive, so that this is likely to be a consequence of the data problem described above, which

biases observed returns on in-the-money calls downwards.

Table 15 presents the average call return differences between adjacent moneyness bins for

maturities from 2.5 to 6.5 weeks. The general tendency is that average returns on out-of-the-

money calls are decreasing in moneyness, with very strong overall significance for the two short

maturities, and a number of significantly negative differences between Bins k and k+ 1 also for

longer maturities.

To complement the analysis, Table 16 shows the analogous results, but with the additional

requirement that return differences are only computed from options on those underlying which

are represented in both of two adjacent bins. The tendency of the results using all available

options is confirmed here, albeit with in part less pronounced statistical significance.

They also confirm the general finding, but the decrease in returns is not statistically

significant anymore for the 4.5w and 5.5w maturities. In sum, one can conclude that average

34



intermediate weekly option returns are clearly hump-shaped for options with shorter maturities.

For longer maturities, we observe decreasing average returns to a lesser degree and, if so, mostly

for deep-out-of-the-money calls. We would like to emphasize again here that especially these

latter findings are to be interpreted cautiously due to data issues discussed above.

5.3.3 Ordinal sort

We also replicate the ordinal sorting approach used in Chaudhuri and Schroder (2015) and find

results similar to those for the cardinal sort. We present the results for the cases of three, four,

five, and six bins in in the Online Appendix.

For short maturities, the average intermediate call returns exhibit a hump-shaped pattern

across moneyness. For longer maturities, the fact that the approach combines structurally very

different options in the same bin, as discussed above in Section 5.1.2, makes the results hard

to interpret.

5.4 Further double sorts

To check whether the hump shaped relationship between moneyness and option returns is driven

by any obvious subsample, we perform independent double sorts on various stock characteristics

and moneyness. The approach is analogous to the analysis of the impact of IV OL in Section 3.3

above. We do this for the stock’s beta, book-to-market ratio, size, the Amihud (2002) illiquidity

measure, turnover, momentum, short term reversal and the difference between historical and

at-the-money implied volatility (variance risk premium) studied in Goyal and Saretto (2009).

In sum, we do not find any double sort where the hump-shaped relationship between moneyness

and expected call returns cannot be observed for any subsample. The results are included in

the online Appendix.
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5.5 Subsamples in the time dimension

The theoretically implied return patters (as e.g. in Figure 1) are conditional statements. How-

ever, our non-parametric approach using average option returns only allows to study an uncon-

ditional relationship. To get closer to a conditional analysis, we repeat our main analysis using

meaningful subsamples.

5.5.1 High and low volatility periods

A typical finding in the asset pricing literature is that patterns differ between good and bad

times, between times of distress and normal times, between recessions and expansions.

We divide our base sample into two subsamples by conditioning on the level of the volatil-

ity index at the portfolio formation date. When the VIX at formation date is below its sample

median of 18, we assign that month to the low volatility regimes, and vice versa. Figure 8

shows that there is no structural difference between the two volatility regimes when it comes

to average call returns as a function of moneyness. The two lines for average call returns move

largely in parallel across the moneyness axis, and the 95% confidence bands around the sample

averages overlap substantially.

5.5.2 Calendar-time subsamples

Over the years, the option market underwent some changes, as for example a growing number

of underlying stocks, and increased automation. We therefore split our sample in four parts, all

of equal duration of 5.5 years. The numbers in Table 17 again confirm our main hypothesis of

a U-shaped PK.

5.6 S&P 500 constituents

Finally, we repeat our main analysis using only those underlying stocks, that where constituents

of the S&P 500 index at portfolio formation date. The S&P 500 contains the largest US stocks
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and accounts on average for about 80% of the total CRSP stock market value. The results in

the last panel of Table 17 again corroborate our main findings.

6 Conclusion

We provide strong empirical evidence in favor of a U-shaped pricing kernel for the typical stock.

Average call returns are a hump-shaped function of moneyness, with the maximum being in the

region of 2.5% to 5.0% out-of-the money and average returns on out-of-the-money options being

negative. These findings are robust to a wide set of variations of the empirical methodology.

Among other things, we carefully investigate the impact of the actual procedure of assigning

options to moneyness bins and of computing option returns.

The insight that the PK for the typical stock is U-shaped has important implications for

the increasingly popular analysis of the cross-section of option returns, i.e., of option returns

across different underlying stocks. For example, we show that higher idiosyncratic volatility will

tend to decrease expected returns on in-the-money calls, while the opposite is likely to happen

for out-of-the-money calls. This means that the impact of idiosyncratic volatility on expected

call returns does not only go in one direction, but it rather depends on the option’s moneyness.

Furthermore, our new insights concerning the shape of the PK also provide a starting point

for risk-based instead of behavioral explanations for seemingly anomalous patterns in expected

option returns.
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Table 2: Fama-MacBeth Regressions of Out-Of-The-Money Call Returns with IV OL and
SV OL

(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV OL 0.018 0.289∗∗∗ 0.287*** 0.202∗∗ 0.227∗∗
(0.21) (3.33) (3.27) (2.21) (2.23)

ln(IV OL) 0.220∗∗∗ 0.178∗∗∗ 0.200∗∗∗
(3.86) (3.06) (3.31)

SV OL 0.725∗∗ 0.606∗∗ 0.495∗
(2.50) (2.01) (1.72)

ln(SV OL) 0.054∗ 0.035
(1.79) (1.22)

X −2.250∗∗∗ 2.347 0.635 0.382 0.751 −0.385 0.620 −0.664
(−8.39) (0.42) (0.11) (0.07) (0.14) (−0.07) (0.11) (−0.11)

X2 −1.928 −1.289 −1.073 −1.314 −0.893 −1.307 −0.834
(−0.85) (−0.55) (−0.49) (−0.61) (−0.40) (−0.56) (−0.34)

MOM 0.036 0.040
(0.74) (0.83)

REV −0.134 −0.133
(−1.20) (−1.18)

V RP −0.016 −0.018
(−0.26) (−0.30)

ILLIQ −19.850 −26.213∗
(−1.29) (−1.66)

R2(%) 0.4 0.8 1.0 1.1 1.2 1.5 1.7 2.6 2.8

This table shows the results for Fama-MacBeth regressions of one month hold-until-maturity call
returns on stock and option characteristics plus additional controls. For each month, we estimate the
cross-sectional regression

RCt,i = γ0,t + γ1,t IV OLt−1,i + γ2,t SV OLt−1,i + γ′3,tZt−1,i + εt,i,

where RCt,i is the return for call option i at time t, and Z is a vector of controls. The definitions for

the different variables are provided in Appendix B. For all out-of-the-money calls with a moneyness

X = K/S0 between 1.1 and 1.6, for each underlying stock, we keep only the call which has an X closest

to 1.25. The table reports the time-series averages of the γ-coefficients and the associated Newey and

West (1987) adjusted t-statistics (with five lags) in parentheses. The last row gives the averages of the

adjusted-R2 from the regressions. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level,

respectively. The total number of observations is 151, 713 in all regression specifications.
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Table 3: Call Returns for Portfolios Sorted on BV Skew

PF Avg. return (%) 99% conf. int. avg. BV Skew avg. X

L 3.87∗∗∗ [0.3, 7.4] 1.29 0.74
2 5.91∗∗∗ [0.0, 11.8] 1.68 0.88
3 7.03∗∗ [-0.9, 15.3] 2.15 0.96
4 5.70 [-4.2, 16.3] 2.95 1.05
H −6.69 [-17.5, 4.6] 16.60 1.18

L-H 10.56∗∗∗ [1.3, 19.2]

This table presents a replication of the results in Table IV of Boyer and Vorkink (2014). It shows average

one month hold-until-maturity call returns for portfolios sorted on BV Skew. The stars indicate that

the values are statistically significant at the 10%, 5% and 1% level. Significance is based on confidence

intervals computed from bootstraps with 100,000 independent draws (pairwise draws for differences).

