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Abstract
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1 Introduction

Humans have been fascinated by the prospect of predicting future events since time

immemorial. According to a tale in Aristotle’s ‘Politics,’ Thales monetized his forecast

of the olive price through forward contracts on the exclusive use of olive presses. Since

the adoption of modern financial markets, where firm ownership is publicly traded, the

topic of forecasting stock returns has enticed many traders as well as academics. From the

viewpoint of practitioners, it is necessary to exploit real-time forecasts of stock returns to

ensure successful investment performance. Hence, it is natural for finance practitioners to

eagerly employ various variables and adopt novel methodologies for the purpose of forecasting

stock returns. From the perspective of academics, by analyzing the nature of stock return

forecastability, we can deepen our understanding of market participants’ assessment of risks

and their aversion toward those risks.

Tackling the holy grail of predicting stock market returns, this paper exploits one of the

most universal phenomena over rational asset pricing models; the return distribution of an

asset in a real world is supposed to be related to that in a risk-neutral world. Such a relation

is commonly referred to a stochastic discount factor or pricing kernel, and various models

in the literature have explained empirically observed behavior of prices by taking specific

stances in the relation. In contrast, we let the data speak. We observe the risk-neutral

density from the cross-section of options prices as of the end of each month and examine the

empirically observed relation between the two densities over many periods.

Fundamentally, our approach is based on two theoretical claims in finance: (i) the risk-

neutral density and the physical density are equivalent (Harrison and Kreps (1979)), and an

asset pricing model can be interpreted as the change in measure between the two measures

(Hansen and Richard (1987)); and (ii) cross-sectional option prices contain information on

the risk-neutral density of an underlying asset (Banz and Miller (1978) and Breeden and

Litzenberger (1978)). We study the predictability of the physical density using the risk-
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neutral density resorting to the well-established two claims above in the literature, although

the approach proposed in this paper can be applied to other economics in general.

Based on (i), we aim to identify the relation between the physical and risk-neutral densi-

ties. To this end, we do not take a stance on a particular asset pricing model but utilize the

functional regression method.1 In particular, we construct the physical density of S&P 500

index monthly returns by bootstrapping daily returns of the index in a given month. Using

the functional regression method, we regress the physical density on the risk-neutral density

observed in the previous month. From this, we identify the relation between the two densities

and predict the physical density over the following month through the observed risk-neutral

density. To exploit (ii)2, we adopt the method of Ait-Sahalia and Duarte (2003), which

imposes no-arbitrage restrictions nonparametrically and estimates the risk-neutral density

of the S&P 500 index with a cross-section of options on the index that are expiring in a

month.

Our approach using the functional predictive regression with the risk-neutral density

shows a statistically and economically significant performance in predicting the market risk

premium. In particular, we focus on examining the predictability of the first moment of

the market excess return given the broad interest in prediction of the market risk premium,

although we can use this methodology to forecast the entire physical density, not just a

specific moment.3 Using the estimated functional relation and the risk-neutral density in

month t−1, we predict the mean of a physical density in month t with in-sample R2 statistics

of 4.720%,4 eclipsing the performance of well-known predictors, including the dividend yield,

earnings-price ratio, and other variables examined in Welch and Goyal (2008).
1For a detailed discussion of the method, see Bosq (2000) and Park and Qian (2012).
2See Bliss and Panigirtzoglou (2002) and Jackwerth (2004) for comprehensive reviews on this topic.
3We extend the usage of the functional predictive regression by further forecasting the second moment of

a physical density of the S&P 500 when discussing the economic significance of the main findings in Section
4.3.

4The number of functional principal components is a choice variable in the functional regression frame-
work, while the predictive ability of our approach remains stable with respect to a different choice of the
number of factors. In particular, when we use three, four, and five factors, the in-sample R2 statistics are
4.375%, 4.487%, and 4.720%, respectively.
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More strikingly, our approach delivers an even stronger performance for out-of-sample

prediction than in-sample prediction. The robustness of predictability for both in- and

out-of-sample is particularly important given that many predictive regressions have often

performed poorly in out-of-sample forecasts (see Welch and Goyal (2008)). Using the out-

of-sample forecast assessment of Campbell and Thompson (2008), our prediction model

achieves a 6.198% out-of-sample R2.5 Campbell and Thompson (2008) show that imposing

weak restrictions on predictive regression can improve the forecasting performance of eco-

nomic variables. However, regardless of the restrictions on the regression, the methodology

proposed in this paper exhibits a superior out-of-sample performance relative to that of any

of the economic forecasting variables discussed in Welch and Goyal (2008).

We further show that the statistical significance of our forecasting performance can trans-

late into substantial economic gains for an investor. Although the R2 is a useful statistical

metric, it is not a proper tool to measure economic gain because it does not explicitly ac-

count for the risk borne by an investor over the out-of-sample period. Hence, as a metric of

economic gain, we propose the realized utility gain of a mean-variance optimizing investor

on an out-of-sample basis.6 When an investor fully exploits the advantages of our functional

predictive regression approach that uses option panel data to forecast the mean as well as

variance in the stock market return distribution, she obtains a 107.050% (68.769%) cumu-

lative return over the five-year out-of-sample forecasting period assuming a risk aversion

coefficient of 3 (10).7 This performance of our approach can be interpreted as a 5.577%

(5.272%) annual risk-free return relative to the performance under the historical average

model for a risk aversion coefficient of 3 (10).

Furthermore, we examine whether existing well-known equilibrium models explain the
5The out-of-sample forecasting performance of our approach remains intact when we change the number

of functional factors used in the estimation. In particular, when we use three, four, and five factors, the
out-of-sample R2 statistics are 6.012%, 5.749%, and 6.198%, respectively.

6A similar approach is used in Marquering and Verbeek (2004), Welch and Goyal (2008), Campbell and
Thompson (2008), Wachter and Warusawitharana (2009), and Rapach et al. (2010).

7See Figure 5 for more details. Over the same period, a mean-variance optimizing investor using the
historical average of market returns and the rolling-window estimate for the variance can obtain 53.97%
(12.51%) when assuming a risk aversion coefficient of 3 (10).
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observed predictability using option panels. The approach proposed in this paper is fully

nonparametric. Thus, imposing an asset pricing model’s restrictions on our approach should

improve the forecasting performance if the model of interest were to explain the true data

generating process. However, we find that the forecasting performance worsens when an

equilibrium model’s restrictions are imposed on the functional regression framework. In

particular, we investigate return predictability with well-known equilibrium models: (i) a

model based on the recovery theorem of Ross (2015), (ii) a model with constant relative

risk aversion (CRRA), (iii) the long-run risk model of Bansal and Yaron (2004) and (iv) the

external habit model of Campbell and Cochrane (1999). Overall, these findings show that

existing predictors or models cannot match the achievements of our novel approach.

Additional analysis reveals that our superior performance is not attributable solely to

either the methodology or the use of option data. Applying functional predictive regression

to the physical density itself to forecast the next month’s return does not deliver meaningful

forecasting power. The finite moments (the mean, variance, skewness, and kurtosis) ex-

tracted from the risk-neutral density also fail to provide any predictive ability in forecasting

the next month’s return. Furthermore, various option-related measures, such as the Chicago

Board Options Exchange (CBOE) Volatility Index (VIX) and the variance risk premium, do

not deliver a forecasting ability comparable to that of our proposed approach. The combina-

tion of the advanced econometric methodology and the potent data source is the key driver

of the main findings of the present paper.

This paper lies at the intersection of two strands of literature: return predictability and

options. Academic work predicting stock returns goes back to Cowles (1933) and Cowles

and Jones (1937). In the early literature, return predictability was interpreted as being

contradictory to market efficiency (Fama (1965), Fama (1970) and Samuelson (1965)). How-

ever, Fama (1991) harmonizes the empirical findings on return predictability with market

efficiency. Over the past decades, researchers have proposed various models featuring return

predictability: external habits (Campbell and Cochrane (1999)), dynamic risk-sharing op-
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portunities among heterogeneous agents (Lustig and Nieuwerburgh (2005)), long-run risks

(Bansal and Yaron (2004), Bansal et al. (2010)), and time-varying disaster risks (Gabaix

(2012)). Furthermore, advanced methodologies have been widely used: structural vector

autoregression models (VARs) (Cochrane (2008), van Binsbergen and Koijen (2010)), model

combinations (Rapach et al. (2010) and Dangl and Halling (2012)), and structural breaks

(Guidolin and Timmermann (2007), Henkel et al. (2011)). We contribute to the return

predictability literature by revealing the inherent kinship between risk-neutral density and

option prices.8 Compared to the existing accomplishments in the return predictability lit-

erature, we achieve phenomenal and robust predictive ability through the vast amount of

information embedded in option price data and provide a novel statistical tool.

