

Realised Volatility Forecasting: Machine Learning via Financial Word Embedding

Eghbal Rahimikia Alliance Manchester Business School; Oxford-Man Institute of Quantitative Finance Stefan Zohren Oxford-Man Institute of Quantitative Finance Ser-Huang Poon Alliance Manchester Business School

December 6, 2021

Overview

- 1. Financial textual analysis
- 2. FinText
- 3. Realised volatility (RV)
- 4. Forecsting performance
- 5. Explainable AI (XAI)
- 6. Conclusions

Financial textual analysis

Financial textual analysi

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

Goal

Transforming financial textual data to numerical data.

Challenges

- Textual data is a high dimensional data.
- Approaches: From One Hot Encoding to Word Embedding.
- Dictionary (sentiment analysis) is the simplest, based on personal judgment but a transparent approach of natural language processing.
- Computational feasibility is still a big challenge.

Challenges

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

In previous studies (main stream)...

- Loughran and McDonald (LM) Sentiment Word Lists (Loughran & McDonald, 2011, 2016) is a popular dictionary in finance for converting textual data to the sentiment.
- Based on personal judgment(s).
- Based on financial statements, not news.
 - No link between the output of each study and the LM sentiment scores.

In previous studies (novel statistical approaches and ML)...

- Predicting Returns with Text Data (WP) (Ke et al., 2019) \rightarrow Linking the output and text \checkmark Transparency \checkmark Nonlinearity **X**.
- Measuring news sentiment (J. Econom) (Shapiro et al., 2020) →Linking the output and text ✓ – Transparency ✓ – Nonlinearity X.
- The Role of Corporate Culture in Bad Times: Evidence from the COVID-19 Pandemic (Li et al., 2020) (JFQA) \rightarrow Linking the output and text \checkmark Transparency \checkmark Nonlinearity X.

Our goals

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analog examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

- Developing FinText, a novel financial word embedding from Dow Jones Newswires Text News Feed Database.
- Many studies have attributed news as a major contributor to volatility (Engle & Ng, 1993; Engle & Martins, 2020; Conrad & Engle, 2021). → Realised Volatility Forecasting is chosen as an application for FinText in a Convolutional Neural Network (CNN) context.
- Explainable AI (XAI) methods (SHapley Additive exPlanations) & IG (integrated gradient) are applied for making ML models more transparent.

Linking the output and text \checkmark Transparency \checkmark Nonlinearity \checkmark

FinText

Financial textual analysis

- Challenges
- Our goals

FinText

- Steps & properties
- General evaluation (Google analogy)
- General evaluation (gold-standard collections)
- Financial evaluation (analogy examples)
- Financial evaluation (2D visualization)

Realised volatility (RV)

- Forecasting structure and variables
- RV descriptive statistics
- An abstract representation of NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

- A horse race
- RV forecasting performance evaluation (MSE) - comparison
- RV forecasting performance
- Ensemble model

Explainable AI (XAI)

- XAI: 'donald_trump' in hot political news
- XAI: SHAP and IG explainer representations

Conclusions

References

Word embedding is a type of word representation. In this representation, each word (token) is defined by a vector with size N from a corpus of text.

Table: An abstract representation of word embedding (Gentzkow et al., 2019).

Dimension	king	queen	prince	man	woman	child
Dimension 1 (Royalty) Dimension 2 (Masculinity) Dimension 3 (Age)	0.99 0.94 0.73	0.99 0.06 0.81	0.95 0.02 0.15	0.01 0.99 0.61	0.02 0.02 0.68	0.01 0.49 0.09

- Word2Vec (Mikolov, Chen, et al., 2013), Negative sampling (Mikolov, Sutskever, et al., 2013), and GloVe (Pennington et al., 2014) are the main algorithms for training word embeddings.
- There are few pre-trained word embedding models available for download based on large text corpora (Wikipedia, Common Crawl, Twitter, etc.).

Steps & properties

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

- All types of news (viz. financial, political, weather, etc.) from Dow Jones Newswires Text News Feed from January 1, 2000, to September 14, 2015.
- Extensive text preprocessing of the news stories is applied to eliminate redundant characters, sentences, and structures (primary, begins with, ends with, genral, and Final checks categori).
- Bigram (two-word) phrases are detected and replaced with their bigram form.
- FinText consists of 2,733,035 unique tokens.
- Word2Vec algorithm (CBOW and skip-gram models) and FastText algorithm (CBOW and skip-gram models) are used for developing FinText financial word embedding.
- The dimension of FinText is 300.
- FinText is compared with pre-trained word embeddings from Google (Word2Vec algorithm) and Facebook (FastText algorithm).

