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Introduction

Identifying and understanding the sources of risk that generate the market risk premium

is a fundamental challenge in financial economics. Well-known representative agent asset

pricing models are able to generate the market risk premium using vastly different economic

mechanisms including habit formation (e.g., Campbell and Cochrane, 1999; Bekaert and

Engstrom, 2017), long-run risk (e.g., Bansal and Yaron, 2004; Drechsler and Yaron, 2011),

and disaster risk (e.g., Barro, 2006; Gabaix, 2012; Wachter, 2013). Unconditionally, the

market risk premia from such models match average excess market returns in the data, but,

conditionally, each has very different implications for the sources of the risk premia. Extant

literature lacks methodologies to estimate sources of conditional risk premia implied by the

data and implied by models, making it difficult to evaluate the plausibility of disparate

modeling assumptions in a conditional setting.

Our paper makes progress towards addressing these challenges on two fronts. First, we

develop a methodology to decompose the conditional market risk premium and risk premia

on higher-order moments of excess market returns (e.g., the variance risk premium, skew-

ness risk premium, etc.) into sources of risk related to contingent claims on down, up, and

moderate market returns. The decomposition requires the assumption of no-arbitrage, but

it does not rely on assumptions about the particular functional form of investor preferences

nor does it rely on assumptions about the market return distribution. Using this methodol-

ogy, we estimate conditional contingent claims-based sources of risk premia at each date in

our sample. We call these our “data-implied” decompositions. Although an understanding of

these decompositions could be useful in many settings, we focus on using our data-implied

decompositions as a diagnostic tool to evaluate implications from prominent representative

agent models as an application of our methodology. Second, and to this end, we develop a

methodology that allows us to estimate analogous decompositions implied by a wide array

of prominent representative agent asset pricing models. We call these our “model-implied”

1



decompositions. Comparing the model-implied decompositions to the data-implied decom-

positions identifies significant discrepancies. Our data-implied decompositions supply a host

of new empirical facts that current models fail to explain.

To illustrate our decomposition, we focus on the market risk premium. It is defined as the

difference between the expected market return under the physical and risk-neutral measures,

RP ≡ E [RM ] − E∗ [RM ] = E [(RM −Rf )], where Rf is the risk-free rate. We can use an

identity to decompose the total risk premium into components contingent on realized market

returns in different regions of the market return space as

RP ≡ RPd + RPc + RPu (1)

where RPs ≡ E [(RM − Rf ) IAs ]−E∗ [(RM − Rf ) IAs ]. E represents the expectation operator

under the physical measure, E∗ represents expectation operator under the risk-neutral mea-

sure, I is an indicator function, and As represents sets describing different regions of the

market return space with s ∈ {d, c, u}. d, c, and u represent either down, moderate (“cen-

tral”), or up market returns, respectively.1 This decomposition effectively separates the total

market risk premium into contributions from risks associated with market return realizations

in each of these regions. We call these different components of the risk premium the“downside

risk premium”, the “central risk premium”, and the “upside risk premium”, respectively.2

1This decomposition makes use of the identity IA ≡ IAd
+ IAc + IAu = 1 with A ≡ Ad ∪ Ac ∪ Au = R+.

That is, A represents the set of non-negative real numbers, which corresponds to the set of permissible gross
market return realizations (assuming limited liability). These sets effectively divide the gross market return
space into down market return regions, moderate or “central” market return regions, and up market return
regions. To be more concrete, assume Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞). Then Ad represents the
set of net market returns less than -10%, Ac represents the set of net market returns between -10% and
+10%, and Au represents the set of net market returns above +10%. We can also express these risk premia
in integral form as follows: RPs ≡

∫
As

[f (RM )− f∗ (RM )] (RM −Rf ) dRM where f (RM ) and f∗ (RM ) are
the market return distributions under the physical and risk-neutral measures, respectively. This formulation
makes it clear that our risk premium conforms to the standard definition of the market risk premium as the
integrated difference between excess market returns under the physical and risk-neutral measures. When As
represents the entire market return space, we recover the standard market risk premium. We simply consider
integrating over different regions of the market return space, As, to compute different components of the risk
premium.