This paper is not the first attempt to relate the information in the option market to the

physical dynamics of an underlying asset. Christoffersen and Mazzotta (2005) investigate the

relationship between currency options and currency dynamics. Christoffersen et al. (2013)

propose a pricing kernel that unifies stock returns and anomalies in option prices. Roll

et al. (2010), Johnson and So (2012), and Hu (2014) suggest that option trading activities

contain information on future stock returns. Furthermore, given the documented return

predictability based on the information of higher moments in option panels,9 this paper is

related to the literature on the pricing of higher moments studied in Rehman and Vilkov

(2012), Chang et al. (2013), and Amaya et al. (2015). These studies focus on examining a

cross-section of returns or individual stock returns through risk-neutral density. In contrast,

we highlight the delivery of meaningful out-of-sample predictive ability through the rich

information embedded in full risk-neutral density.
8See, for example, Banz and Miller (1978) and Breeden and Litzenberger (1978). Researchers have

proposed various methods of capturing this relation (Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo
(1998), Ait-Sahalia and Duarte (2003)). Furthermore, Rosenberg and Engle (2002) and Jackwerth (2000,
2004) show how we can learn about investor risk aversion by jointly observing option markets and the return
dynamics of the underlying market. As recent endeavors in this line of research, Ross (2015) and Carr and
Yu (2012) propose how to recover both the risk-neutral and physical densities from only option panels under
certain restrictions.

9See Bollerslev et al. (2009), Bollerslev and Todorov (2011), Bollerslev and Todorov (2014), and Bollerslev
et al. (2015). Recently, Feunou et al. (2018) and Kilic and Shaliastovich (2019) investigate the relationship
between equity preimum and different dimensions of variance risk premium.
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In summary, the key takeaways of this paper are twofold. First, we highlight the infor-

mation dormant in option panels that is valuable for predicting market returns. Recall that

the transition between risk-neutral density and physical density is pinned down by the risk

preference of pricing agents (Hansen and Jagannathan (1991)). Then, a rather mild assump-

tion of persistent preference naturally implies a stable relation between the risk-neutral and

physical densities. To the best of our knowledge, this is the first paper aiming to predict the

market risk premium by exploiting this relation. Second, we introduce a novel prediction

method that handles predictors in a high-dimensional space, such as the risk-neutral density

function. Given that the size of relevant datasets such as social network site (SNS) posts,

household-level consumption data, and demographic indicators continues to grow, the ability

to extract relevant information from big data is crucial. The methodology that we use to

connect the two densities can be easily applied to connect any two high-dimensional objects.

This paper is organized as follows. In Section 2, we explain the data that we use for our

empirical analysis. Section 3 describes our prediction methodology. The empirical results

are reported in Section 4. Section 5 concludes.

2 Data

To extract the risk-neutral density of the aggregate stock market, we use data on S&P

500 index options from January 1996 to December 2015 from the Option Metrics Database.

In particular, we collect data on implied volatility, strike prices, expiration dates, dividend

yields, the price of the underlying asset (S&P 500 index), and the risk-free rate. For each

option contract, we filter out zero trading volume, zero open interest, or zero or missing

implied volatility data. We also eliminate options with average bid and ask quotes of less

than $3/8. We use only put option data. The object of prediction is the mean of the physical

density of the aggregate stock market. However, one of the empirical challenges from this

perspective is that in reality, we observe only one data realization of monthly returns. To

overcome this issue, we first collect daily returns of the S&P 500 index from the Center
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for Research in Security Prices (CRSP). Then, we construct the density of monthly returns

using a bootstrap method, which we explain in detail in Section 3.2.

We describe how we select the observation date and the corresponding time to maturity

because we aim to predict the next month’s stock market return using the information

embedded in option data without hindsight. From the option data filtered as described

above, we use the options whose days until expiration are 30 days so that the horizon of

return prediction analysis is monthly. Figure 2 shows the dates for which we collect option

data with a certain time to maturity and the way in which we aggregate market return data

for our analysis. For example, when the expiration date of the index options is January 17,

2016, we collect the option data observed on December 18, 2015, whose time to expiration

date is 30 days.10 In this example, the observation date of the option data is December 18,

2015, and the expiration date of the options is January 17, 2016. Similar adjustments are

made to the dividend yield and risk-free rate data. That is, we interpolate the dividend

yields and risk-free rate data provided by Option Metrics to obtain a 30-day dividend yield

and risk-free rate on the observation date.

When the observation and expiration dates of options do not correspond to the first or

last date of a month, we make an analogous adjustment in constructing the market return

data. Recall that our main objective is to investigate the predictive ability of risk-neutral

density obtained from option data on the physical density of stock market returns. Hence,

we examine whether the risk-neutral density extracted from option data on the observation

date has predictive ability in explaining the stock market return realized over the observation

date to the expiration date of the options used for the prediction. To this end, we collect

daily returns of the S&P 500 index from the observation to expiration dates and use a

bootstrap method to construct the physical density of monthly returns. Sections 3.1 and 3.2

provide detailed descriptions of the construction of the risk-neutral and physical densities,

respectively.
10If there are no options whose time to expiration is exactly 30 days, we collect options whose time to

expiration is closest to 30 days.
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Table 1 provides descriptive statistics for the option data used in our analysis. The

second column of Table 1 provides annual and overall averages of the S&P 500 index, and

the next column shows the number of put options used in our analysis, exhibiting a dramatic

increase in recent years. The next four and last four columns display information on strike

prices and implied volatility of put options, respectively. Similarly, the range of strike prices

and implied volatility exhibits wider dispersion in the second half of the sample period than

in the first half.

3 Methodology

3.1 Risk-Neutral Density Construction

This subsection describes our approach to extracting the risk-neutral density (Q-density)

from the panel data of option prices. The value of an option contract is the expected payoff

on the expiration date discounted to the present. Under risk neutrality, the value of a call

option at time t can be written as

Ct =
∫ ∞
K

e−rf (T−t)(ST −K)q(ST )dST , (1)

where K is the strike price, rf is the risk-free rate, T is the date of expiration, ST is the

price of the underlying asset, and q(·) is the risk-neutral density. Breeden and Litzenberger

(1978) and Banz and Miller (1978) show that from Equation (1), the risk-neutral density

can be obtained by taking a second-order derivative with respect to the strike price. That

is,

q(ST ) = erf (T−t)∂
2Ct
∂K2 . (2)

Practical application of the above approach to extracting the risk-neutral density has several

empirical challenges. First, we observe only a limited number of option contracts with

discrete prices. Second, an option contract is traded based on bid and ask prices with
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microstructure noise. Third, there is a limited range of available strike prices. These issues

make data on option prices coarse and noisy. Furthermore, the problems worsen when we

take the second-order derivative, which is our main object of interest.

In this paper, we obtain a risk-neutral density by imposing no-arbitrage constraints:

monotonicity and convexity of call option prices following Ait-Sahalia and Duarte (2003).

In particular, from the positivity of the density and its integrability to one, two constraints

can be written as follows:

−e−r(T−t) ≤ ∂Ct
∂K
≤ 0 and ∂2Ct

∂K2 ≥ 0.

In particular, following Ait-Sahalia and Duarte (2003), a risk-neutral density is obtained

using constrained least squares regression with a local polynomial kernel smoothing approach.

Using the option panel data described in Section 2, we estimate the risk-neutral density of

the S&P 500 index from a cross-section of option contracts on the S&P 500 that expire in a

month. The top two plots in Figure 1 display our estimated Q-density (left) and demeaned

Q-density (right). Since we apply the no-arbitrage constraints in extracting the risk-neutral

density from the option panel data, the estimated Q-density function is well behaved.