General evaluation (Google analogy)

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news XAI: SHAP and IG explainer

representations

Conclusions

References

Table: Word embedding comparison (Google analogy)

	Word2Vec ^a			FastText			
Section	FinText ^b (CBOW) ^c	FinText (skip-gram)	Google (skip-gram)	WikiNews (skip-gram)	FinText (skip-gram)	FinText (CBOW)	
capital-common-countries	77.27	85.50	83.60	100	85.93	47.40	
capital-world	63.60	75.87	82.72	98.78	71.06	35.79	
currency	22.49	36.69	36.69 39.84	25.00	32.54	10.65	
city-in-state	19.93	60.48	74.64	81.41	58.20	15.83	
family	63.46	70.51	70.51 90.06 98.		8.69 58.97	59.62	
gram1-adjective-to-adverb	27.47	33.00	32.27	70.46	50.59	79.45	
gram2-opposite	33.33	32.50	50.53	73.91	50.83	71.67	
gram3-comparative	77.65	75.04	91.89	97.15	77.06	87.39	
gram4-superlative	61.67	55.00	88.03	98.68	62.14	90.71	
gram5-present-participle	62.30	61.24	79.77	97.53	70.63	76.06	
gram6-nationality-adjective	88.11	93.23	97.07	99.12	94.05	79.05	
gram7-past-tense	42.02	39.92	66.53	87.25	37.98	31.09	
gram8-plural	59.23	62.46	85.58	98.69	70.92	79.54	
gram9-plural-verbs	53.26	54.53	68.95	97.38	61.59	79.17	
overall	53.65	62.86	77.08	91.44	65.00	55.74	

^a For learning word embeddings from textual datasets, Word2Vec is developed by Mikolov, Chen, et al. (2013) and Fast-Text, as an extension to Word2Vec algorithm, is developed by Bojanowski et al. (2017). ^b Developed word embedding to Dow Jones Newswires Text News Feed database (FinText); Publicly available word embedding trained on a part of Google news dataset with about 100 billion words (Google): Publicly available word embedding trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (Mikolov et al., 2018) (WikiNews). ^c The continuous bag of words (CBOW) and Skip-gram are the proposed supervised learning models for learning distributed representations of tokens in Mikolov, Chen, et al. (2013).

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news XAI: SHAP and IG explainer

representations

Conclusions

References

Table: Word embedding comparison (Gold-standard collections)

	Word2Vec ^a			FastText		
Benchmark	FinText ^b (CBOW) ^c	FinText (skip-gram)	Google (skip-gram)	WikiNews (skip-gram)	FinText (skip-gram)	FinText (CBOW)
WordSim-353 ^d (relatedness)	0.3821	0.4993	0.6096	0.6018	0.4425	0.1677
WordSim-353 (similarity)	0.6126	0.6436	0.7407	0.6713	0.6393	0.4722
Simlex	0.2657	0.2650	0.3638	0.3985	0.2772	0.2574

^a For learning word embeddings from textual datasets, **Word2Vec** is developed by Mikolov, Chen, et al. (2013) and **FastText**, as an extension to Word2Vec algorithm, is developed by Bojanowski et al. (2017).
^b Daveloped word embedding on Dow Jones Newswires Text News Feed database (**FinText**); Publicly available word embedding trained on a part of Google news dataset with about 100 billion words (**Google**); Publicly available word embedding trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (Mikolov et al., 2018) (**WikiNews**).
^c The continuous bag of words (CBOW) and Skip-gram are the proposed supervised learning models for learning distributed representations of tokens in Mikolov, Chen, et al. (2013).
^d WordSim-353 (Agirre et al., 2015) is another gold-standard collection tending to focus on similarity rather than relatedness or association.