2We refer to RPs in Equation 1 as the “level” of the risk premium associated with region As, and RPs/RP
as the “contribution” of the risk premium associated with region As to the total risk premium.
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We estimate the data-implied conditional decomposition and compare it to model-implied

conditional decompositions at each date in our sample for a number of prominent represen-

tative agent models. Some of our main results are highlighted in Figure 1, which plots the

total market risk premium and contributions from each of our three main regions of interest

as a fraction of the total risk premium implied by the data, the long-run risk model in Bansal

and Yaron (2004) (“BY”), the long-run risk model in Drechsler and Yaron (2011) (“DY”),

and the disaster risk model in Wachter (2013) (“Wachter”).

The disparate decomposition behavior across panels in Figure 1 makes it clear why having

an understanding of conditional risk premia from each of these regions is important when

evaluating various models. The total market risk premium levels implied by the data and

models in Figure 1 are similar on average, but the conditional behavior varies drastically. The

data-implied decomposition (Panel (a)) implies that the downside and central risk premia

contribute approximately equal amounts to the total risk premium on average across time,

with the upside risk premium contributing a much lower amount. BY (Panel (b)) implies

that the central risk premium is the main contributor to the total risk premium, which is

inconsistent with the data. DY (Panel (c)) and Wachter (Panel (d)) both imply the downside

and central risk premia are major contributors to the total risk premium with the downside

contributing less on average in both cases, which is inconsistent with the data.

The DY and Wachter model results highlight the importance of characterizing conditional

risk premium behavior when comparing different models. Unconditionally, the average risk

premium contributions implied by the DY and Wachter models are similar. However, con-

ditionally, it is clear the time series behavior of the Wachter model is more similar to that

implied by the data. In general, we find discrepancies between the market risk premium

decompositions implied by the data and all models we investigate. We also perform a de-

composition of the conditional variance risk premium and document similar discrepancies.

We now provide some additional details related to our data- and model-implied decompo-

sitions. We begin with the data-implied decomposition. Given a no-arbitrage representative
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Figure 1
Main Results Comparing Risk Premium Decompositions

These graphs summarize our main market risk premium decomposition results (30-day hori-
zon, annualized) from our data-implied decomposition in Panel (a), the Bansal and Yaron
(2004) long-run risks model in Panel (b), the Drechsler and Yaron (2011) long-run risks
model in Panel (c), and the Wachter (2013) disaster risk model in Panel (d). Panel (a)
uses the data-implied decomposition with estimated preference parameters reported in Ta-
ble 1, but results are similar when using restricted preference parameters from Subsection
2.3. RP(1) [A] represents the total risk premium and is measured on the right vertical axes.
The dark/medium/light shaded regions represent the downside/central/upside risk premium
contributions to the total risk premium (as a fraction of the total risk premium) at each
date and are measured on the left vertical axes. These decompositions are computed using
Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞). All time series are smoothed by averaging over
two months of lagged daily data to reduce the appearance of noise.
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agent economy, we derive analytic expressions for each component of the risk premium on ar-

bitrary moments of the excess market return.3 We show how the required physical moments

(i.e., the physical return distribution) can be expressed in terms of risk-neutral moments

constructed from option prices and investor preference parameters associated with a generic

utility function. We do not require any assumptions about the specific functional form of

investor preferences or the market return distribution. Although the decomposition applies

to risk premia on arbitrary moments of the excess market return, we put more emphasis on

the first moment (i.e., the market risk premium) since it has received the most attention

in the literature and is typically the primary object of study in representative agent asset

pricing models. We also provide results related to the second moment (i.e., the variance

risk premium) since some of the models we investigate were constructed to explain the risk

premium associated with this moment. Our data-implied decomposition can be computed

at any date given a cross-section of option prices and an estimate of investor preference

parameters linked to a generic utility function. We provide two versions of our data-implied

decomposition. In the “unrestricted” version, we use data to estimate investor preference

parameters then use these estimated preference parameters to construct the decomposition.

In the “restricted” version, we provide economic restrictions on preference parameters that

allow us to compute the decomposition without the need to estimate preference parameters.