3.2 Physical Density Construction

In this subsection, we describe the bootstrap method we use to construct the physical

density of S&P 500 index monthly returns. Recall that we aim to predict the physical density

of the S&P 500 index return in a given month using the risk-neutral density of option prices

observed at the end of the previous month. In particular, we collect daily returns of the S&P

500 index over the period between the observation date and the expiration date described

in Figure 2, which corresponds to the lifetime of the option contracts used to construct the

risk-neutral density.

Suppose that, as of observation date t, there are N days until expiration date t + 1.
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More precisely, a cross-section of prices of options on the S&P 500 index expiring in month

t + 1 is observed in month t, and there are N number of days between the observation and

expiration dates. In this setup, the realized monthly return of a given month t is written as

rt = ∏N
i=1(1+ri,t)−1, where ri,t is the daily return on day i of month t. To obtain the monthly

physical density function of the S&P 500 index required for our study, we collect the daily

returns in a given month, {r1,t, r2,t, · · · ri,t, · · · , rN,t}, and construct a series of bootstrapped

samples,
{
rj1,t, r

j
2,t, · · · r

j
i,t, · · · , r

j
N,t

}
, where j = 1, · · · , B with B denoting the number of

bootstrapped samples. Then, we simulate the monthly returns as rjt = ∏N
i=1(1 + rji,t)− 1 for

j = 1, · · · , B, using the bootstrapped samples. In our empirical analysis, we set B = 10, 000

and 10,000 simulated monthly returns are generated for a given month, which are used to

construct the physical density function of the S&P 500 index. The bottom two plots in Figure

1 show our physical density of the S&P 500 index (left) estimated using the bootstrapping

method and the demeaned density (right).

3.3 Projection of the Physical Density onto

the Risk-Neutral Density

Finally, we explain how we can relate the two densities described in the previous two

subsections. Recall that XR is the set of 1024 potential one-month-horizon S&P 500 returns

used for the P -density estimation. Let qt : XR → R denote the Q-density function mapping

the one-month-horizon S&P 500 returns from the end of month t to the end of month t+ 1

to a real number, which is constructed using one-month-horizon option prices observed at

time t, as described in Section 3.1. Let pt+1 : XR → R denote the P -density function

mapping the one-month-horizon S&P 500 returns from month t to t + 1 to a real number,

which is constructed using realized daily returns from the end of month t to the end of

month t+ 1, as described in Section 3.2. Instead of including a constant functional term in

our functional regression model, we directly work with the demeaned versions of the density
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functions, dp,t+1 and dq,t corresponding to pt+1 and qt, respectively.11 For the in-sample

(out-of-sample) estimation, we use the densities over the whole (past) time-series to compute

the mean densities.

We consider the functional regression as follows:

dp,t+1 = Adq,t + εt+1, (3)

where A is a mapping from a space of real-valued functions to itself.12 We assume all

technical conditions required in Bosq (2000) and Park and Qian (2012). Because our main

interest lies in out-of-sample prediction, we describe the estimation procedures for performing

out-of-sample prediction.

Step 1. We wavelet-transform the demeaned density functions of dp,s+1, dq,s into the

sequences of coefficients of wp,s+1, wq,s for s ≤ t.

Step 2. We find the first K functional principal components from the matrix WqW′
q,

where Wq = [wq,1 wq,2 · · · wq,t−1]. Let λk and ek denote the k-th eigenvalue and eigenvec-

tor, respectively, for k ≤ K.

Step 3. Using the regularized regressors from Step 2, we find

Âw =
∑
s≤t

wp,s+1w′q,s

∑
k≤K

λ−1
k eke′k

 .

Step 4. From the estimated mapping in Step 3, we make a prediction ŵp,t+1 = Âwwq,t

in the wavelet space

Step 5. We transform the estimated coefficient sequence ŵp,t+1 in the wavelet space to

d̂p,t+1 in the function space by reversing the procedures in Step 1.
11Note that the demeaned density functions dp,t and dq,t are not densities anymore. In particular, they

are not nonnegative, and they are integrated not up to one but up to zero.
12The functional regression (3) is equivalent to pt+1 = b + Aqt + εt+1, where b is the functional intercept

term for the purpose of inference on A by the least squares method.
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Step 6. We add back the historical mean to d̂p,t+1 to obtain p̂t+1 = d̂p,t+1 + 1
t

∑t
s=1 ps.

The intuition behind the suggested procedures follows. Steps 1-3 stabilize the estimation

outcomes. Recall that our target of A is a high-dimensional object. Hence, a brute-force

regression approach is infeasible or highly unstable. Instead, we propose an alternative route.

We transform a real-value vector to a vector of elements corresponding to a wavelet basis in

Step 1 and summarize the information in the regressor by the most important K components

in Step 2. As a result of this regularization, the estimator in Step 3 does not suffer from the

ill-posed inverse problem.13 Steps 4 and 5 simply reverse the pretreatments.14

A discussion on the tuning parameters follows. In Step 2, we choose the number of

functional principal components, K. Figure 3 shows the scree plot of eigenvalues of the

variance estimator. We find that the first few functional principal components are able to

explain a significant portion of the variation in matrix WqW′
q. In particular, the first three

(five) principal components explain 87.1% (93.3%) of the total variation in the matrix. In

the empirical application, we further show that the main results of this paper are robust to

the choice of K within a reasonable range.

Furthermore, the result in Step 2, combined with a functional principal component anal-

ysis (FPCA), illuminates which features of the Q-density carry useful and timely information

for predicting a subsequent period’s P -density. Figure 4 provides the result of the FPCA

on Q-density extracted from Section 3.1. The top, middle, and bottom left figures plot the

first (νT,1), second (νT,2), and third (νT,3) functional principal components extracted from

the risk-neutral density over our sample period, respectively. The top, middle, and bottom

right figures in each panel show how each of the three factors move the average risk-neutral

density function. In each of the right figures, the blue line (mean) represents the time-series
13For the validity of this regularization, see Bosq (2000). It is required to set K → ∞ at an appropriate

rate as the sample size increases.
14Park and Qian (2012) demonstrate that the regression statistics, such as the R2, of the functional

regression can be obtained and interpreted analogously to those of an ordinary regression. All the technical
assumptions in their paper are applied in the present paper.
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average of the risk-neutral density, q̄ = (1/T )ΣT
t=1qt. The green line (mean+min×νT,k) and

the red line (mean+max×νT,k) represent q̄ + 〈νT,k,qt〉minνT,k and q̄ + 〈νT,k,qt〉maxνT,k for

k = 1, 2, and 3, respectively.

The functional principal component analysis results depicted in Figure 4 suggest that each

principal component places different weights on different dimensions in the return space. In

particular, the first principal component slightly scales down medium-sized returns, while the

third component put some emphasis on the tails. The second principal component highlights

asymmetric weights on positive vs. negative returns. To show the variations in Q-density

caused by its principal components more explicitly, we also present the time averaged Q-

density added by each principal component with its historically maximum and minimum

loadings. The first principal component with positive loadings concentrates the Q-density

around 0. However, its impact with negative loadings is not so simple: it introduces bimodal-

ity and asymmetry as well as less concentration around 0. The second and third principal

components yield impacts that appear to be more complicated and harder to summarize:

they not only shift the means but also change the modes and modalities. Nevertheless,

it is clear that the leading principal components introduce very complicated variations in

shapes of the Q-density. Overall, our analysis here suggests that functional regression using

Q-density allows us to capture profound and unique features in option data, unlike existing

approaches that use a few finite moments of the Q-density in a simple predictive regression

framework. In a later section, we provide evidence that using the finite moments of the

Q-density does not provide a meaningful forecasting performance for predicting next-month

stock returns.