Financial evaluation (analogy examples)

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

- RV descriptive statistics
- An abstract representation of NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot politic news XAI: SHAP and IG explainer

representations

Conclusions

References

Table: Financial analogy examples

We well a walk a shellow w

av .		Word embedding				
	Analogy	Google	WikiNews	FinText ^a		
ariables	debit:credit :: positive:X bullish:bearish :: rise:X	positive rises	negative rises	negative fall		
d	apple:iphone :: microsoft:X	windows_xp	iphone	windows		
NLP-ML	us:uk :: djia:X	NONE	NONE	ftse 100		
De	microsoft:msft :: amazon:X	aapl	hmv	amzn		
	bid:ask :: buy:X	tell	ask-	sell		
	creditor:lend :: debtor:X	lends	lends	borrow		
n	rent:short_term :: lease:X	NONE	NONE	long_term		
ison	growth_stock:overvalued :: value_stock:X	NONE	NONE	undervalued		
	us:uk :: nyse:X	nasdaq	hsbc	lse		
olitical	call_option:put_option :: buy:X	NONE	NONE	sell		

^a *FinText* is the financial word embedding developed using Dow Jones Newswires Text News Feed database, Word2Vec algorithm and Skip-gram model.

Financial evaluation (2D visualization)

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

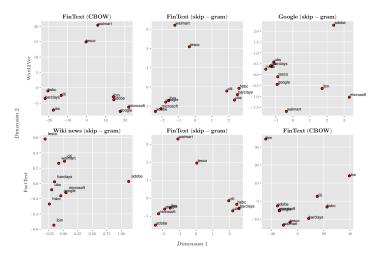


Figure: 2D visualization of word embeddings

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news XAI: SHAP and IG explainer

representations

Conclusions

References

Realised Volatility (RV)

High-frequency financial data paves the way for calculation of realised volatility.

 Andersen & Bollerslev (1998) and Barndorff-Nielsen & Shephard (2001) show that realised volatility has lower measurement error and noise.

RV definition

The integrated variance is not observable. RV can be used as an approximation of integrated variance:

$$RV_t \equiv \sum_{i=1}^M r_{t,i}^2,\tag{1}$$

where *M* is the sampling frequency and $r_{t,i} \equiv log(P_{t-1+i\delta}) - log(P_{t-1+(i-1)\delta})$. For $\delta \rightarrow 0$, RV_t is a consistent estimator for IV_t (Andersen & Bollerslev, 1998). Furthermore, an increase in the sampling frequency of return series (*M*) causes a decrease in the measurement error and an increase in the microstructure noise.

Forecasting structure

Financial textual analys

- Challenges
- Our goals

FinText

- Steps & properties
- General evaluation (Google analogy)
- General evaluation (gold-standard collections)
- Financial evaluation (analogy examples)
- Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

- RV descriptive statistics
- An abstract representation of NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

- A horse race
- RV forecasting performance evaluation (MSE) - comparison
- RV forecasting performance
- Ensemble model

Explainable AI (XAI)

- XAI: 'donald_trump' in hot political news
- XAI: SHAP and IG explainer representations

Conclusions

References

- Daily forecasting (Rolling window: 5 days/ Sampling frequency: 5 minutes).
- Out-of-sample data: 300 days (14 September 2015 to 18 November 2016).
- Training period: 2046 (27 July 2007 to 11 September 2015).
- Tickers: 23 stocks from NASDAQ market (based on highest liquidity and availability of data).
- Following Rahimikia & Poon (2020b), jump and normal days are selected based on Interquartile Range (IQR) $(Q_3 + 1.5 IQR, where IRQ = Q_3 Q_1)$.
- We have purposely avoided parametric jump estimation as it is very sensitive to the assumption of the stock price dynamics, the bandwidth adopted data frequency and data reference period.
- Following White (2000), the Reality Check is implemented using the stationary bootstrap of Politis & Romano (1994) with 999 re-samplings and the average block length of 5 (each model against AR1, HAR, HAR-J, CHAR, SHAR, ARQ, HARQ, and HARQ-F).