One feature of our data-implied decomposition that is not apparent in Figure 1 is that we

can construct the decomposition over different forecasting horizons, which exploits the fact

that options have different maturities. For example, the decomposition can be constructed

using option prices available at date t with maturity date t + T1, and again using options

with maturities at a second date, t + T2 with T2 > T1. The first decomposition applies to

3In the parlance of Equation 1, we derive expressions for risk premium decompositions of the form
RP ≡ RPd + RPc + RPu where RPs ≡ E [(RM − Rf ) IAs ]−E∗ [(RM − Rf ) IAs ] (i.e., the market risk

premium), and RP(n) ≡ RP(n)
d + RP(n)

c + RP(n)
u where RP(n)

s ≡ Et [(RM,t→T − Et [RM,t→T ])
n IAs ] −

E∗t [(RM,t→T − E∗t [RM,t→T ])
n IAs

] for n > 1 (i.e., higher-order risk premia such as the variance risk pre-
mium, skewness risk premium, etc.).
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expected returns over the period from t to t+ T1, whereas the second decomposition applies

to expected returns over the period from t to t+T2. We perform decompositions for horizons

ranging from 30 to 360 days. In addition to the conditional behavior of the each component

of the data-implied market risk premium in Panel (a) of Figure 1, we also find that the level

of the total market risk premium (when annualized), RP, and each of its components, RPs,

decrease as the horizon increases. As horizon increases, the contribution of RPc to the total

risk premium decreases, whereas the contributions of RPd and RPu increase.

Our framework also allows us to estimate preference parameters (e.g., relative risk aver-

sion, skewness tolerance, and kurtosis tolerance) implied by the data at different horizons

and in different regions of the return space (i.e., Ad, Ac, and Au). Our estimate of relative

risk aversion is 1.85 when averaged across all regions and horizons. At each horizon, relative

risk aversion is a decreasing function in the return space moving from Ad to Au. This is

consistent with the intuition that investors are more risk averse to bad states of the world

and less risk averse to good states of the world. Relative risk aversion is also decreasing in

horizon, indicating that investors are more risk averse to short-term risks (e.g., over the next

month) than long-term risks (e.g., over the next year year).

Next, we turn to additional details related to our model-implied decomposition. The

methodology follows two steps. In the first step, we extract conditional model-implied state

variables at each date by requiring each model to match salient asset pricing data (e.g.,

the log price-dividend ratio and risk-neutral market excess return variance). In the second

step, we derive expressions for all model-implied moments needed for our decomposition in

terms of the state variables. Given the state variables extracted in the first step, we can

compute conditional risk premium decompositions implied by each model at each date and

compare them to the data-implied decompositions. As highlighted in Figure 1, we find that

model-implied decompositions do not conform well to the data-implied decompositions.

We evaluate prominent examples from three classes of representative agent models that

have emerged in the literature to explain the market risk premium: 1. Long-run risk models
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(Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012; Drechsler and Yaron, 2011), 2.

Habit formation models (Bekaert, Engstrom, and Ermolov, 2020, both with and without

preference shocks), and 3. Disaster risk models (Gabaix, 2012; Wachter, 2013). We focus

on models that feature time-varying risk premia since we would like to compare conditional

implications from these models with those from the data. We do not evaluate representative

agent models such as those in Barro (2006), Barro (2009), or Backus, Chernov, and Martin

(2011) because these models do not feature time-varying state variables and, hence, imply

time-invariant risk premia.

Our paper is related to but distinct from Beason and Schreindorfer (2020). In that paper,

the authors use a different methodology to estimate a data-implied unconditional market

risk premium decomposition as a function of the market return space. They compare this

with unconditional market risk premium decompositions implied by a number of represen-

tative agent models and, similar to us, find large discrepancies between the decompositions.

Our work is complimentary to theirs in that we develop a new methodology to estimate a

conditional market risk premium decomposition. Our methodology also allows us to gener-

ate conditional decompositions for risk premia on higher order moments of excess market

returns such as the variance risk premium. One major difference between our results and

those in Beason and Schreindorfer (2020) is that their results imply the downside risk pre-

mium constitutes approximately 80% of the market risk premium (unconditionally), whereas

ours imply that it constitutes only about 46% of the risk premium. This difference could be

attributed to the different methodologies employed in each paper, which we discuss further

in Internet Appendix IA.8.