In addition, the table reports the average moneyness X and average BV Skew of the portfolios.
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Table 4: Fama-MacBeth Regressions with BV Skew

All X ≤ 1.02 X > 1.02

BV Skew −0.007∗ −0.006∗∗ −0.002 0.015 −0.022 0.044∗∗∗ −0.008∗∗∗ 0.003 0.004
(−1.72) (−2.04) (−0.66) (0.85) (−1.28) (2.62) (−3.20) (1.03) (0.81)

X −0.109 −0.307∗∗∗ 0.268∗∗∗ −0.120 −1.363∗∗∗ −1.187∗∗∗
(−1.31) (−3.22) (4.61) (−1.40) (−8.29) (−6.38)

IV OL −0.380∗∗∗ −0.260∗∗∗ −0.299∗∗
(−6.24) (−4.71) (−2.57)

ln(B/M) 0.009 0.006 0.017
(1.03) (1.07) (1.06)

MOM −0.003 0.019 0.004
(−0.14) (1.41) (0.09)

REV −0.172∗∗∗ −0.062∗∗ −0.261∗∗
(−2.97) (−2.40) (−2.53)

SIZE −0.017∗∗ −0.006 −0.018
(−2.25) (−1.49) (−1.04)

CAPM-β 0.007 −0.006 0.020
(0.30) (−0.39) (0.54)

ILLIQ −0.771 −1.887 −6.714
(−0.14) (−0.54) (−0.51)

V RP 0.254∗∗∗ 0.101∗∗∗ 0.362∗∗∗
(6.96) (4.87) (4.23)

R2(%) 0.4 1.9 4.5 2.2 3.5 8.2 0.2 0.8 3.3

This table is analogous to Table VIII in Boyer and Vorkink (2014) and shows the results for Fama-
MacBeth regressions of one month hold-until-maturity call returns on stock and option characteristics
plus additional controls. For each month, we estimate the cross-sectional regression

RCt,i = γ0,t + γ1,t BV Skewt−1,i + γ′2,tZt−1,i + εt,i,

where RCt,i is the return for call option i at time t, and Z is a vector of controls. The definitions for

the different variables are provided in Appendix B. The regression is run separately for options with

initial moneyness X = K/S0 below and above 1.02. The table reports the time-series averages of

the γ-coefficients and the associated Newey and West (1987) adjusted t-statistics (with five lags) in

parentheses. The last row gives the averages of the adjusted-R2 from the regressions. ∗∗∗, ∗∗, and ∗

indicate significance at the 1%, 5%, and 10% level, respectively.
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Table 5: Available Number of Strike Prices

Number of strikes 1 2 3 4 5 ≥ 6

Average number of stock-months 616 471 209 101 59 110
in % of all 39.3 30.1 13.3 6.5 3.8 7.0

This table presents the average number of call option strike prices per stock and month in our sample,

where moneyness X = K/S0 is restricted to be between 0.9 and 2. The average is taken across the

stocks which have exactly n calls with different strikes.
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Table 6: Call Return Differences Across Bins (I)

Bin 2 3 4 5

X ∈ (0.975, 1.050] (1.050, 1.200] (1.200, 1.400] (1.400, 2.000]
Avg. ret. diff.
to prev. bin (%) 4.4*** -5.4*** -22.7*** -11.6**
(t-stat) (2.55) (-2.45) (-7.92) (-2.29)
99% conf. int. [0.5, 8.5] [-10.3, 0.0] [-29.2, -15.8] [-22.4, 1.2]
Avg. no. of calls 442 463 165 43

The table shows average call return differences across moneyness bins. Call returns are one month

hold-until-maturity returns. The average return difference between the higher and the lower bin is

computed on the basis of calls on only those underlying stocks which are represented in both bins.

The set of such stocks will vary with the bins under consideration. For the Bin 1 we use only calls with

X ∈ [0.9, 0.975]. The stars indicate that the values are statistically significant at the 10%, 5% and 1%

level. Significance is based on confidence intervals computed from bootstraps with 100,000 pairwise

draws of differences. The t-stats are additionally reported in parenthesis.
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Table 7: Call Return Differences Across Bins (II)

X ∈ [0.9, 1.1] X ∈ (1.1, 1.5] Difference

Avg. return (%) 7.0* −10.0* −17.0***
(t-stat) (1.92) (-1.80) (-6.62)
99% conf. int. [-1.9, 16.0] [-21.5, 2.6] [-22.5, -10.7]
Avg. X 1.01 1.20
Avg. no. of calls 511

The table shows average call return differences across two moneyness bins. Call returns are one month

hold-until-maturity returns. The average return difference between the bins is computed on the basis

of calls on only those underlying stocks which are represented in both bins. The stars indicate that

the values are statistically significant at the 10%, 5% and 1% level. Significance is based on confidence

intervals computed from bootstraps with 100,000 independent draws (pairwise draws for differences).

The t-stats are additionally reported in parenthesis.
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Table 8: Call Return Differences: Ordinal Sort, Reference Point At-The-Money

Bin 1 2 3 4

Avg. return difference
to previous bin (%) -5.3*** -11.2*** -2.5
(t-stat) (-3.05) (-4.93) (-0.63)
99% conf. int. [-9.2, -1.2] [-16.4, -5.8] [-11.5, 6.7]
Avg. no. of calls 1,470 790 325 155
Avg. X 1.00 1.11 1.18 1.23
Std(X) 0.04 0.07 0.12 0.16
Min(X) 0.90 0.92 1.00 1.01
Max(X) 1.10 2.63 2.92 3.60

The table presents differences in average call returns between adjacent bins with ordinal sorting and

the reference point at the money. The at-the-money reference bin (Bin 1) is restricted to include

only calls with X ∈ [0.9, 1.1]. The values for std(X), min(X), and max(X) are calculated from all

observations, i.e., without first averaging within each month. The stars indicate that the values are

statistically significant at the 10%, 5% and 1% level. Significance is based on confidence intervals

computed from bootstraps with 100,000 pairwise draws of differences. The t-stats are additionally

reported in parenthesis.
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Table 9: Call Return Differences: Ordinal Sort, Reference Point At-The-Money, Same Stocks
in All Bins (I)