Loss functions (cardinal and complementary measures)

Patton (2011) shows that many lost functions do not work well in the presence of noise in the volatility proxy.

$$MSE(RV_t, \widehat{RV_t}) \equiv \frac{1}{N} \sum_{t=1}^{N} (RV_t - \widehat{RV_t})^2, \qquad (2)$$

$$QLIKE(RV_{t}, \widehat{RV_{t}}) \equiv \frac{1}{N} \sum_{t=1}^{N} \left(\frac{RV_{t}}{\widehat{RV_{t}}} - log(\frac{RV_{t}}{\widehat{RV_{t}}}) - 1 \right),$$
(3)

$$MDA(RV_t, RV_{t-1}, \widehat{RV_t}) \equiv \frac{1}{N} \sum_{l=1}^{N} \mathbb{1}_{sign(RV_t - RV_{t-1}) = =sign(\widehat{RV_t} - RV_{t-1})},$$
(4)

where RV_t is the true RV at time t, $\widehat{RV_t}$ is the forecast RV at time t, N is the number of days in the out-of-sample period, and sign(·) and 1 are the sign and indicator functions.

RV descriptive statistics

Financial textual analysi

Challenges

Our goals

FinText

Steps & properties

evaluation	

collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

orecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - compariso

RV forecasting performance

evaluation (QLIKE) - comparis

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot politi news XAI: SHAP and IG explainer representations

Conclusions

References

Table: RV descriptive statistics (from 27 July 2007 to 18 November 2016)

gle analogy)	Ticker ^a	Min	Max	1 st quantile	Median	3 rd quantile	Mean	STD	Kurtosis	Skewness
-standard	AAPL	0.102	198.574	1.021	1.879	3.987	4.953	12.664	83.884	8.028
	MSFT	0.067	133.679	0.935	1.577	2.918	3.289	7.268	104.476	8.786
logy	INTC	0.146	130.167	1.165	1.920	3.709	4.065	7.596	71.609	6.875
	CMCSA	0.148	153.376	0.951	1.827	3.751	4.014	8.419	95.178	8.139
	QCOM	0.122	373.543	0.959	1.872	3.873	4.673	13.778	280.384	13.730
RV)	CSCO	0.163	343.946	1.030	1.791	3.438	4.348	12.995	262.347	13.440
d variables	EBAY	0.215	252.608	1.461	2.592	4.946	5.525	12.785	139.670	9.850
	GILD	0.222	259.489	1.383	2.179	3.900	4.719	13.706	173.238	11.815
on of	TXN	0.183	287.897	1.111	1.999	3.987	4.107	9.249	398.325	15.651
of NLP-ML	AMZN	0.206	547.030	1.683	2.882	5.720	7.562	23.925	185.115	11.593
	SBUX	0.164	192.629	1.086	1.968	4.308	4.714	11.255	114.155	9.331
ance	NVDA	0.317	1104.351	2.180	4.382	9.414	9.591	29.432	837.584	24.558
nce	MU	0.563	359.620	4.204	7.137	13.584	14.355	26.204	61.344	6.711
	AMAT	0.292	114.376	1.715	2.812	5.150	5.153	8.149	61.231	6.438
nce	NTAP	0.257	290.647	1.594	2.903	5.743	6.283	14.419	149.830	10.163
arison	ADBE	0.216	569.720	1.153	2.081	3.952	5.059	15.730	693.479	21.309
nce iparison	XLNX	0.229	251.383	1.224	2.184	4.258	4.359	9.382	265.118	12.977
	AMGN	0.159	214.156	1.006	1.727	3.126	3.468	9.764	221.110	13.295
	VOD	0.134	219.033	0.780	1.487	3.369	4.252	11.788	115.204	9.471
ot political	CTSH	0.246	485.894	1.214	2.162	5.266	6.103	17.479	315.162	14.555
	KLAC	0.154	499.808	1.278	2.514	5.126	5.689	17.915	395.464	17.684
ner	PCAR	0.214	389.930	1.285	2.563	5.800	6.014	13.514	294.091	12.810
	ADSK	0.358	693.772	1.637	2.823	5.256	6.833	24.263	413.773	17.814

^a Tickers are ranked according to their liquidity (high to low).

An abstract representation of NLP-ML

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standar collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

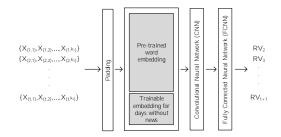


Figure: An abstract representation of NLP-ML model

Notes: { $X_{(t,1)}, X_{(t,2)}, ..., X_{(t,k_t)}$ } consists of news headlines of day t and $X_{(t,k_t)}$ is the k^{th} token of input t. Also, RV_{t+1} is the RV of day t+1 (next day RV). Padding with the maximum length of 500 is adopted to ensure that all inputs of the neural network have the same length. The word embedding block consists of two different word embeddings. To capture days without any news, a trainable word embedding is used.