Our paper is also related to Bollerslev and Todorov (2011), who estimate conditional

downside/upside market and variance risk premia similar to our measures. Their method-

ology relies on extreme value theory to estimate physical moments using high-frequency

market return data. Using extreme value theory limits them to estimating risk premia asso-

ciated with large positive or negative jumps in the market return space. For instance, their
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methodology cannot be used to estimate the conditional total risk premium. Contrarily, our

methodology does not rely on extreme value theory to estimate physical moments, and can

be used to estimate risk premia associated with any region of the market return distribution

including the total risk premium. They also rely on approximations that limit their analysis

to short horizons, whereas our theory can be used to estimate risk premia at any horizon

(given a sufficient cross-section of options).

The remainder of our paper is organized as follows. Section 1 provides the theoretical

foundations for our data-implied risk premium decomposition and Section 2 estimates the

decomposition empirically. Section 3 develops the methodology that allows us to estimate

the decomposition for various representative agent models and presents related empirical

results. Section 4 concludes.

1 A Decomposition of Conditional Risk Premia

We derive our main theoretical conditional risk premium decomposition results in this sec-

tion by expanding on the methodology developed in Chabi-Yo and Loudis (2020). Our theory

involves a fair amount of notation, which we define as it is introduced. However, for ease of

interpretation a summary can also be found in Internet Appendix IA.1. We begin by deriving

an expression for the stochastic discount factor (SDF) in terms of a Taylor expansion of a rep-

resentative agent’s generic utility function. We then show how this can be used to construct

the risk premia on arbitrary moments of excess market returns in our decomposition.

1.1 An Expression for the SDF Under Generic Utility

Consider a representative agent with initial wealth Wt and a well-behaved utility function

U (·) over terminal wealth WT = Wtω
′
tRt→T , where Rt→T is a vector of risky asset gross

returns, Ri ,t→T , with i = 1 , ..., n and ωt is a vector of portfolio weights. We assume the utility

function U (·) is concave and admits finite higher-order derivatives. The representative agent
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maximizes expected utility over terminal wealth, Et [U (WT )], with first-order conditions

given by

Et
[
U
′
(WT ) (Ri,t→T −Rf,t→T )

]
= 0. (2)

We assume a risk-free asset exists with gross return denoted by Rf,t→T . Note that these

first-order conditions apply to any asset i, including the market return, RM,t→T . Assuming

the market value is a proxy for the agent’s wealth4 and no-arbitrage conditions hold, the

first-order condition in Equation 2 implies the inverse SDF has the form

Et [Mt→T ]

Mt→T
=

1
U ′ (WtxT )

E∗t
[

1
U ′ (WtxT )

] , (3)

where we define xT ≡ RM ,t→T for simplicity of notation. Our main goal is to decompose risk

premia into contributions associated with the downside region of the market return space

(left tail), the center region, and upside region (right tail). To achieve this, we start by

partitioning the gross market return space into three subsets defined by Ad, Ac, and Au such

that Ad ∩Ac ∩Au = ∅ and Ad ∪Ac ∪Au = R+. Note that R+ is the set of non-negative real

numbers and represents the feasible set for the gross market return space (assuming limited

liability). Colloquially, Ad represents the set of down market returns; Ac represents the set

of moderate or “central” market returns; and Ac represents the set of up market returns. To

be more concrete about the definitions of Ad, Ac, and Au, consider two constants x and x

satisfying the restriction x < 1 < x . We can then define the following sets:

Ad ≡ {x : 0 ≤ x < x} , (4)

Ac ≡ {x : x ≤ x < x} , (5)

Au ≡ {x : x ≥ x} , and (6)

A ≡ Ad ∪ Ac ∪ Au. (7)

4This is a common assumption in the related literature (see, e.g., Chabi-Yo and Loudis, 2020 and Martin,
2017)
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We define A above as the entire gross return space for notation purposes. Next, we decompose

the inverse SDF in Equation 3 into three components:

Et [Mt→T ]

Mt→T
=

1
U ′ (WtxT )

E∗t
[

1
U ′ (WtxT )

]IAd +

1
U ′ (WtxT )

E∗t
[

1
U ′ (WtxT )

]IAc +

1
U ′ (WtxT )

E∗t
[

1
U ′ (WtxT )

]IAu , (8)

where I is an indicator function such that IAs = 1 if xT ∈ As and IAs = 0 otherwise, for

s ∈ {d, c, u}. Consider three different points in the return space, xd, xc, and xu, such that

xd ∈ Ad, xc ∈ Ac, and xu ∈ Au. We can multiply each component in the right-hand side of