Bin 1 2 3 4

Avg. return difference
to previous bin (%) -1.5 -5.9*** -8.4***
(t-stat) (-1.28) (-3.44) (-3.39)
99% conf. int. [-4.1, 1.3] [-9.7, -1.8] [-13.9, -2.3]
Avg. no. of calls 155
Avg. X 0.99 1.07 1.15 1.23
Std(X) 0.02 0.05 0.10 0.16
Min(X) 0.90 0.92 1.00 1.01
Max(X) 1.10 1.80 2.50 3.60

The table presents differences in average call returns between adjacent bins with ordinal sorting,

reference point at the money, and options on the same underlying stocks in all bins. The at-the-money

bin (Bin 1) is restricted to include only calls with X ∈ [0.9, 1.1]. The values for std(X), min(X), and

max(X) are calculated from all observations, i.e., without first averaging within each month. The stars

indicate that the values are statistically significant at the 10%, 5% and 1% level. Significance is based

on confidence intervals computed from bootstraps with 100,000 pairwise draws of differences.
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Table 10: Call Return Differences: Ordinal Sort, Reference Point At-The-Money, Same Stocks
in All Bins (II)

Bin 1 2 3

Avg. return difference
to previous bin (%) -1.2 -13.8***
(t-stat) (-0.82) (-7.50)
99% conf. int. [-4.4, 2.4] [-18.0, -9.5]
Avg. no. of calls 325
Avg. X 0.99 1.08 1.18
Std(X) 0.03 0.06 0.12
Min(X) 0.90 0.92 1.00
Max(X) 1.10 1.94 2.92

The table presents differences in average call returns between adjacent bins with ordinal sorting,

reference point at the money, and options on the same underlying stocks in all bins. The at-the-money

bin (Bin 1) is restricted to include only calls with X ∈ [0.9, 1.1]. The values for std(X), min(X),

and max(X) are calculated from all observations, i.e., without first averaging within each month. The

stars indicate that the values are statistically significant at the 10%, 5% and 1% level. Significance is

based on confidence intervals computed from bootstraps with 100,000 pairwise draws of differences.

The t-stats are additionally reported in parenthesis.
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Table 11: Call Return Differences: Ordinal Sort, Reference Point Out-Of-The-Money, Same
Stocks in All Bins

3 bins 2 bins
Bin 3 2 1 2 1
Avg. return difference
to previous bin (%) −3.41∗ −9.71∗∗∗ −12.7∗∗∗

(t-stat) (-1.81) (-3.29) (-7.13)
99% conf. int. [-7.6, 1.1] [-16.2, -2.5] [-16.7, -8.4]
Avg. no. of calls 225 521
Avg. X 1.09 1.18 1.28 1.10 1.21
Std(X) 0.15 0.18 0.24 0.14 0.19
Min(X) 1.00 1.01 1.03 1.00 1.01
Max(X) 3.77 4.46 4.75 4.46 4.75

The table presents differences in average call returns between adjacent bins with ordinal sorting,

reference point out of the money, and options on the same underlying stocks in all bins. The reference

out-of-the-money bin (Bin 1) is defined by the call option with the highest available strike. We only

consider options with X > 1. The values for std(X), min(X), and max(X) are calculated from all

observations, i.e., without first averaging within each month. The stars indicate that the values are

statistically significant at the 10%, 5% and 1% level. Significance is based on confidence intervals

computed from bootstraps with 100,000 pairwise draws of differences. The t-stats are additionally

reported in parenthesis.
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Table 14: Two and Six Week Call Returns (Same Stocks in All Bins)

Two weeks Six weeks
X ∈ [0.9, 1.1] X ∈ (1.1, 1.5] Diff. X ∈ [0.9, 1.1] X ∈ (1.1, 1.5] Diff.

Avg. return (%) 5.9 -42.0*** -48.0*** 5.5 -13.9** -19.4***
(t-stat) (1.49) (-10.66) (-17.42) (1.38) (-2.65) (-8.41)
99% conf. int. [-3.2, 15.4] [-50.8, -32.4] [-54.4, -41.5] [-5.1, 16.3] [-27.6, 2.0] [-25.7, -11.5]
Avg. X 1.01 1.22 1.02 1.24
Avg. no. of calls 574 676

The table presents average two week and six week hold-until-maturity call returns when we require the

two bins to contain exactly the same underlying stocks. For each stock at each date, we only include

the calls with moneyness X closest to 1.0 and 1.3, respectively. The stars indicate that the values

are statistically significant at the 10%, 5% and 1% level. Significance is based on confidence intervals

computed from bootstraps with 100,000 independent draws (pairwise draws for differences). For the

statistics of the six week maturity options we use block bootstraps for both levels and differences, with

a block size of five.
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Table 16: Differences of Intermediate Call Options Returns Across Bins

Bin 2 3 4 5 6

Range for X (1.00, 1.05] (1.05, 1.2] (1.2, 1.4] (1.4, 1.6] (1.6, 2]

Panel A: 2.5 weeks

Avg. ret. diff. to prev. bin (%) 2.8*** 8.5*** -6.1*** -8.1*** -4.5***
(t-stat) (3.15) (6.59) (-3.54) (-5.49) (-4.47)
99% conf. int. [0.8, 4.9] [5.5, 11.4] [-10.2, -2.2] [-11.7, -4.9] [-7.0, -2.3]
Avg. no. of calls 303 638 1,050 651 422

Panel B: 3.5 weeks

Avg. ret. diff. to prev. bin (%) 0.9 8.5*** -0.7 -3.1*** -1.9***
(t-stat) (1.40) (8.08) (-0.49) (-3.19) (-2.93)
99% conf. int. [-0.5, 2.5] [6.2, 11.1] [-4.4, 2.7] [-5.5, -0.9] [-3.5, -0.5]
Avg. no. of calls 293 606 995 616 413

Panel C: 4.5 weeks

Avg. ret. diff. to prev. bin (%) -1.4*** 6.0*** 5.3*** 0.7 -1.3
(t-stat) (-2.94) (8.49) (5.26) (0.87) (-1.58)
99% conf. int. [-2.5, -0.3] [4.3, 7.6] [3.0, 7.6] [-1.3, 2.6] [-3.2, 0.5]
Avg. no. of calls 279 582 957 593 398

Panel D: 5.5 weeks

Avg. ret. diff. to prev. bin (%) 0.3 5.5*** 6.1*** 0.2 -1.4
(t-stat) (0.71) (6.10) (5.34) (0.26) (-1.52)
99% conf. int. [-0.7, 1.4] [3.7, 7.9] [3.4, 8.7] [-2.0, 2.4] [-3.7, 0.7]
Avg. no. of calls 258 540 897 560 378

Panel E: 6.5 weeks

Avg. ret. diff. to prev. bin (%) 1.1*** 6.4*** 6.0*** -0.4 -1.6***
(t-stat) (3.00) (13.72) (6.93) (-0.53) (-2.60)
99% conf. int. [0.3, 2.0] [5.3, 7.5] [4.0, 8.0] [-2.3, 1.4] [-3.2, -0.2]
Avg. no. of calls 240 507 845 532 359

The table presents the average intermediate call return differences between moneyness bins for options

with different initial time to maturity, with the additional requirement that the same stocks are

included in neighboring bins at the same date. The holding period for the intermediate returns in

one week. The stars indicate that the values are statistically significant at the 10%, 5% and 1% level.