News selection criteria

- Stock-related and hot political news are used for this analysis.
- The tag ('about') is used for extracting news
- 'About' denotes a story about a ticker but of no particularly significant.

A detailed representation of NLP-ML model

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standar collections)

Financial evaluation (analogy examples)

Financial evaluation (20 visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news XAI: SHAP and IG explainer

representations

Conclusions

References

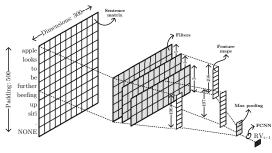


Figure: A detailed representation of NLP-ML model

Notes: The sentence matrix is a 500 × 300 matrix with a maximum length of padding of 500 and word embedding dimensions of 300. In this matrix, each token is defined by a vector of 300 values. This structure contains three filters of different sizes. The filters with the size of 3, 4, and 5 generate feature maps with the size of 498, 497, and 496, respectively. Max pooling and a tully connected neural network (FCNN) are applied then east the next steps. The output of this network is the RV of the next steps.

RV forecasting performance evaluation (MSE)

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standa collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variable

RV descriptive statistics

An abstract representation o NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

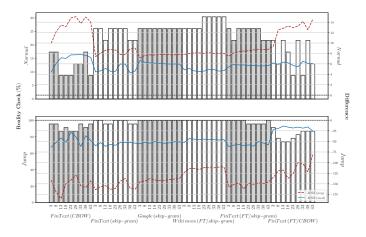


Figure: Forecast evaluation under MSE

RV forecasting performance evaluation (QLIKE)

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standar collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variable

RV descriptive statistics

An abstract representation o NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

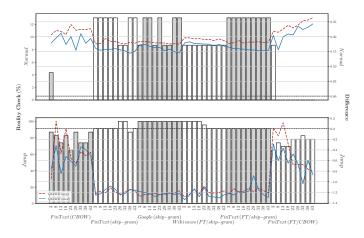


Figure: Forecast evaluation under QLIKE

A horse race

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

NLP-ML is compared with CHARx (extended CHAR) in Rahimikia & Poon (2020a) ML group of models in Rahimikia & Poon (2020b).

Table: CHARx, ML group, and NLP-ML structure comparison

	Model group						
Criterion	CHARx	ML group	NLP-ML				
Variable type News type Historical information Training sequence	news(LM ^a) + financial headline + body last 23 days daily	news(LM) + financial headline + body last 23 days daily	news headline last day every 5 days				

^a LM is the Loughran-McDonald dictionary approach (Loughran & McDonald, 2011).

RV forecasting performance evaluation (MSE) comparison

Financial textual analysis

- Challenges
- Our goals

FinText

- Steps & properties
- General evaluation (Google analogy)
- General evaluation (gold-standa collections)
- Financial evaluation (analogy examples)
- Financial evaluation (2D visualization)

Realised volatility (RV)

- Forecasting structure and variable
- RV descriptive statistics
- An abstract representation o NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

- RV forecasting performance evaluation (QLIKE)
- A horse race

RV forecasting performance evaluation (MSE) - comparison

- RV forecasting performance evaluation (QLIKE) - comparison
- Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

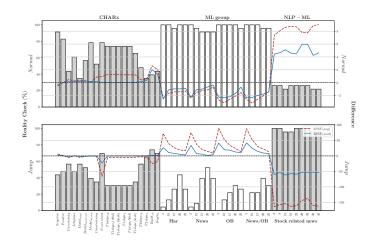


Figure: ML, extended CHARx, and NLP-ML models comparison (MSE)

RV forecasting performance evaluation (QLIKE) comparison

Financial textual analysis

- Challenges
- Our goals

FinText

- Steps & properties
- General evaluation (Google analogy)
- General evaluation (gold-standa collections)
- Financial evaluation (analogy examples)
- Financial evaluation (2D visualization)

Realised volatility (RV)

- Forecasting structure and variable
- RV descriptive statistics
- An abstract representation of NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

- A horse race
- RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

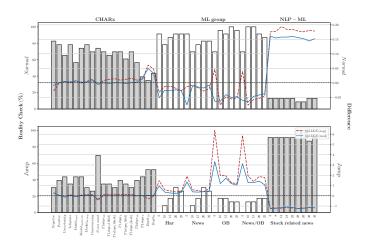


Figure: ML, extended CHARx, and NLP-ML models comparison (QLIKE)