Equation 8 by U
′
(Wtxs) /U

′
(Wtxs) (using each component’s respective xs values) to obtain

the equivalent decomposition

Et [Mt→T ]

Mt→T
=

∑
s∈{d,c,u}

U
′
(Wtxs)

U ′ (WtxT )

E∗t
[
U ′ (Wtxs)

U ′ (WtxT )

]IAs . (9)

Next, denote

gxs (x) =
fxs (x)

E∗t [fxs (x)]
, where fxs (x) =

U
′
(Wtxs)

U ′ (Wtx)
, (10)

We can use a Taylor series expansion to express fxs (x) as

fxs (x) = 1 +
∞∑
k=1

θk (xs) (x− xs)k , (11)

where

θk (xs) =
1

k!

(
∂kfxs (x)

∂kx

)∣∣∣∣
x=xs

. (12)

Equation 11 allows us to express the inverse SDF in Equation 9 as a piecewise function

of fxs (x) in the three different regions of interest. Furthermore, we show that θk (xs) (for

k ∈ {1, 2, 3}) can be expressed as

θ1 (xs) =
1

xsτ (xs)
, θ2 (xs) =

(1− ρ (xs))

x2
sτ

2 (xs)
, and θ3 (xs) =

(1− 2ρ (xs) + κ (xs))

x3
sτ

3 (xs)
(13)
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in the Appendix A (“Proof for Equation 13”), where we use the following standard preference

parameter definitions:

τ (xs) ≡ − U
′
(Wtxs)

WtxsU
′′ (Wtxs)

, (14)

ρ (xs) ≡
1

2!

U
′′′

(Wtxs)U
′
(Wtxs)

(U ′′ (Wtxs))
2 , and (15)

κ (xs) ≡
1

3!

U
′′′′

(Wtxs)
(
U
′
(Wtxs)

)2

(U ′′ (Wtxs))
3 . (16)

As with the θk (xs), the preference parameters are functions of the return space with

xs ∈ {xd, xc, xu}. τ (xs) is a measure of risk tolerance (1/τ (xs) is a measure of relative

risk aversion), ρ (xs) is a measure of skewness tolerance, and κ (xs) is a measure of kurtosis

tolerance. Note that all parameters in Equations 14-16 are positive if the agent’s utility func-

tion conforms to standard preference theory.5 To the extent these preference parameters are

functions of Wt, they are time-varying. For tractability, we assume they are constant over

time in our empirical estimation. Note that fixing τ (xs) to be constant does not imply our

representative investor has CRRA utility.6

Next, we provide an alternative expansion of the inverse of the SDF centered around

Rf,t→T rather than three different values of xs.
7 The binomial theorem implies the following

5That is, the preference parameters are positive if Sign
[
U (k) (·)

]
= (−1)

k+1
where U (k) (·) represents the

k-th derivative of the utility function (see Eeckhoudt and Schlesinger, 2006; Deck and Schlesinger, 2014; and
Noussair, Trautmann, and VanDeKuilen, 2014). See Chabi-Yo, Leisen, and Renault (2014) for additional
details related to the interpretation of these preference parameters.

6CRRA utility implies −U ′ (WtRM,t→T ) /[WtRM,t→TU
′′

(WtRM,t→T )] is constant for all potential real-
izations of future wealth, WT = WtRM,t→T . CRRA utility also imposes restrictions on higher order preference
parameters such as ρ and κ given a particular choice for relative risk aversion to achieve constant relative risk
aversion regardless of future wealth. For instance, if the representative investor were to have CRRA utility
with risk aversion γ = 1/τ , this implies the skewness tolerance must be given by ρ = (1 + γ) / (2γ), which
we do not impose. Furthermore, we assume −U ′ (Wtxs) /[WtxsU

′′
(Wtxs)] is constant in each region given

current wealth. By not imposing CRRA parameter restrictions on ρ (xs) and κ (xs) given τ (xs), we do not
have a relative risk aversion that is constant for all potential realizations of future wealth, WT = WtRM,t→T
as is the case for CRRA utility. We present results in which we assume the representative investor has
CRRA utility (along with other common utility specifications) in Internet Appendix IA.3 and show that the
empirical decompositions are drastically different than those in our main results.