4 Empirical Results

4.1 In-Sample Prediction

For the sample period from January 1996 to December 2015, we use the functional regres-
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sion framework of Bosq (2000) and Park and Qian (2012) to predict the next-month returns

of the S&P 500 index. While the functional regression framework in Equation (3) relates the

two density functions with a mapping of A, we focus on the first moment of the predicted

P -density function due to the wide range of interest in return predictability.15 A predicted

return r̂t+1 is computed as the first moment of the predicted physical density function of the

S&P 500 index p̂t+1. For the in-sample analysis, we use the whole sample when estimating

the functional regression following the procedure described in Section 3.3. Also, when adding

back the mean of the density for the in-sample estimation, we add the mean computed from

the whole sample to obtain p̂t+1.16 Using the predicted returns estimated by the functional

regression, we provide R2 statistics in Table 2. The R2 statistics of the functional predictive

regression for different numbers of functional principal components used in the estimation

are provided in Panel A. The in-sample estimation exhibits significant predictive ability of

the risk-neutral distribution extracted from option prices on the S&P 500 index return, with

the R2 statistics ranging from 4.375% to 4.720%, with very strong statistical significance

measured by the F -statistics (and p-values) of the predictive regressions.

The existing literature has documented that even in the in-sample prediction, most of

the well-known predictors have poor predictive ability for the market risk premium (see,

among many others, Welch and Goyal (2008), Campbell and Thompson (2008), and Rapach

et al. (2010)). To compare the performance of our approach to that of existing predictors in

the literature, we also compute the in-sample R2 statistics of the well-known predictors used

in Welch and Goyal (2008).17 In particular, we obtain the R2 statistics from the following
15It follows from Equation (3) that

〈m,dp,t+1〉 = 〈m,Adq,t〉+ 〈m, εt+1〉 = 〈A∗m,dq,t〉+ 〈m, εt+1〉 (4)

where m is the identify function, m(r) = r, 〈·, ·〉 is the functional inner product, 〈a,b〉 =
∫

a(r)b(r)dr, and
A∗ is the adjoint of A. Note that 〈m,dp,t+1〉 is the demeaned first moment of pt+1. Therefore, Equation (3)
implies in particular that the first moment of the P -density function is predicted by the Q-density function
for the S&P 500 index.

16This process is analogous to Step 6 of the procedure described in Section 3.3.
17The data are available from Amit Goyal’s homepage: http://www.hec.unil.ch/agoyal/
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predictive regression:

rt = α + βXt−1 + εt, (5)

where rt is the excess return on the S&P 500 index of period t, Xt−1 is a set of predictors

observed in period t− 1, and εt is an error term. Panel B of Table 2 provides the in-sample

R2 of regressions with the 14 forecasting variables used in Welch and Goyal (2008). The

estimated R2 statistics range from a low of 0.001% for the Treasury bill rate to a high

of 2.084% for the stock variance. Only three forecasting variables (dividend yield, stock

variance, and net equity expansion) exhibit marginal statistical significance measured by p-

values for the corresponding F -statistics of predictive regressions, and the other 11 variables

do not show any statistically significant forecasting ability for stock market returns.

When we include all 14 variables in the regression (a “Kitchen sink” model), the in-sample

R2 obviously increases to as much as 13.578%. However, the out-of-sample forecasting ability

of the kitchen sink model deserves mention and is investigated in the next subsection. Over-

all, the results provided in Table 2 suggest that our approach using information embedded

in option prices to predict market returns shows an impressive prediction performance in

comparison with that of existing and well-known predictors in the financial market.

4.2 Out-of-Sample Prediction

While numerous economic variables have been proposed as predictors of stock returns,

including valuation ratios and other variables as documented in Welch and Goyal (2008), the

existence of out-of-sample predictability has still been controversial. In this subsection, we

evaluate the out-of-sample performance of our approach to predicting stock market returns

using functional predictive regression with risk-neutral density extracted from option data.

In out-of-sample prediction, we run the functional predictive regression (Equation(3))

using an expanding window with the forecasting period starting in January 2011, which

covers the last five years of our main sample. For each estimation, we generate an out-of-

sample forecast of the stock market return and compare the forecast with the realized stock
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market return. That is, when estimating an out-of-sample prediction of r̂t, we use available

options data up to time t to estimate d̂p,t in Step 6 of the procedure described in Section

3.3. Following Campbell and Thompson (2008) and Welch and Goyal (2008), we use the

historical average of S&P 500 returns (r̄t) as a natural benchmark model.

To assess the out-of-sample forecasting power of our approach, we use the out-of-sample

R2 as suggested by Campbell and Thompson (2008) to compare the forecast from the func-

tional regression (r̂t) and the forecast using the historical average of stock market returns

(r̄t). The out-of-sample R2 of Campbell and Thompson (2008) is computed as follows:

R2
OOS = 1−

∑T
t=1(rt − r̂t)2∑T
t=1(rt − r̄t)2 , (6)

where r̂t is a fitted value from the functional regression estimated through period t− 1 in an

out-of-sample manner and r̄t is the historical average of stock market returns through period

t − 1. That is, the above R2
OOS measures the reduction in the mean squared forecast error

(MSFE) for the functional predictive regression relative to that of the historical average

forecast. To estimate the historical average of stock returns, we use the long historical

data on the S&P 500 index returns starting in 1927, giving the historical average model an

advantage in terms of data availability.

To provide a statistical test of whether the functional predictive regression provides a sig-

nificantly better forecast over the historical average forecast, we compute the MSFE-adjusted

statistics proposed by Clark and West (2007). Clark and West (2007)’s test in our context

examines the null hypothesis that the MSFE of the historical average model is less than or

equal to the MSFE of the functional predictive regression against the alternative hypothesis

that the historical average MSFE is greater than the functional predictive regression MSFE.

Table 3 provides the out-of-sample R2 statistics, R2
OOS, of our proposed approach (Panel

A) and predictors used in Welch and Goyal (2008) (Panel B). In particular, Panel A reports

out-of-sample R2 statistics of the functional predictive regression obtained with different

16



numbers of functional principal components used in the estimation. Panel B provides the

unrestricted predictive regression of each forecasting variable (columns under Unrestricted)

and the restricted regression with theoretical restrictions proposed in Campbell and Thomp-

son (2008) (columns under Campbell and Thompson (2008) restrictions).18 Along with the

R2
OOS, we also provide p-values (in brackets) for Clark and West (2007) MSFE-adjusted

statistics for the functional predictive regression in Panel A and for the unrestricted and

restricted predictive regressions of conventional variables in Panel B.

Our functional predictive regression model achieves a 6.198% (6.102%) out-of-sample

R2 when we use five (three) functional principal components in the functional predictive

regression with strong statistical significance, which indicates that the functional predictive

regression delivers a significantly lower MSFE than that of the historical average forecast.

Consistent with the well documented findings in the existing literature, the 14 predictors

exhibit very poor performance in predicting stock market returns out of sample, with even

some negative out-of-sample R2 statistics. Furthermore, due to an overfitting problem in

the out-of-sample prediction, the kitchen sink regression using all 14 variables delivers a

significantly negative out-of-sample R2 of -9.190% without a regression restriction and -

9.212% with the restrictions of Campbell and Thompson (2008). Overall, our approach

using the functional regression in predicting stock market returns with option data provides

an unprecedentedly high predictive ability, even in the out-of-sample analysis.

4.3 Economic Significance of Findings

In the previous section, we showed that the functional predictive regression relating

the risk-neutral density from option prices to stock market return predictability displays

significantly positive in-sample as well as out-of-sample predictive power. Compared to

forecasting variables that have been discussed in the literature, our functional regression

approach using option panel data exhibits superior performance. However, a limitation of
18Campbell and Thompson (2008) suggest to impose sign restrictions on β̂ and r̂tin Equation 5. In

particular, if β̂ has an unexpected sign, then it is set β̂ = 0. Also, if r̂t < 0, the forecast is set to zero.
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the R2 statistic is that it does not explicitly take into account the risk borne by an investor

over the out-of-sample period. Thus, following Marquering and Verbeek (2004), Welch and

Goyal (2008), Campbell and Thompson (2008), Wachter and Warusawitharana (2009), and

Rapach et al. (2010), we investigate the realized utility gain for a mean-variance optimizing

investor on a real out-of-sample basis.