Significance is based on confidence intervals computed from bootstraps with 100,000 pairwise draws

of differences.
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Figure 1: Expected Option Returns for Alternative Shapes of the Pricing Kernel

The graphs show the expected returns of different types of options under a monotonically decreasing

and a U-shaped PK, respectively. ECOR and EDCOR stand for expected call option returns and

expected digital call option returns, respectively. The left graph is based on the Black-Scholes-Merton

model, with µ = 8.0% p.a., σ = 18.86% p.a., and r = 1.51% p.a. The right graph shows the results

from a simulation of the Christoffersen et al. (2013) model, which is a special case of the model from

Section 3.2, with b = 1 and c = 0. Moneyness is defined as K/S0.
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Figure 2: Call Option Returns in the Black-Scholes-Merton Model and the Model with the
U-shaped PK for Different Levels of IV OL

The left plot illustrates average one month hold-until-maturity call returns in the Black-Scholes-

Merton model for different levels of IV OL. The middle and right plots show average one month

hold-until-maturity call returns in the model with the U-shaped PK by moneyness for different levels

of idiosyncratic volatility (IV OL). The model specification is outlined in Section 3.2, and in both

cases, we keep bi = 1, and vary ci in {0, 1, 2, 4}. Details on the parameters and simulation can be

found in Section 3.2 and Appendix C.2.
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Figure 3: Call Option Returns for the S&P 500 index and IV OL Sorted Portfolio

We perform an independent double sort on moneyness and IV OL. The upper graph shows average

call returns for the high and low IV OL portfolios, as well as for an asset with zero IV OL represented

by the S&P 500 index. The lower graph shows the average return difference between the high and

the low IV OL portfolios, i.e., the difference between the dotted and the dashed lines in the upper

graph. Moneyness is defined as K/S0. In the lower graph dashed lines represent the bounds of the 99%

confidence interval generated via a bootstrap with 100,000 pairwise draws. The x-axis are log-scaled.
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Figure 4: Call Option Returns in the Black-Scholes-Merton Model and the Model with the
U-shaped PK for Different Levels of SV OL and IV OL

The plot shows average one month hold-until-maturity call returns for different levels of SV OL and

IV OL in the Black-Scholes-Merton model (top) and in the model with the U-shaped PK (bottom)

from Equ. (1)-(5) in Section 3.2. In each plot, we vary the level of SV OL, while keeping IV OL fixed

(i.e., fixing one ci from {0, 1, 2, 4} in Equ. (1)). SV OL is modeled in a “CAPM-style”, where bi takes

on a value from {0.5, 1, 2}. Further details on the parameters and the simulation can be found in

Section 3.2 and Appendix C.2.
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Figure 5: Call Option Returns for High Minus Low BV Skew Sorted Portfolios

We perform a dependent double sort on moneyness and BV Skew, i.e., within a given moneyness bin,

we sort call options in five portfolios based on their BV Skew measure. The figure shows the difference

in average returns between low and high BV Skew portfolios (see Section 4) across moneyness bins.

Moneyness is defined as K/S0. The dashed lines represent the bounds of the 99% confidence interval

generated via a bootstrap with 100,000 pairwise draws. The x-axis are log-scaled.
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Figure 6: Call Option Returns for High Minus Low MAX Sorted Portfolios

We perform an independent double sort on moneyness and MAX. The figure shows the difference in

average returns between call portfolios on high and low MAX stocks (see Section 4) across moneyness

bins. Moneyness is defined as K/S0. The dashed lines represent the bounds of the 99% confidence

interval generated via a bootstrap with 100,000 pairwise draws. The x-axis are log-scaled.
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Figure 7: Intermediate Call Returns by Moneyness and Time to Maturity

The figure plots the average intermediate call returns as a function of moneyness for different option

maturities. The holding period for the intermediate returns in one week. The ’3w-6w’ line is the average

of returns for options with 3.5, 4.5, and 5.5 weeks to maturity, as in Chaudhuri and Schroder (2015).

Moneyness is defined as K/S0. Points on the moneyness axis represent the bin midpoint, and the axis

are log-scaled.
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Figure 8: Call Option Returns for High and Low Volatility Periods (Measured by VIX)

The figure shows average one month hold-until-maturity call returns for two subsamples where the

volatility index VIX is above or below a level of 18 (its full-sample median) at the portfolio formation

date. Moneyness is defined as K/S0. The dashed lines represent 95% confidence intervals generated

via a bootstrap with 100,000 pairwise draws. Points on the moneyness axis represent the bin midpoint,

and the axis are log-scaled.
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A Data filters

The options data are obtained from the OptionMetrics database. Following the standard in the
literature, we apply the following filters, i.e., we exclude option price observations with one of
the following characteristics:

� best bid equal to zero

� best bid greater than or equal to best ask

� average between bid and ask price less than 1/8$

� bid ask spread is smaller than the minimum tick size

� no p.m. settlement

� not American style

� non-standard expiration day

� non-standard settlement

� zero open interest

� missing implied volatility

� delta greater than one or less than minus one

� violation of standard no arbitrage bounds

� dividends paid during the remaining lifetime of the option.

After merging OptionMetrics with CRSP using the mapping table provided by WRDS, we only
keep those stocks with a matching score of 1.

Deviating from above, when using data of options written on the S&P 500 index, we (in
addition) use these respective standard requirements:

� volume> 0

� option is European style

� option is a.m. settled on the standard expiration cycle.
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B Calculation of Variables

� We use one year (N = 252 trading days) as the benchmark horizon for all variables where
applicable, but our results also hold up for longer and shorter horizons (21, 42, 63, 126,
504 and 1260 days).

� For N 6= 252, we annualize all variance measures by (252/N).

� All accounting variables are lagged by at least five months.

Variable Definition

X Moneyness is defined as option strike price (K) divided by current stock price (S0).

IV OL We measure idiosyncratic volatility as IV OLi,t =
√∑N−1

j=0 e2i, t− j, where ej,t is the

daily residual from a regression on N past daily returns on the three Fama-French factors
(MKT, SMB, HML) (see Ang et al. (2006)).

TV OL We measure total volatility as TV OLi,t =

√∑N−1
j=0 r2

i,t−j −
(∑N−1

j=0 ri,t−j

)2
.

SV OL We measure systematic volatility of as SV OLi,t =
√
TV OL2

i,t − IV OL2
i,t.

BV Skew We calculate this measure following Boyer and Vorkink (2014).

MAX MAX denotes the average of the 10 highest returns over the past 3 months (as in Bali
et al., 2011) .

β CAPM beta, measured using the past N daily returns.