Ensemble model

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance evaluation (QLIKE) - comparison

Ensemble model

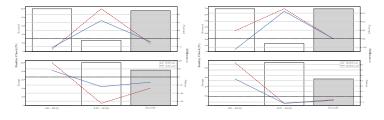
Explainable AI (XAI

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References



(a) Forecast evaluation under MSE

(b) Forecast evaluation under QLIKE

Figure: Performance of ensemble model, against OB-ML(5) and NLP-ML(3)

XAI: 'Loss' in Stock-Related News

Financial textual analysis

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation o NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

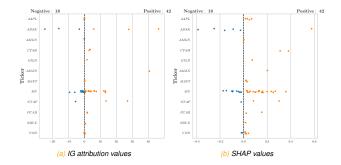


Figure: Explainer results for 'loss' (ticker-related news)

Notes: The left (right) figure presents the IG attribution (SHAP) values for 'loss' as the chosen token considering the stock-related news published during the out-of-sample period. The x-axis is the reported explainer value, and the y-axis is the ticker name.

XAI: 'donald_trump' in hot political news

Financial textual analysi

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standar collections)

Financial evaluation (analogy examples)

Financial evaluation (20 visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

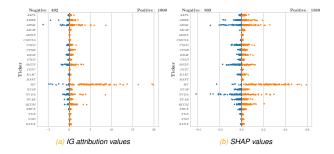


Figure: Explainer results for 'donald_trump' (hot political news)

Notes: The left (right) figure presents the IG attribution (SHAP) values for 'donald_trump' as the chosen token considering the hot political news published during the out-of-sample period. The x-axis is the reported explainer value, and the y-axis is the ticker name.

XAI: SHAP and IG explainer representations

Financial textual analysi

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

apple 's billions may not be enough to end earnings recession . options foreshadow big swings for apple after earnings . apple 4q sales \$ 46.9b > apple 4g gross margin 38 % > apple sees 1g rev \$ NONE \$ 78b > apple 4g eps \$ 1.67 > apple 4g net \$ 9.01b > apple apple 4q mac rev $5.74b \ge apple 4q$ other products rev $2.37b \ge apple 4q$ services rev $6.33b \ge apple 4q$ ipad rev 4.26b> apple 4g iphone rev \$ 28,16b > apple 4g americas rev \$ 20,23b > apple 4g europe rev \$ 10,84b > apple 4g greater china rev \$ 8.79b > aapl, apple 4g japan rev \$ 4.32b > aapl, apple 4g rest of asia pacific rev \$ 2.67b > aapl, apple 4g japad unit sales 9.27m > apple 4g iphone unit sales 45.5m > apple 4g mac unit sales 4.89m > apple ceo tim cook ; improvements in services business and introduction of flagship iphone improving outlook for coming quarter -- interview. apple's cook : 'customer response has really been off the charts' for iphone, apple had first decline in annual revenue and profit since 2001, apple 's cook : 'we could n't be more happy with how it 's been received ' on iphone , press release : apple reports fourth quarter results , press release : apple reports fourth quarter -2- , press release : apple reports fourth quarter -3-, apple profit and revenue slide as it copes with dwindling iphone sales, apple 4g rest of asia pacific rev down 1 % > aapl. apple 4q japan rev up 10 % > aapl. apple 4q greater china rev down 30 % > aapl. apple 4q europe rev up 3 % > aapl. apple 4q americas rev down 7 % > aapl, apple 4g iphone rev down 13 % > aapl, apple 4g ipad rev 0 % > aapl, apple 4g services rev up 24 % > aapl, apple 4g other products rev down 22 % > apple 4g mac rev down 17 % > apple sees 1g gross margin between 38 % and 38.5 % > apl. apple sees 1q operating expenses between \$ 6.9 billion and \$ 7 billion > appl. apple sees 1q tax rate of 26 % > appl. apple generated \$ 16.1 billion in operating cash flow, apple returned \$ 9.3 billion to investors through dividends and share repurchases in 4q, apple has now completed over \$ 186 billion of its capital return program, apple : international sales accounted for 62 % of 4g revenue > apple 's cook :