Consider a mean-variance investor with a relative risk aversion coefficient of γ who al-

locates her portfolio between equity and a risk-free asset based on a forecast. On the one

hand, if the investor were to use the historical average to forecast the equity market return,

then at the end of period t, she would allocate the following share of a portfolio to the stock

market for the period of t+ 1:

α0,t =
(

1
γ

)(
r̄t+1

σ̂2
t+1

)
, (7)

where r̄t+1 is the historical average of stock market returns using data upto time t and σ̂2
t+1 is

the forecast of the variance, which is provided in more detail below. Over the out-of-sample

period, the investor realizes the utility level of

ν̂0 = µ̂0 −
(1

2

)
γσ̂0 (8)

where µ̂0 and σ̂0 are, respectively, the sample mean and variance over the out-of-sample

period for the return in the benchmark portfolio formed using forecasts based on the historical

average.

On the other hand, we can compute the average utility for the same investor when she

utilizes our functional predictive regression approach with option panel data, instead of the

historical average, to forecast the equity market return. Then, the share of her portfolio

allocated to equity would be

αt =
(

1
γ

)(
r̂t+1

σ̂2
t+1

)
, (9)

where r̂t+1 is the predicted mean of stock returns and σ̂2
t+1 is the predicted variance for the
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period t+ 1. The utility level of the investor would be

ν̂ = µ̂−
(1

2

)
γσ̂2, (10)

where µ̂ and σ̂2 are the sample mean and variance over the out-of-sample period for the

return on the portfolio constructed using the functional predictive regression, respectively.

This exercise requires the investor to forecast the variance of stock returns, σ̂2. When

the investor uses the historical average to forecast stock market returns, we assume that

she estimates the variance using a five-year rolling window of monthly returns, similar to

the procedure in Campbell and Thompson (2008) and Rapach et al. (2010). The functional

predictive regression allows us to relate not only a function to a single variable but also a

function to another function. That is, in our primary analysis, our approach uses a risk-

neutral density to forecast the first moment of the physical density of the S&P 500. However,

this approach can be extended to map a risk-neutral density to predict a full distribution

of S&P 500 returns. Therefore, the investor has an additional advantage—she can further

estimate higher moments from a predicted full distribution of S&P 500 returns.19 Therefore,

the investor can either use the variance estimate based on a five-year rolling window of

monthly returns or further exploit the advantage of the functional predictive regression to

forecast the variance of stock returns by predicting the full distribution.

Following Rapach et al. (2010), we measure the utility gain as the difference between

Equations (10) and (8) and multiply this difference by 1200 to express it as an annualized

percentage return. This utility gain can be interpreted as the portfolio management fee that

an investor would be willing to pay to choose to use our functional predictive regression

approach exploiting the relation between the risk-neutral density and the physical density

of the S&P 500, instead of using the historical average approach. We provide results for the

two risk aversion parameter values, γ =3 and γ =10, in the next paragraphs, tables, and
19For the prediction of the k-th moment of S&P 500 returns, we may use Equation (4) in Footnote 15

with m redefined as m(r) = rk.
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figures. The results are robust and qualitatively similar to other reasonable choices of γ.

The predictive ability of the functional regression approach delivers economically mean-

ingful outcomes to investors. Table 4 reports the utility gain (in terms of the certainty

equivalent return, expressed in a percentage per annum) of an investor who utilizes the ap-

proach proposed in this paper instead of the historical average approach. In particular, Panel

A of Table 4 provides the results when an investor uses the functional predictive regression

approach to forecast the mean, i.e., the first moment, of the next month’s S&P 500 index

return distribution (under the column Mean forecast) and to forecast the mean and variance

in the distribution (under the column Mean-Var forecast). Regardless of the choice of the

number of functional principal components used in the estimation, the functional predictive

regression of the risk-neutral density provides significant utility gains to the investors. When

an investor fully utilizes our approach to forecast the mean and variance of the stock market

return, her utility gains are well above 7% per annum, which is a very substantial profit.

Even if an investor used the approach to forecast the mean of the stock market returns, she

could obtain a sizable utility gain well above 2.5% per annum.

Figure 5 further highlights the economic gain of an investor. The two plots in Figure

5 show the portfolio performance of a mean-variance maximizing investor who uses the

functional regression approach compared to using the historical average model. The top

and bottom plots correspond to the cumulative returns of the trading strategies of a mean-

variance optimizing investor with a risk aversion coefficient of 3 and 10, respectively. The red

line represents the cumulative gain of investing one dollar using functional regression with

option data to forecast r̂t+1 and σ̂t+1, and the blue line shows the cumulative gain using the

historical average model with the rolling-window estimate for σ̂t+1. In Panel A and Panel

B, the investor obtains the cumulative returns of 107.050% with γ = 3 and 68.769% with

γ = 10 over the out-of-sample forecasting period from 2011 to 2016, respectively.20 However,

the historical average model delivers 53.97% and 12.51% cumulative return over the same
20In this analysis, we fix K =5, but the results are qualitatively stable with K =3 and 4. These results

are available upon request.
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period with γ = 3 and γ = 10, respectively.

We also provide evidence that the economic gains from our functional predictive regres-

sion using risk-neutral density are consistent across different choices of regularization and

superior to those gains obtained from existing approaches using forecasting variables with

economic restrictions. Panel B of Table 4 provides the utility gains of an investor when she

forecasts using the economic variables discussed in Welch and Goyal (2008) with the un-

restricted regression (under the column Unrestricted) and with the economically restricted

regression (under the column Campbell and Thompson (2008) restriction). Consistent with

the results on the in-sample and out-of-sample R2 statistics discussed in the previous sec-

tion, the utility gains from forecasting using the economic variables are mostly not sizable

and sometimes even negative. The dividend-price ratio and dividend yield are the only two

variables that deliver marginally meaningful utility gains, while many of the individual pre-

dictors with negative out-of-sample R2 values (for example, inflation, the Treasury bill rate,

and net equity expansion) fail by a substantial margin to outperform the historical average

benchmark.

4.4 Where Does This Superior Performance Come From?

In this subsection, we investigate the source of the outstanding performance of the fore-

casting approach proposed in this paper. The critical elements of our approach are twofold:

the econometric method using the functional regression and the rich information embedded

in the extensive option panel data. Thus, this section examines how much the functional re-

gression framework and the use of the full distribution of the risk-neutral density contribute

to the forecasting performance.

4.4.1 Functional Predictive Regression Using Physical Density

One of the natural candidates for stock market return prediction is the stock market

return itself. Thus, we examine the predictability of the S&P 500 index monthly return
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using the index return from the previous month. In particular, we consider the functional

autoregression as follows:

dp,t+1 = Adp,t + εt+1, (11)

where dp,t+1 and dp,t are the demeaned versions of P -density functions constructed using

daily returns over the periods from t to t+ 1 and from t− 1 to t, respectively. As we focus

on the first moment of the left-hand side of the above functional regression in the empirical

analysis, we obtain a fitted P -density d̂p,t+1 using Equation (11) and the first moment of

the density. Then, we examine its forecasting power using in-sample and out-of-sample R2

statistics, as described in Section 4.1 and Section 4.2.

Table 5 reports the result of the functional autoregression analysis using Equation (11).

In particular, Panel A and Panel B of Table 5 provide R2 statistics and corresponding p-

values for the in-sample and out-of-sample predictions, respectively. Each row in Panel A and

Panel B corresponds to the result with different numbers of functional principal components

used to estimate the functional autoregression. The R2 statistics of the in-sample estimation

range from 2.290% to 2.881%, depending on the number of principal components in the

functional autoregression. For the out-of-sample prediction (Panel B), the R2 statistics

become negative. That is, the predictive functional autoregression fails to deliver meaningful

forecasting power out of sample. This finding is consistent with the existing evidence that

stock market return predictability using historical data often deteriorates in an out-of-sample

context.

The results using the previous month’s physical density in Table 5 suggest that the

functional regression method alone is not able to provide enough forecasting power. In

comparison with the superior out-of-sample performance documented in Section 4.2, the

analysis in this section shows that the forecasting power of the approach proposed in this

paper is attributable to the linkage between the physical density and the risk-neutral density

of stock market returns.
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4.4.2 Predictive Regression Using Finite Moments of the Risk-Neutral Density

There have been many attempts to utilize option price data to build a link to asset

prices. Roll et al. (2010), Johnson and So (2012), and Hu (2014) suggest that option trad-

ing activities contain information on future stock returns, while Cremers and Weinbaum

(2010), Rehman and Vilkov (2012), and Chang et al. (2013) show that the price and implied

moments of options predict the cross-section of stock returns. As we argue that using a

risk-neutral density embedded in option price data offers significant predictive ability on

aggregate market returns, the implied moments in option data, such as implied volatility,

skewness and kurtosis, seem to be other natural candidates as predictors.