V RP The variance risk premium denotes the difference between historic volatility and implied
option volatility (HV-IV). We compute this measure as described in Goyal and Saretto
(2009).

MOM Return over the past 12 months excluding the past month.

REV Return over the past month.

TURN Average number of shares traded the past N trading days.

D/A Debt to asset ratio.

B/M Book to market ratio.

PRC Price of the stock.

SIZE Price of the stock times number of shares outstanding.

ILLIQ Amihud (2002) illiquidity measure.

C Details on the Model

C.1 Model solution

The model introduced in Equ. (1) - (5) reads
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ln

(
St,i
St−1,i

)
= r +

(
bi µ −

b2
i

2

)
hz,t −

c2
i

2
hy,t + bi

√
hz,tzt + ci

√
hy,tyt, (C.1)

hz,t = ωz + βzhz,t−1 + αz

(
zt−1 − γz

√
hz,t−1

)2

, (C.2)

hy,t = ωy + βyhy,t−1 + αy

(
yt−1 − γy

√
hy,t−1

)2

, (C.3)

yt, zt ∼ N(0, 1).

The one period SDF reads

Mt

Mt−1

=

(
St,I
St−1,I

)φi
exp [δi + ηihz,t + ξ (hz,t+1 − hz,t)] . (C.4)

The the parameters of the SDF are given as:

δi =− (φi + 1)r − ξωz +
1

2
ln(1− 2ξαz)

ηi =− (µ− 1

2
)φ− ξαzγ2 + (1− βz)ξ −

(φi − 2ξαzγz)
2

2(1− 2ξαz)

φi =− (µ− bi
2

+ γz)(1− 2αzξ) + γz −
bi
2
.

(C.5)

To arrive there, we use the two pricing conditions

Et−1

[
Mt

Mt−1

]
= exp(−r)

Et−1

[ Mt

Mt−1

St,i
St−1,i

]
= 1.

Note that the first condition does not depend on any specific stock i. As a consequence,
the structure of the coefficients of δ and η is the same as in Christoffersen et al. (2013). Note
however, that in our setting δ and η depend on a the stock-specific φi and thus become stock-
specific themselves.

Plugging the general structure of the SDF in (C.4) and the return dynamics from (C.1)-
(C.3) into the second condition, we obtain

E

[
Mt

Mt−1

St,i
St−1,i

]
= E

[
exp

(
(φ+ 1)r + φ(µ− 1

2
)hz + (bµ− b2

2
)hz + (φ+ b)

√
hzz + δ + ηhz

+ ξω + ξ(β − 1)hz + ξα(z − γ
√
hz)

2 + c
√
hyy −

c2

2
hy

)]
,

(C.6)
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where all subscripts are dropped to simplify notation.

Note that we can calculate the expected value of the z and y terms in (C.6) separately,
as the the two variables are independent. Expanding the square and collecting terms gives

E

[
Mt

Mt−1

St,i
St−1,i

]
=E
[

exp
(

(φ+ 1)r + δ + ξω

+ [(φ+ b)(µ− 1

2
) +

b

2
− b2

2
+ η + ξ(β − 1) + ξαγ2]hz

+ [(φ+ b)− 2ξαγ]
√
hzz + [ξα]z2

)]
+ E

[
exp

(
c
√
hyy −

c2

2
hy

)]
.

(C.7)

To calculate the expected value of the right-hand side of (C.7), we use the following result,
which we take from Christoffersen et al. (2013):

E
[
exp(dz2 + 2dez)

]
= exp

(
− 1

2
ln(1− 2d) +

2d2e2

1− 2d

)
. (C.8)

Here we have
d = ξα

e =

(
(φ+ b)− 2ξαγ

2ξα

)√
hz,

and thus

2d2e2 = 2ξ2α2

(
(φ+ b)− 2ξαγ

2ξα

)2

hz =
1

2
((φ+ b)− 2ξαγ)2 hz.

Using (C.6) with above specification for d and e gives

E
[
exp

(
[(φ+ b)− 2ξαγ]

√
hzz + ξαz2

)]
= exp

(
−1

2
ln(1− 2ξα) +

((φ+ b)− 2ξαγ)2

2(1− 2ξα)
hz

)

= exp

(
−1

2
ln(1− 2ξα) +
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2(1− 2ξα)
hz

)
.

Furthermore we have

E

[
exp

(
cy
√
hy −

c2

2
hy

)]
= 1.
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Taken together, we arrive at:

E

[
Mt

Mt−1

St,i
St−1,i

]
= exp

(
(φ+ 1)r + δ + ξω

+

[
(φ+ b)(µ− 1

2
) +

b

2
− b2

2
+ η + ξ(β − 1) + ξαγ2
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2
ln(1− 2ξα) +
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2(1− 2ξα)
hz
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.

(C.9)

Setting the right-hand side of (C.9) to one, taking logs and using the expressions for δ and η
from (C.5) gives [

b(µ− 1

2
) +

b

2
− b2

2
+
b2 + 2b (φ− 2ξαγ)

2(1− 2ξα)

]
hz = 0.

Solving for φ yields

φ = −(µ− b

2
+ γ)(1− 2αξ) + γ − b

2
.

C.2 Parameters and Simulation

As model parameters, we use the numbers from Table 4, column “Equity and volatility premia”
in Christoffersen et al. (2013). To simulate a cross-section of underlying stocks with different
levels of IV OL and SV OL, we need to choose values for b and c. For this, we use the distribution
of these values in our sample, as displayed in Table F.5. To match the model to the data, we
proceed as follows. For each month t and each stock i, we measure the IV OL exposure of a
stock as the ratio ci = IV OLi,t/TV OLmarket,t, where we use the CRSP value-weighted index to
represent the market. For our simulation, we choose b and c such that they are close to the 10%,
50% and 90% quantiles of the distribution. We use either no IV OL exposure (corresponding
to the market, c = 0), or low, medium and high IV OL exposure, with c = 1, 2, 4, respectively.
Furthermore, we choose b = 0.5, b = 1, and b = 2 to represent low, medium, and high levels of
SV OL. The risk-free rate is set to r = 3% p.a., the return horizon is one month (21 out of 252
trading days).

We simulate 107 paths of the model and calculate expected option returns for all parameter
combinations and for a variety of moneyness values. We use the SDF to price options, since
there is no closed-form solution for the option price. This requires to use a high number of
paths, as the SDF is very volatile. We start the simulations with hy,0 and hz,0 equal to their
respective long-run means.

We also test a wide set of alternative parameters, which are displayed in Table F.6, and find
that the model predictions remain qualitatively the same as for the benchmark parametrization.
In particular, we test several alternative parameter estimates from Sichert (2020), who docu-
ments that a GARCH model estimated over a period with both high and low volatility clusters
can have fundamentally different properties than one estimated over high and low volatility
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periods separately. Relevant in our context is that an estimation of one fixed model over het-
erogeneous volatility periods generates biased volatility forecasts, under both the physical and
the risk-neutral probability measure. In particular such a model overpredicts volatility in calm
periods, and vice versa, thus overpricing and underpricing options, respectively, in the different
regimes. The solution is to augment the Heston-Nandi (2001) GARCH model by structural
breaks. The estimation of this so-called change-point GARCH model results in alternating high
and low volatility regimes, with a typical duration of such a regime of around five years.