(a) SHAP explainer representation (stock-related news) (2016-10-26)

(b) IG explainer representation (hot political news) (2016-07-20)

Conclusions

Financial textual analysis

- Challenges
- Our goals

FinText

- Steps & properties
- General evaluation (Google analogy)
- General evaluation (gold-standard collections)
- Financial evaluation (analogy examples)
- Financial evaluation (2D visualization)

Realised volatility (RV)

- Forecasting structure and variables
- RV descriptive statistics
- An abstract representation o NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

- RV forecasting performance evaluation (QLIKE)
- A horse race
- RV forecasting performance evaluation (MSE) - comparison
- RV forecasting performance evaluation (QLIKE) - comparison
- Ensemble model

Explainable AI (XAI)

- XAI: 'donald_trump' in hot political news
- XAI: SHAP and IG explainer representations

Conclusions

References

- FinText word embedding works better and more sensitive in detecting financial jargon.
- Headlines of stock-related news →substantial improvement on forecasting RV jump days (beating all HAR-family of models).
- Headlines of hot political news →to a lesser extent, is crucial for improving RV forecasting performance*.
- A simple ensemble model combining textual and financial data (LOB) → dominates all HAR-family of models on both normal jump volatlity days.
- Explainable AI methods help to measure the impact of given tokens on realised volatility forecasts.

Thank You

Financial textual analysi

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

- An abstract representation of NLP-ML
- A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., & Soroa, A. (2009). A study on similarity and relatedness using distributional and wordnet-based approaches.

Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. *International economic review*, 885–905.

Barndorff-Nielsen, O. E., & Shephard, N. (2001). Non-gaussian ornstein–uhlenbeck-based models and some of their uses in financial economics. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 63(2), 167–241.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.

Conrad, C., & Engle, R. F. (2021). Modelling volatility cycles: the (mf)² garch model. Available at SSRN.

- Engle, R. F., & Martins, S. (2020). Measuring and hedging geopolitical risk.
- Engle, R. F., & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The journal of finance, 48(5), 1749–1778.

Gentzkow, M., Kelly, B., & Taddy, M. (2019). Text as data. Journal of Economic Literature, 57(3), 535-74.

- Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999: Evaluating semantic models with (genuine) similarity estimation. *Computational Linguistics*, 41(4), 665–695.
- Ke, Z. T., Kelly, B. T., & Xiu, D. (2019). Predicting returns with text data (Tech. Rep.). National Bureau of Economic Research.
- Li, K., Liu, X., Mai, F., & Zhang, T. (2020). The role of corporate culture in bad times: Evidence from the covid-19 pandemic. Journal of Financial and Quantitative Analysis, 1–68.
- Loughran, T., & McDonald, B. (2011). When is a liability not a liability? textual analysis, dictionaries, and 10-ks. The Journal of Finance, 66(1), 35–65.
- Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4), 1187–1230.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018). Advances in pre-training distributed word representations. In Proceedings of the international conference on language resources and evaluation (Irec 2018).
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26, 3111–3119.

Financial textual analysi

Challenges

Our goals

FinText

Steps & properties

General evaluation (Google analogy)

General evaluation (gold-standard collections)

Financial evaluation (analogy examples)

Financial evaluation (2D visualization)

Realised volatility (RV)

Forecasting structure and variables

RV descriptive statistics

An abstract representation of NLP-ML

A detailed representation of NLP-ML

Forecsting performance

RV forecasting performance evaluation (QLIKE)

A horse race

RV forecasting performance evaluation (MSE) - comparison

RV forecasting performance

Ensemble model

Explainable AI (XAI)

XAI: 'donald_trump' in hot political news

XAI: SHAP and IG explainer representations

Conclusions

References

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. *Journal of Econometrics*, 160(1), 246–256.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp) (pp. 1532–1543).

Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical association, 89(428), 1303–1313.

Rahimikia, E., & Poon, S.-H. (2020a). Big data approach to realised volatility forecasting using har model augmented with limit order book and news. Available at SSRN 3684040.

Rahimikia, E., & Poon, S.-H. (2020b). Machine learning for realised volatility forecasting. Available at SSRN 3707796.

Shapiro, A. H., Sudhof, M., & Wilson, D. J. (2020). Measuring news sentiment. Journal of Econometrics.

White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 1097-1126.