Table 6 shows the simple predictive in-sample regression results using moments of the

risk-neutral density to predict the next month’s return of the S&P 500 index. In particular,

the dependent variable in the regression is the mean of the physical density of the S&P 500

index return in month t + 1 constructed as in Section 3.2. The independent variables are

the moments of the risk-neutral density extracted from the option panel data, as described

in Section 3.1. That is, MeanQt , V arianceQt , SkewnessQt , and KurtosisQt are the mean,

variance, skewness, and kurtosis of the risk-neutral density of the option prices in month t.

The regression result shows that the finite moments embedded in the option data do not

exhibit any significant return predictive ability. While the regression coefficients on the mean

and variance are much larger than those on the third and fourth moments, none of these

moments of the risk-neutral density produce statistically significant regression coefficients or

R2 values.

As our approach exploits the rich information from option data to predict stock market

returns, one might naturally think of other alternative variables from option data. The

CBOE VIX is often referred to as the “investor fear gauge” and is shown to have components

that are useful in forecasting stock market returns (for example, among many others, see

Ang et al. (2006), Bekaert and Hoerova (2014), and Bardgett et al. (2019)). Additionally, the

variance risk premium (VRP), which is defined as the difference between the actual and risk-
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neutral expectation of stock market variation, is known to help forecast future stock market

returns (see Carr and Wu (2009), Bakshi and Kapadia (2003), and Bollerslev et al. (2015),

among many others). Thus, we investigate the performances of three variables, namely, the

VIX, a change in the VIX, and the VRP, in forecasting the next month’s stock market return.

To construct the variance risk premium, the risk-neutral expectation of variance is estimated

as the de-annualized VIX-squared (VIX2/12), and the realized variance is constructed as the

sum of squared daily log returns of the S&P 500 index over the month.

Table 7 provides the results of the predictive regressions with the three option-related

measures on the next month’s S&P 500 index return. For the in-sample estimation, the VRP

exhibits statistically significant performance, while the VIX and the change in the VIX show

marginal and statistically non-significant predictive power, respectively. However, when we

move to the out-of-sample forecasting performance, the VRP fails to deliver statistically

significant prediction power. Furthermore, only the VIX is able to exhibit marginally signif-

icant out-of-sample predictive ability at the 5% level. The evidence documented in Table 7

implies that the option variables widely known to exhibit some degree of return predictabil-

ity still fail to deliver satisfactory forecasting performance, especially in comparison with the

superior performance of the approach in this paper.

We emphasize that using a finite number of moments extracted from option price data

does not provide any meaningful predictive power. This finding suggests that the rich infor-

mation embedded in the full risk-neutral density is the main driver of the superior return

predictive power. Along with the evidence provided in the previous subsection, the result in

this section shows that neither the econometric method using functional regression nor the

exploitation of option data alone can account for the superior performance documented in

this paper; that is, the combination of exploiting extensive option data with an advanced

econometric method is a crucial contributor to the superior predictive power.
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4.5 In Relation to Other Equilibrium Models

In this subsection, we examine the validity of frequently used equilibrium models using

our prediction algorithm. A specific equilibrium model suggests a kernel that relates the P -

and Q- densities. Therefore, if we impose such a relation in our estimation procedure, the

functional regression results may be improved through the regularization of the equilibrium

model. We consider four different equilibrium models: a model based on the recovery theorem

of Ross (2015), a CRRA model, the long-run risk model of Bansal and Yaron (2004), and

the external habit model of Campbell and Cochrane (1999). For the long-run risk model and

the external habit model,21 we use the parameter values proposed in the original papers. For

the risk aversion parameter in the CRRA model and the state variables in the long-run risk

model and the external habit model, we calibrate them to minimize the distance between

the observed P -density and the density implied by an equilibrium model.

Table 8 reports the prediction results of the equilibrium models. For all four models, the

in-sample estimations deliver marginally and statistically significant R2 statistics that range

from 2.224% to 2.925%. However, in regard to the out-of-sample prediction, all four models

exhibit very poor performance. When comparing the results in Table 8 to the performance of

the approach proposed in this paper (Table 2 and Table 3), we observe stark improvements

in the in-sample as well as the out-of-sample forecasting performance. This finding suggests

that a linkage between the risk-neutral density from the option panel data and the physical

density provides unique benefits in forecasting stock market returns. Thus, we conclude that

the predictability of market returns through option panel data is a phenomenon not captured

by these existing equilibrium models.
21In particular, the state variable in the external habit model of Campbell and Cochrane (1999) is the log

surplus consumption ratio (st). The state variables in the long-run risk model of Bansal and Yaron (2004)
are (1) a small persistent predictable component (xt) in consumption and dividend growth rates and (2)
consumption volatility (σt).
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4.6 Risk-Neutral Density and Existing Forecasting Variables: LASSO

Analysis

Finally, we examine the relationship between the information embedded in the option

panel data that we utilized to predict stock market returns and conventional predictors that

have been frequently employed in the return predictability literature. In doing so, we use

the least absolute shrinkage and selection operator (LASSO) method (Tibshirani (1996)).

Aiming to identify relationships between risk-neutral density and widely used predictors in

the literature, we start from the 14 variables used in Welch and Goyal (2008), stacked in

Xt. Using the risk-neutral density extracted from the option panel, we construct the k-th

factor loading, fkt , which is the time-series of coefficients multiplied to the corresponding

eigenvector (the k-th factor) in each time period. With Xt and fkt , we estimate the following

LASSO problem to identify the variables that have significant effects on fkt :

min
β0,β

(
T∑
t=1

(fkt − β0 − β′Xt)2 + λ ‖β‖
)
, (12)

where λ is a nonnegative regularization parameter and ‖·‖ is the standard `1-norm.

Table 9 provides the result for the LASSO analysis of the first three factors on existing

forecasting variables. The first, second, and third columns contain the top five forecasting

variables that are strongly associated with the first, second, and third factors extracted from

the time-series of the risk-neutral densities. The results indicate that among the well-known

predictors used in Welch and Goyal (2008), the dividend yield spread and stock variance

are most strongly associated with all three factors of the risk-neutral density dynamics. In

addition, inflation, net equity expansion, and book-to-market ratio are the next three most

important variables in explaining the first factor, while the term spread, long-term yield, and

net equity expansion have a significant association with the second and third factors of the

risk-neutral density. This evidence implies that the main factors embedded in risk-neutral

density contain unique features that are not captured by any single existing forecasting
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variable and the nonlinear relation with those variables.

5 Conclusion

We propose a novel methodology that fully exploits the rich information embedded in

option price data to predict aggregate stock market returns. Our methodology is easy to

apply and statistically robust. In particular, our approach combines the risk-neutral density

extraction method of Ait-Sahalia and Duarte (2003) and the functional regression method

of Bosq (2000) and Park and Qian (2012). Applying the proposed method to a large panel

of option data, we obtain statistically significant predictive power in forecasting the next

month’s stock market return.

Not only the statistical significance of our predictions but also the economic gains from

using our proposed approach are very substantial. Regardless of whether we impose the re-

strictions of Campbell and Thompson (2008), our approach exhibits considerable forecasting

performance. In particular, our approach delivers an in-sample forecasting performance with

an R2 of 4.720% , and the out-of-sample forecast achieves an R2 of 6.198%. Furthermore, this

superior performance can easily be translated into substantial utility gains if a mean-variance

investor exploits our functional predictive regression approach. Overall, our findings imply

that our approach exploits the rich information embedded in the full distribution of option

price data, which has not yet been fully discovered in the literature.