D Effects of Volatility on Expected Call Option Returns

D.1 General relationship in the BSM model

Here, we give a more detailed analysis of the impact of different types of volatility on expected
option returns. We start from a well-know decomposition of the expected call return E[RC

i ] in
the BSM model:

E[RC
i ] = r + Ωi [E[Ri]− r] , (D.1)

where Ωi > 1 is the elasticity of the call price w.r.t. the stock price. Next, we take the partial
derivative with respect to bi and obtain:

∂E[RC
i ]

∂bi
=
∂Ωi

∂σi

∂σi
∂bi

[E[Ri]− r] + Ωi
∂E[Ri]

∂bi

=
∂Ωi

∂σi

biσ
2
z√

b2
iσ

2
z + c2

iσ
2
y

[bi(µ− r)− r] + Ωi(µ− r).
(D.2)

Similarly, for the IV OL exposure ci we obtain

∂E[RC
i ]

∂ci
=
∂Ωi

∂σi

∂σi
∂ci

[E[Ri]− r] . (D.3)

D.2 Idiosyncratic volatility

In the case of IV OL, equation (D.3) gives us a nice insight: ∂Ωi

∂σi
is always negative for all calls

with positive strikes, while all other terms are positive, and hence the effect of an increase in
IV OL on expected call returns in the BSM model is negative. Put differently, increasing σi
without changing µi, always leads to an decrease in expected call returns. With bi fixed, this
is in our setting equivalent to ci →∞. In fact, it is well known that, the limit is the expected
return of the underlying, i.e.:

lim
σi→∞

E[RC
i ] = E[Ri]. (D.4)
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In case of the model with the U-shaped PK, there are no more analytic solutions. However,
the results in Figure 2, as well an extensive simulation analysis, suggest that the intuition
concerning the effect of IV OL on expected call returns shown in D.4 also carries over to
our model. The fundamental difference is that expected call returns are positive for low, and
negative for high strikes. This in turn implies, that with increasing IV OL expected call returns
approach the expected call return from above for low strikes, and from below for high strikes.

D.3 Systematic volatility

When increasing bi in Equations (1) and (7)-(8), respectively, one increases both the expected
return of the underlying and its volatility. For the BSM case, consider again Equation (D.2),
which highlights that an increase in bi leads to two opposing effects. Analogous to our discussion
of IV OL above, the first summand in Equation (D.2) is always negative, while the second one
is always positive. Hence it becomes a quantitative question which effect dominates. In the
following, we will discuss this question and we will refer to the first summand as the volatility
effect, and the second summand as the drift effect.

The graphs in the upper row of Figure 4 show a rich pattern for the BSM model. The top
left graph shows that when the call’s moneyness is low, the call behaves more like the underlying
asset and the drift effect dominates. When moneyness is high, however, the volatility effect
dominates. The remaining graphs in the top row show that this pattern in addition depends
on the level of IV OL of the underlying stock. When IV OL is high, the marginal effect of
increasing SV OL is low, and therefore the drift effect dominates. As a result, expected call
returns are increasing in SV OL across the full moneyness spectrum.

Next, consider the U-shaped PK model. Here the volatility and drift effect described
above are again relevant, and in addition we have what we call the variance risk premium
(VRP) effect. Ignoring the drift and VRP effect for the moment, increasing bi is equivalent
to increasing IV OL, which means that expected call returns are pushed towards the expected
return of the underlying (either from above or from below). Through the drift effect, an increase
in bi always leads to an increase in expects call returns. With respect to the VRP effect, note that
a higher bi, all else equal, means a higher exposure of stock returns to the priced variance risk
hz. Due to the negative price of market variance risk, and the positive correlation between stock
returns and systematic variance for positive stock returns, this leads to increasingly negative
out-of-the-money call returns. Hence for out-of-the-money calls, when returns are negative, the
volatility and drift effect increase returns, while the VRP effect decreases returns. Which of of
the three effects dominates can be seen in the lower row of Figure 4.

E Additional results

Tables F.1 and F.2 here.
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F Replication of Papers

F.1 General remark

When we replicate results from other papers, we generally follow the original approach as closely
as possible. Sometimes, minor deviations are necessary due to data restrictions, unclear details
of the original methodology, or for the purpose of remaining consistent with our own approach.

F.2 Chaudhuri and Schroder (2015)

F.2.1 Methodological issues

We generally follow the data cleaning and return calculation procedure outlined in the original
paper whenever possible. From 2010 on weekly expiration cycles (“weekly options”) are available
for options on single stocks. To be consistent with the original methodology and the first part of
the sample, we also only consider options with a time to maturity of three to six weeks expiring
on the standard expiration cycle (3rd Friday of each month). Chaudhuri and Schroder (2015)
use data until 2012, but do not explicitly state how they treat returns on those weekly options
in the period for the period from 2010 to 2012.

Chaudhuri and Schroder (2015) calculate returns from Tuesday to Tuesday. Since they
do not specify their procedure in case Tuesday is not a trading day, we assume the following.
If Tuesday is not a trading day, we use Wednesday data instead, either for the start date, or
the end date, or both. If for either start or end date neither Tuesday nor Wednesday data is
available, we discard the week.

Chaudhuri and Schroder (2015) state that they use options with a maturity between 3
and 6 weeks. As they use Tuesday data, and expiration is on Fridays (or formally Saturdays in
the first year of the sample), we understand this as taking options with about 3.5, 4.5 and 5.5
weeks to maturity.

Chaudhuri and Schroder (2015) state that they report and study ”average-return differ-
ences average differences (across both stocks and time)” (p.1472). There is no explicit statement
such as each date portfolios are formed, and then the time-series average is calculated. Therefore
it seems that the author’s report and study the simple average of all pooled returns. This also
roughly matches the values we obtain if we follow that approach. Furthermore, this calculations
leads to much larger t-statistics, which are in a very similar magnitude as those reported in
their paper. In contrast, we follow the standard asset pricing approach to form portfolios at
each date and report time-series averages of portfolio returns. This appears to be important
also in the context of option returns, since they do not represent a balanced sample, and the
number of options available appears to be correlated with economic conditions (e.g., it is lower
in times of financial turmoil) and hence returns. Therefore it is not surprising that the average
of all pooled returns sometimes deviates significantly from the time-series average.
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Instead of using a strict at-the-money requirement, the original papers discards options
(and hence underlying stocks), if the call with a strike closest to the current stock price is more
than one strike increment away from the current stock price. In particular, they ”remove those
stock-week combinations for which the absolute difference between the current stock price and
nearest strike is $2.5 or higher when current stock prices are $25 or less, $5 or higher when
the stock price is $25 through $200, and $10 or higher when the stock price is over $200. This
does not consistent a tight at-the-money bin as the typical [0.95 1.05] or [0.90 1.10] moneyness
requirement, but the moneyness can actually be very far away from one, especially for stocks
with small prices. This explains why in the tables the moneyness range of the first bin is rather
large.