7This will allow us to construct risk premium expressions in terms of risk-neutral moments of excess
market returns only (as opposed to moments of returns less each of the three xs values) while also allowing
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exact identity:

(x− xs)k ≡
k∑
j=0

k!

j! (k − j)!
(Rf,t→T − xs)j (x−Rf,t→T )k−j . (17)

We replace (x− xs)k in Equation 11 with the equivalent expression in Equation 17 to obtain

fxs (x) = 1 +
∞∑
k=1

θk (xs)
k∑
j=0

k!

j! (k − j)!
(Rf,t→T − xs)j (x−Rf,t→T )k−j .

We can then express the inverse SDF as

Et [Mt→T ]

Mt→T
=

∑
s∈{d,c,u}

gxs (xT ) IAs , (18)

where

gxs (xT ) =

1 +
∞∑
k=1

θk (xs)
k∑
j=0

k!
j!(k−j)! (−1)j (xs −Rf,t→T )j (x−Rf,t→T )k−j

1 +
∞∑
k=1

θk (xs)
k∑
j=0

k!
j!(k−j)! (−1)j (xs −Rf,t→T )j E∗t (xT −Rf,t→T )k−j

. (19)

The inverse SDF in Equation 18 is a composite of Taylor expansions from the three regions

of interest in the market return space.

Working with the inverse SDF expression in Equation 18 can be motivated in two ways.

First, we would like to decompose conditional risk premia into components associated with

different regions of interest in the return space. As we will see below, the decompositions

in each region depend on the SDF in that region. Second, Taylor series expansions around

a given point are only accurate for observations that lie in the neighborhood of that point.

This is a potentially important consideration when modeling the SDF as a function of market

returns, where having different Taylor expansions for different regions of the return space can

improve the accuracy of the approximated SDF. Equivalently, this is an important consid-

eration with regards to investor preferences if investors have different attitudes towards the

risks associated with these different regions. This setup allows us to estimate different pref-

us to use region-specific preference parameters as defined in Equations 14-16.
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erence parameters associated with different regions of the market return space and estimate

a region-specific SDF.

1.2 Conditional Physical Moments of the Excess Market Return

We define conditional truncated risk-neutral and physical moments of the excess market

return as

M∗(n)
t→T [As] ≡ E∗t [(RM,t→T −Rf,t→T )n IAs ] and (20)

M(n)
t→T [As] ≡ Et [(RM,t→T −Rf,t→T )n IAs ] (21)

for As ∈ {A,Ad, Ac, Au}. When As = A, these are simply regular (untruncated) mo-

ments (i.e., IA ≡ 1 since A represents the set of all feasible gross market returns). When

As ∈ {Ad, Ac, Au}, these are truncated moments. In the case of untruncated moments, we

occasionally denote M(n)
t→T [A] = M(n)

t→T and M∗(n)
t→T [A] = M∗(n)

t→T for brevity.

We now show how the inverse SDF expression in Equation 18 can be used to construct

physical moments of excess market returns from risk-neutral moments. For any n > 0 , the

conditional physical moments of excess returns on any asset i can be expressed using the

identity

M(n)
i,t→T [As] ≡ Et

[
Mt→T

Et [Mt→T ]

Et [Mt→T ]

Mt→T
(Ri,t→T −Rf,t→T )n IAs

]
= E∗t

[
Et [Mt→T ]

Mt→T
(Ri,t→T −Rf,t→T )n IAs

]
. (22)

M(n)
i,t→T [As] describes untruncated moments when As = A and truncated moments when As ∈

{Ad, Ac, Au}. We can view Mt→T/Et [Mt→T ] as the Radon-Nikodym derivative for a change

of measure between the physical and risk-neutral distributions. Assuming no-arbitrage, we

use the Radon-Nikodym theorem to move from the first to second equality in Equation 22.