Our analysis reveals that applying an advanced econometric methodology to a potent

data source is the key driver of the main findings of this paper. Thus, we see several avenues

for future research. A natural next step is to examine the predictability of other macro vari-

ables, such as interest rates or exchange rates, using the data from options markets whose

underlying assets reflect dynamics of those macro variables. As machine learning techniques

are recently widely used in the various strands of finance literature, a horse race between

our approach and different machine learning methods would be worth investigating. Fur-

thermore, although we focus on the risk premium of market returns, the proposed approach

27



can be further extended to analyze the risk premium of higher moments of a risk-neutral

density such as variance, skewness, and kurtosis.
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Figure 1: Estimated Risk-neutral (Q) and Physical (P ) Densities from Sample Data

Panel A: Q-density

Panel B: P -density

The plots above display the estimated Q-density (Panel A) and the P -density (Panel B) from our
sample data. The Q-density is estimated by following Ait-Sahalia and Duarte (2003) as described
in Section 3.1. The P -density is obtained using daily returns of the S&P 500 index as described in
Section 3.2. In each top and bottom section, we provide the estimated Q- and P -densities along
with their demeaned densities, which are used in our main predictive analysis in Section 4.
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Figure 2: Time Matching and Aggregation of Option and Stock Market Return Data

time
t1

Observation
date

Expiration
date

T1 t2

Observation
date

T2

Expiration
date

30 days 30 days

The above timeline displays how the observation and expiration dates of the option data are co-
ordinated and how the stock market return data are aggregated accordingly. The option data are
collected on observation dates, which are 30 days before the option expiration dates. That is, the
collected S&P 500 index options have a 30-day time to maturity. Once these observation and ex-
piration dates are specified, daily returns on the S&P 500 from the observation to expiration dates
are collected.
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Figure 4: Functional Principal Component Analysis

Panel A: First Factor

Panel B: Second Factor

Panel C: Third Factor

This plot represents the functional principal component analysis. The top, middle, and bottom left
figures plot the first (νT,1), second (νT,2), and third (νT,3) functional principal components extracted
from the risk-neutral density over our sample period, respectively. The top, middle, and bottom
right figures show how each of the three factors move the average risk-neutral density function. In
each of the right figures, the blue line (mean) represents the time-series average of the risk-neutral
density, q̄ = (1/T )ΣT

t=1qt. The green line (mean+min×νT,k) and the red line (mean+max×νT,k)
represent q̄ + 〈νT,k,qt〉minνT,k and q̄ + 〈νT,k,qt〉maxνT,k for k = 1, 2, 3, respectively.
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Figure 5: Portfolio Performance using Functional Regression Approach
Panel A: Cumulative gains with γ=3

Panel B: Cumulative gains with γ=10

The two figures show the portfolio performances of the functional regression approach proposed
in this paper. Each line represents the time-series of the cumulative gains of investing one dollar
at the beginning of the out-of-sample forecasting period. The red line (Functional Regression
Forecast) represents the cumulative gain of a mean-variance optimizing investor (with a risk aversion
coefficient of 3 in Panel A and 10 in Panel B) who utilizes our proposed approach to forecast r̂t+1
and σ̂2

t+1 using the functional regression, and the blue line (Historical Average Forecast) shows
the portfolio performance using the historical average of market returns in the mean-variance
optimization with the rolling-window estimate of the variance.
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Table 2: In-Sample Prediction Results

Panel A: Functional Regression

Number of
Factors In-Sample R2 (%) p-value

K = 3 4.375*** [0.001]
K = 4 4.487*** [0.000]
K = 5 4.720*** [0.000]

Panel B: Goyal and Welch (2008) Variables

Variable In-Sample R2 (%) p-value

Dividend-Price Ratio 1.113 [0.104]
Dividend Yield 1.437* [0.064]
Earnings-Price Ratio 0.246 [0.445]
Dividend Payout Ratio 0.004 [0.922]
Stock Variance 2.084** [0.026]
Book-to-Market Ratio 0.174 [0.521]
Net Equity Expansion 1.840** [0.036]
Treasury Bill Rate 0.001 [0.961]
Long-Term Yield 0.068 [0.687]
Long-Term Return 0.134 [0.573]
Term Spread 0.098 [0.630]
Default Yield Spread 0.606 [0.231]
Default Return Spread 0.477 [0.288]
Inflation 0.805 [0.167]
Kitchen Sink (All) 13.578*** [0.001]

The table reports the R2 statistics of the functional predictive regression provided in Section 3 and R2

statistics of variables used in Welch and Goyal (2008). In Panel A, the in-sample R2 statistics from
the functional predictive regression are computed using Equation (3) in Section 3.3. The value of K in
the first column represents the number of functional principal components used in the estimation of the
functional regression. In Panel B, the in-sample R2 statistics for the variables from Welch and Goyal
(2008) are computed from the predictive regression of Equation (5). The sample period of estimation
spans from January 1996 to December 2015. The numbers in brackets are the p-values for the F -
statistics of the regressions. Asterisks denote the significance of the in-sample regression as measured by
its corresponding p-value. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 3: Out-of-Sample Prediction Results

Panel A: Functional Regression

Number of
Factors Out-of-Sample R2 (%) p-value

K = 3 6.012*** [0.000]
K = 4 5.749*** [0.000]
K = 5 6.198*** [0.000]

Panel B: Goyal and Welch (2008) Variables

Campbell and Thompson (2008)
Unrestricted Restrictions

Out-of-Sample R2 (%) p-value Out-of-Sample R2 (%) p-value

Dividend-Price Ratio 1.175** [0.028] 1.175** [0.028]
Dividend Yield 1.061* [0.059] 1.061* [0.059]
Earnings-Price Ratio -0.868 [0.718] -0.868 [0.718]
Dividend Payout Ratio -1.798 [0.729] -1.798 [0.729]
Stock Variance 0.547 [0.362] 0.000 [-]
Book-to-Market Ratio -2.212 [0.778] 0.277 [0.292]
Net Equity Expansion -5.326 [0.870] -4.846 [0.855]
Treasury Bill Rate -3.745 [0.738] -3.862 [0.753]
Long-Term Yield -4.460 [0.804] -0.459 [0.795]
Long-Term Return -1.879 [0.811] -1.176 [0.685]
Term Spread -1.874 [0.652] -1.874 [0.652]
Default Yield Spread -2.745 [0.811] -2.745 [0.811]
Default Return Spread -1.955 [0.573] -2.560 [0.694]
Inflation -7.456 [0.936] -6.809 [0.926]
Kitchen Sink -9.190 [0.278] -9.212 [0.279]

The table reports the out-of-sample R2 statistics of the functional predictive regression approach pro-
vided in Section 3. The out-of-sample R2 statistics are computed following Campbell and Thompson
(2008) as in Equation (6). Panel A reports the out-of-sample R2 statistics (and p-values in brackets) of
the functional predictive regression using different numbers of functional principal components. Panel
B provides the out-of-sample R2 statistics (and p-values in brackets) of the unrestricted and restricted
(with Campbell and Thompson (2008) restrictions) predictive regressions of the forecasting variables
used in Welch and Goyal (2008). The period of the out-of-sample prediction is the last 5 years of our
sample period, starting in January 2011. The value of K in the first column represents the number of
functional principal components used in the estimation of the functional regression. The sample period
spans from January 1996 to December 2015. The numbers in brackets are the p-values for the Clark
and West (2007) MSFE (mean squared forecast error)-adjusted statistic for testing the null hypothesis
that the historical average MSFE is less than or equal to the predictive regression MSFE against the
alternative that the historical average MSFE is greater than the predictive regression MSFE. ***, **,
and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 4: Economic Significance of the Functional Regression Forecast

Panel A: Functional Regression

Number of Utility Gain (% per annum)

Factors Mean Forecast Mean-Var Forecast

K = 3 2.743 7.265
K = 4 3.414 7.668
K = 5 2.577 6.838

Panel B: Goyal and Welch (2008) Variables

Utility Gain (% per annum)

Campbell and Thompson (2008)
Unrestricted Restrictions

Dividend-Price Ratio 2.359 2.359
Dividend Yield 2.791 2.791
Earnings-Price Ratio 0.877 0.877
Dividend Payout Ratio -0.307 -0.307
Stock Variance 1.814 -
Book-to-Market Ratio 0.626 0.845
Net Equity Expansion -1.010 -1.010
Treasury Bill Rate -1.105 -1.051
Long-Term Yield 0.049 0.737
Long-Term Return -0.585 -0.532
Term Spread -0.418 -0.418
Default Yield Spread -0.051 -0.051
Default Return Spread 0.355 0.355
Inflation -2.721 -2.721
Kitchen Sink (All) 4.478 4.478