We could not find a clear statement in Chaudhuri and Schroder (2015) whether an un-
derlying stock at one point in time must be present in all bins or not. To be strict and in the
save side, we always require that an underlying stock must have a call in all used bins in the
ordinal sorts below. Furthermore, we deviate from Chaudhuri and Schroder (2015) in such that
we do not study the returns of in-the-money call options. Since this moneyness region is not of
our central interest, this weaker requirement allows us to include more options into the analysis
and reduce the presented numbers. The results are fully robust to also include the in-the-money
options (as also the cardinal sorts strongly suggest).

Finally, the original paper does not specify how options are treated that have a start
price, but not an end price. While one could treat them in several possible ways, we decide to
exclude them. As Chaudhuri and Schroder (2015) do not specify any procedure, which suggests
the same approach. We would like to point out that this can lead to a potential bias, as missing
prices usually are, among other reasons, associated with a large move of the underlying’s stock
price.

F.2.2 Results for the 1996−2012 sample

Figure F.4 shows weekly call returns by moneyness for the 1996-2012 sample, i.e., the analogue
to Figure 7 for the sample used in Chaudhuri and Schroder (2015). The patterns strongly mimic
those for the full sample.

F.3 Boyer and Vorkink (2014)

For the results presented in the main text we follow our benchmark filter approach, whit the
exception that we now do not restrict the options’ moneyness. The results are virtually the same
if one applies the slightly different filters used by Boyer and Vorkink (2014). In addition, Boyer
and Vorkink (2014) form their option portfolios either a week before the options’ expiration, at
the beginning of the calendar month or at the beginning of the calendar month preceding the
expiration, and then hold the options until maturity. Hence our monthly returns are somewhere
between their middle and largest maturity bucket. Last, Boyer and Vorkink (2014) do allow
that multiple options written on the same stock are included in the same portfolio. We also
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perform the analysis after including only one option per stock in each portfolio and find no
substantial difference in the results.

F.4 Byun and Kim (2016)

F.4.1 Methodological issues

As in the original paper, at-the-money options are defined as moneyness (K/S0) between 0.9
and 1.1, and for each stock we use only the call that has a moneyness closest to 1. We add the
out-of-the-money26 test, and define out-of-the-money call options here as those with moneyness
between 1.1 and 1.3, and for each stock and date use the call that has a moneyness closest to
1.2.

F.4.2 Fama-MacBeth Regressions

As in Byun and Kim (2016), in each month, we estimate the following cross-sectional regression:

rit = γ0,t + γ1,t V
i
t−1 + γ′2,tZ

i
t−1 + εit,

where rit is the observed call return for stock i at date t, V is MAX, and Z is a vector of controls.
The controls include those from the original paper (except for IOR, due to data limitations)
plus option moneyness. The definition of variables is as in Byun and Kim (2016). Table F.3
reports the time-series averages of the γ coefficients, together with Newey and West (1987)
t-statistics for at-the-money calls, and Table F.4 for out-of-the-money calls.

Finally, all the results are very similar when we restrict the sample to the period 1996-2013
used in Byun and Kim (2016).

26The robustness section of the original paper contains also an test with out-of-the-money options. However,
the respective moneyness range, described as ”calls with moneyness higher than one but closest to 1.1” (p. 168)
is not clearly defined, as it does not specify an upper limit. The results in Figure 6 suggest that the turning
point in the MAX-average call returns relationship is at a moneyness level around 1.1. We therefore use our
different out-of-the money bin.
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Table F.1: Fama-MacBeth Regressions of In-The-Money Call Returns with IV OL and SV OL

(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV OL −0.107∗∗∗ −0.099∗∗ −0.100∗∗∗ −0.113∗∗∗ −0.129∗∗∗
(−2.82) (−2.57) (−2.60) (−3.32) (−3.80)

ln(IV OL) −0.036∗ −0.043∗∗ −0.046∗∗∗
(−1.67) (−2.48) (−2.82)

SV OL −0.079 0.071 0.047
(−0.85) (0.79) (0.52)

ln(SV OL) 0.010 0.005
(1.13) (0.56)

X 0.276∗∗∗ −2.610 −2.418 −1.686 −3.170 −3.162 −5.620∗∗ −5.366∗∗
(2.78) (−0.85) (−0.78) (−0.65) (−1.18) (−1.15) (−2.34) (−2.18)

X2 1.637 1.523 1.150 1.960 1.952 3.312∗∗ 3.168∗∗
(0.93) (0.86) (0.77) (1.27) (1.23) (2.39) (2.23)

MOM 0.006 0.005
(0.31) (0.30)

REV −0.072∗∗ −0.071∗∗
(−2.39) (−2.37)

V RP 0.066∗∗∗ 0.061∗∗∗
(4.62) (4.24)

ILLIQ −3.095 −3.752
(−0.65) (−0.80)

R2(%) 1.9 2.5 2.6 2.9 3.5 4.5 4.6 6.6 6.6

This table shows the results for Fama-MacBeth regressions of one month hold-until-maturity call
returns on stock and option characteristics plus additional controls. For each month, we estimate the
cross-sectional regression

RCt,i = γ0,t + γ1,t IV OLt−1,i + γ2,t SV OLt−1,i + γ′3,tZt−1,i + εt,i,

where RCt,i is the return for call option i at time t, and Z is a vector of controls. The definitions for the

different variables are provided in Appendix B. For all in-the-money calls with a moneyness X = K/S0

between 0.80 and 0.95, for each underlying stock, we keep only the call which has an X closest to

0.875. The table reports the time-series averages of the γ-coefficients and the associated Newey and

West (1987) adjusted t-statistics (with five lags) in parentheses. The last row gives the averages of the

adjusted-R2 from the regressions. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level,

respectively. The total number of observations is 267, 983 in all regression specifications.
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Table F.2: Fama-MacBeth Regressions of At-The-Money Call Returns with IV OL and SV OL

(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV OL −0.205∗∗∗ −0.203∗∗∗ −0.198∗∗∗ −0.189∗∗∗ −0.211∗∗∗
(−2.84) (−2.82) (−2.75) (−2.72) (−3.09)

ln(IV OL) −0.069∗ −0.066∗ −0.071∗∗
(−1.90) (−1.96) (−2.19)

SV OL −0.266 −0.003 −0.049
(−1.63) (−0.02) (−0.32)

ln(SV OL) 0.000 −0.007
(0.02) (−0.49)

X 0.470∗ 28.889∗∗ 25.681∗∗ 31.396∗∗∗ 25.529∗∗ 22.992∗∗ 19.803∗ 17.989
(1.81) (2.40) (2.13) (2.70) (2.20) (1.97) (1.75) (1.59)

X2 −14.208∗∗ −12.608∗∗ −15.450∗∗∗−12.523∗∗ −11.264∗ −9.681∗ −8.783
(−2.35) (−2.09) (−2.66) (−2.15) (−1.93) (−1.71) (−1.55)

MOM 0.011 0.010
(0.37) (0.34)

REV −0.182∗∗∗ −0.182∗∗∗
(−2.95) (−2.91)

V RP 0.128∗∗∗ 0.118∗∗∗
(4.30) (4.09)

ILLIQ 2.161 1.635
(0.32) (0.25)

R2(%) 1.3 1.6 1.8 2.1 2.1 2.9 3.2 4.3 4.6

This table shows the results for Fama-MacBeth regressions of one month hold-until-maturity call
returns on stock and option characteristics plus additional controls. For each month, we estimate the
cross-sectional regression

RCt,i = γ0,t + γ1,t IV OLt−1,i + γ2,t SV OLt−1,i + γ′3,tZt−1,i + εt,i,

where RCt,i is the return for call option i at time t, and Z is a vector of controls. The definitions for the

different variables are provided in Appendix B. For all at-the-money calls with a moneyness X = K/S0

between 0.95 and 1.05, for each underlying stock, we keep only the call which has an X closest to

1.00. The table reports the time-series averages of the γ-coefficients and the associated Newey and

West (1987) adjusted t-statistics (with five lags) in parentheses. The last row gives the averages of the

adjusted-R2 from the regressions. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level,

respectively. The total number of observations is 281, 210 in all regression specifications.
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Table F.3: Fama-MacBeth Regressions of At-The-Money Call Returns with MAX

(1) (2) (3)

MAX −2.257∗∗∗ −0.803 −0.914
(−3.55) (−0.89) (−1.10)

IV OL −0.151∗ −0.160∗∗

(−1.95) (−2.18)

BV Skew 0.014
0.014

ln(SIZE) 0.001
(0.14)

ln(PRC) −0.000
(−0.01)

ln(B/M) 0.011
(1.38)

D/A 0.044
(1.27)

TURN 0.001
(1.47)

REV −0.162∗∗∗

(−3.16)

MOM 0.022
(1.11)

X 0.103
(0.48)

R2(%) 1.2 1.6 5.0

This table replicates the regression results from Table 6 in Byun and Kim (2016).
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Table F.4: Fama-MacBeth Regressions of Out-Of-The-Money Call Returns with MAX

(1) (2) (3)

MAX −1.006 2.785∗ 2.445
(−1.27) (1.72) (1.63)

IV OL −0.415∗∗∗ −0.370∗∗∗

(−2.74) (−3.15)

BV Skew 0.001
(0.19)

ln(SIZE) −0.054∗∗∗

(−3.60)

ln(PRC) 0.079∗∗

(2.24)

ln(B/M) 0.022
(1.10)

D/A −0.060
(−0.73)

TURN 0.005∗∗∗

(3.46)

REV −0.265∗∗

(−2.44)

MOM 0.009
(0.23)

X −2.244∗∗∗

(−7.00)

R2(%) 0.4 0.7 3.7

This table is an analogue to the regression results shown in Table 6 of Byun and Kim (2016), but

using out-of-the-money calls instead of at-the-money calls.
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Table F.5: Distribution of CAPM-β and IV OL Exposure in the Stock Return Sample

Mean Min 1% 5% 10% 25% 50% 75% 90% 95% 99% Max

CAPM-β 1.2 -14.6 0.2 0.4 0.6 0.8 1.1 1.5 1.9 2.2 2.9 9.4
IV OL/TV OLMarket 2.7 0.0 0.6 0.8 1.0 1.5 2.2 3.3 4.8 5.9 9.0 142.0
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Table F.6: Alternative model parameters

Panel A: Our model

ω α β γ µ ξ Source

0 8.89E-07 0.756 515.6 1.59 117,439 Christoffersen et al. (2013), period 1996 - Oct 2009;
benchmark case

0 8.89E-07 0.756 515.6 2.71 117,439 Christoffersen et al. (2013), µ increased to match
the index return of the longer sample

0 1.41E-06 0.755 409.6 1.59 0 Christoffersen et al. (2013),
restricted estimation with ξ = 0

1.90E-14 1.56E-06 0.713 417.1 4.33 46,248 Sichert (2020), period 1996 - Aug 2015
8.97E-08 2.89E-07 0.699 999.0 17.02 499,023 Sichert (2020), low vol period Jan 1996 - Oct 1996
2.20E-10 2.47E-06 0.826 238.6 5.90 75,168 Sichert (2020), high vol period Oct 1996 - Aug 2003
6.87E-07 1.78E-06 0.733 341.7 0.11 80,716 Sichert (2020), low vol period Aug 2003 - Jun 2007
1.82E-11 1.42E-06 0.696 441.0 10.47 128,518 Sichert (2020), high vol period Jun 2007 - Nov 2011
2.08E-12 4.57E-06 0.820 174.4 7.83 18,541 Sichert (2020), low vol period Nov 2011 - Aug 2015

Panel B: Black-Scholes-Merton model

σz µ r

18.86% p.a. 8.0% p.a. 1.51% p.a. Estimated from daily S&P500 returns,
and daily t-bill rate from 1996-2018, respectively

16% p.a. 10% p.a. 3% p.a. Hu and Jacobs (2020)
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Figure F.1: Call Option Returns for High Minus Low TV OL Sorted Portfolios

We perform an independent double sort on moneyness and TV OL. The figure shows the average

return difference between calls on stocks in the high and the low TV OL portfolio across moneyness

bins. Moneyness is defined as K/S0. The dashed lines represent the bounds of the 99% confidence

interval generated via a bootstrap with 100,000 pairwise draws. The x-axis are log-scaled.
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Figure F.2: Call Option Returns for High Minus Low TV OL Sorted Portfolios, Controlling For
IV OL

The figure shows the difference between the high and the low TV OL call portfolio, after controlling

for IV OL, across moneyness bins (dependent double sort). Moneyness is defined as K/S0. The dashed

lines represent the bounds of the 99% confidence interval generated via a bootstrap with 100,000

pairwise draws. The x-axis are log-scaled.
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Figure F.3: Call Option Returns for High Minus Low IV OL Sorted Portfolios, Controlling For
TV OL

The figure shows the difference of the high minus low IV OL call portfolio, after controlling for TV OL

for each moneyness bin (dependent double sort). Moneyness is defined as K/S0. The dashed lines

represent the bounds of the 99% confidence interval generated via a bootstrap with 100,000 pairwise

draws. The x-axis are log-scaled.
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Figure F.4: Intermediate Call Returns by Moneyness and Time to Maturity (1996-2012)

The figure is the analogue to Figure 7, where the data is from 1996-2012, as in Chaudhuri and Schroder

(2015). The figure plots the average intermediate call returns as a function of moneyness for different

option maturities. The holding period for the intermediate returns in one week. The ’3w-6w’ line is the

average of returns for options with 3.5, 4.5, and 5.5 weeks to maturity, as in Chaudhuri and Schroder

(2015). Moneyness is defined as K/S0. Points on the moneyness axis represent the bin midpoint, and

the axis are log-scaled.
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