This table reports the utility gains (in terms of the certainty equivalent return, expressed in a
percentage per annum) of a mean-variance investor who allocates her portfolio between stocks
and risk-free bills based on predictions using functional regression (Panel A) and the well-known
economic variables in Welch and Goyal (2008) (Panel B). The utility gain in each panel can be
considered the portfolio management fee (in annualized percent return) that an investor with a
mean-variance preference and a risk aversion coefficient of five would be willing to pay to have access
to the predictive forecast based on our functional regression approach (Panel A) or the economic
variables (Panel B) in place of the historical average benchmark forecast. In Panel A, the second
column (Mean Forecast) reports the average utility gains of a mean-variance investor who utilizes
the functional predictive regression to obtain the forecast r̂t+1 and the rolling-window estimate of
the variance for σ̂2

t+1. Under the third column (Mean-Var Forecast), we report the average utility
gains of a mean-variance investor who further utilizes the functional predictive regression to obtain
the forecast σ̂2

t+1. Panel B provides the average utility gain of the investor when she uses the
economic variables in Welch and Goyal (2008) with the unrestricted and restricted (Campbell and
Thompson (2008) restrictions) predictive regressions.
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Table 5: Functional Predictive Regression with the Physical Density

Panel A: In-Sample Estimation

Number of
Factors In-Sample R2(%) p-value

K = 3 2.290** [0.019]
K = 4 2.476** [0.015]
K = 5 2.881*** [0.008]

Panel B: Out-of-Sample Prediction

Number of
Factors Out-of-Sample R2(%) p-value

K = 3 -6.586 [0.706]
K = 4 -5.292 [0.637]
K = 5 -3.665 [0.536]

This table provides the R2 statistics of the functional predictive regression of next month’s return
of the S&P 500 index on the physical density constructed using the current month’s S&P daily
returns. The dependent variable, the next month’s return rt+1, is computed as the mean of the
P -density in month t+ 1 constructed as described in Section 3.2. The independent variable is the
P -density in month t. The value of K in the first column represents the number of functional
principal components used in the functional regression estimation. In Panel A, we provide the
in-sample estimation results over the full sample period from January 1997 to December 2015. The
in-sample R2 statistics in Panel A are computed using Equation (3) in Section 3.3. The numbers
in brackets in Panel A report the p-values for the F -statistics of the regressions. In Panel B, we
report the out-of-sample R2 statistics of the predictive functional regression over the last 5 years of
our sample period, January 2011 to December 2015. The out-of-sample R2 statistics are computed
as in Equation (6), following Campbell and Thompson (2008). The numbers in brackets in Panel
B are the p-values for the Clark and West (2007) MSFE (mean squared forecast error)-adjusted
statistic for testing the null hypothesis that the historical average MSFE is less than or equal to
the predictive regression MSFE against the alternative that the historical average MSFE is greater
than the predictive regression MSFE. ***, **, and * denote significance at the 1%, 5%, and 10%
levels, respectively.

43



Table 6: Predictive Regression with Finite Moments of Risk-Neutral Density

Dependent Variable: rt+1

Independent Variable (1) (2) (3) (4)

MeanQ
t 0.356 -0.066 0.100 0.085

(1.316) (-0.160) (0.165) (0.139)
V arianceQ

t 1.187 1.041 1.002
(1.356) (1.085) (1.029)

SkewnessQ
t 0.000 0.000

(-0.377) (-0.254)
KurtosisQ

t 0.000
(-0.257)

R-squares (%) 0.725 1.492 1.552 1.579
Adj R-squares (%) 0.306 0.657 0.295 -0.103

This table provides the regression results for a simple predictive regression of the next month’s
return of the S&P 500 index on moments of the risk-neutral density extracted from the current
month’s options data. The dependent variable, the next month’s stock market return rt+1, is com-
puted as the mean of the P -density in month t+1 constructed following Section 3.2. The dependent
variables are the first four moments of the risk-neutral density extracted from the option price data,
as described in Section 3.1. In particular, MeanQt , V ariance

Q
t , Skewness

Q
t , and Kurtosis

Q
t rep-

resent the mean, variance, skewness, and kurtosis of the risk-neutral density estimated in month t.
The numbers in parentheses are the t-statistics of the regression coefficients. ***, **, and * denote
significance at the 1%, 5%, and 10% levels, respectively.
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Table 7: Predictive Regression with Option-related Variables

In-Sample Out-of-Sample

R2(%) p-value R2
OOS(%) p-value

VIX 1.710** [0.043] 4.374** [0.047]
∆VIX 0.440 [0.306] 1.439 [0.139]
VRP 6.448*** [0.000] 1.406 [0.225]

This table provides the results for a predictive regression of the next month’s return of the S&P
500 index on other option-related variables that are known to exhibit some predictive power. The
option-related variables include the CBOE VIX, the change in the VIX (∆VIX), and the variance
risk premium (VRP). The VRP is defined as the difference between the risk-neutral and objective
expectations of the realized variance, where the risk-neutral expectation of the variance is estimated
as the de-annualized VIX-squared (VIX2/12) and the realized variance is constructed as the sum
of daily log returns of the S&P index over the month. The two columns under In-sample and the
other two columns under Out-of-sample provide the R2 statistics and corresponding p-values for the
in-sample estimation and the out-of-sample prediction, respectively. The numbers in parentheses
are the t-statistics of the regression coefficients. ***, **, and * denote significance at the 1%, 5%,
and 10% levels, respectively.

45



Table 8: Equilibrium Models

Functional Predictive Regression Result

In-Sample Out-of-Sample

Models R2 (%) p-value R2
OOS (%) p-value

Ross (2015) 2.877*** 0.008 -0.463 0.159
CRRA model 2.224** 0.021 -0.736 0.401
Long-run risk model 2.925*** 0.008 -0.530 0.159
Habit model 2.913*** 0.008 -4.010 0.383

This table reports in-sample and out-of-sample R2 statistics for the functional predictive regression
based on densities estimated from equilibrium models. In particular, four different equilibrium
models are considered: (i) a model based on the recovery theorem of Ross (2015), (ii) a CRRA
model, (iii) the long-run risk model of Bansal and Yaron (2004) and (iv) the external habit model
of Campbell and Cochrane (1999). For the in-sample R2 statistics, the numbers in brackets are the
p-values for the F -statistics of the regressions. For the out-of-sample R2 statistics, the numbers
in brackets are the p-values for the Clark and West (2007) MSFE (mean squared forecast error)-
adjusted statistic for testing the null hypothesis that the historical average MSFE is less than or
equal to the predictive regression MSFE against the alternative that the historical average MSFE
is greater than the predictive regression MSFE. ***, **, and * denote significance at the 1%, 5%,
and 10% levels, respectively.
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Table 9: Selected Variables for the First Three Factor of the Risk-Neutral Density

First Factor Second Factor Third Factor

Default Yield Spread Stock Variance Stock Variance
Stock Variance Default Yield Spread Default Yield Spread

Inflation Term Spread Term Spread
Net Equity Expansion Long Term Yield Long Term Yield
Book to Market Ratio Net Equity Expansion Net Equity Expansion

This table presents the variables selected to explain the first three principal components extracted from
the dynamics of the risk-neutral density. A complete set of predictors used in the LASSO analysis
includes the 14 variables documented in Welch and Goyal (2008). Among all 14 predictors, the table
reports the five most significant variables for the three principal components in each column.

47


	Introduction
	Data
	Methodology
	 Risk-Neutral Density Construction
	Physical Density Construction
	Projection of the Physical Density onto  the Risk-Neutral Density 

	Empirical Results
	In-Sample Prediction
	Out-of-Sample Prediction
	Economic Significance of Findings
	Where Does This Superior Performance Come From?
	Functional Predictive Regression Using Physical Density
	Predictive Regression Using Finite Moments of the Risk-Neutral Density

	In Relation to Other Equilibrium Models
	Risk-Neutral Density and Existing Forecasting Variables: LASSO Analysis

	Conclusion