This equation can be written equivalently as

M(n)
i,t→T [As]−M∗(n)

i,t→T [As] = COV∗t
[
Et [Mt→T ]

Mt→T
, (Ri,t→T −Rf,t→T )n IAs

]
. (23)
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We can think of M(n)
i,t→T [As] − M∗(n)

i,t→T [As] as the moment risk premium on an asset that

pays returns equal to (Ri,t→T −Rf,t→T )n IAs .8 Equation 23 is very intuitive. It says that

the risk premium is equal to the risk-neutral covariance between the inverse SDF and an

asset’s return. This is a risk-neutral counterpart to the fundamental asset pricing equation’s

implication that the risk premium on any asset’s return is the negative physical covariance

between the SDF and the asset’s return.

Next, we specialize i in Equation Equation 22 to be the market return, and replace

Et [Mt→T ] /Mt→T with the expression in Equation 18. This allows us to derive an analytic ex-

pression for physical moments on the excess market returns in terms of risk-neutral moments

in the following proposition.

Proposition 1. Assuming no arbitrage, conditional physical moments on excess market re-

turns obey the exact decomposition

M(n)
t→T [As] = M∗(n)

t→T [As] +

∞∑
k=1

θk (xs)COV∗t
[
(RM,t→T − xs)k , (RM,t→T −Rf,t→T )n IAs

]
1 +

∞∑
k=1

θk (xs)E∗t
[
(RM,t→T − xs)k

] (24)

for As ∈ {A,Ad, Ac, Au} defined in Equations 4-7.

Proof. See Appendix A. �

While Proposition 1 allows us to express conditional truncated moments in terms of

truncated risk neutral covariances, Corollary 1 shows how the conditional physical truncated

moments can be expressed in terms of conditional truncated risk neutral moments.

Corollary 1. Assuming no arbitrage, conditional physical moments on excess market returns

8When n = 1 this risk premium just becomes the standard expression for the risk premium on the return
of any asset, i, when As = A (or the risk premium on truncated moments of the excess return when As 6= A).
If we further specialize i to be the market, then this becomes the market risk premium (or truncated versions
of the market risk premium when As 6= A).
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obey the exact decomposition:

M(n)
t→T [As] = M∗(n)

t→T [As] +

∞∑
k=1

k∑
j=0

λt (xs, k, j)
(
M∗(n+k−j)

t→T [As]−M∗(k−j)t→T [A]M∗(n)
t→T [As]

)
1 +

∞∑
k=1

k∑
j=0

λt (xs, k, j)M∗(k−j)t→T [A]

, (25)

for As ∈ {A,Ad, Ac, Au} where

λt (xs, k, j) ≡
k!θk (xs) (−1)j (xs −Rf,t→T )j

j! (k − j)!
. (26)

The parameters θk (xs) are defined in Equation 12 and the sets A, Ad, Au, and Ac are defined

in Equations 4-7.

Proof. See Appendix A. �

Corollary 1 relates physical truncated moments of excess market returns to their risk-

neutral counterparts and investor preferences without making any assumptions about the

precise form of investor utility. If the risk-neutral quantities and preference parameters are

known, Corollary 1 can be used to compute physical truncated moments of excess market

returns without relying on any assumptions about the market return distribution, investor

utility, or economic fundamentals. Truncated conditional moments can be computed for each

region of interest by setting s = d, c, or u. We can also derive the following corollary as a

special case when xs = Rf,t→T .

Corollary 2. Assuming no arbitrage and setting xs = Rf,t→T , conditional physical moments

on excess market returns obey the exact decomposition:

M(n)
t→T [As] = M∗(n)

t→T [As] +

∞∑
k=1

θk (Rf,t→T )
(
M∗(n+k)

t→T [As]−M∗(k)
t→T [A]M∗(n)

t→T [As]
)

1 +
∞∑
k=1

k∑
j=0

θk (Rf,t→T )M∗(k)
t→T [A]

, (27)

for As ∈ {A,Ad, Ac, Au}. The parameters θk (Rf,t→T ) are defined in Equation 12 and the sets

A, Ad, Au, and Ac are defined in Equations 4-7.
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Proof. This follows directly from Corollary 1 by setting xs = Rf,t→T . �

Corollary 2 will be useful when we restrict preference parameters to be the same across

all regions in our restricted risk premium decomposition. Next, we show how untruncated

conditional expected excess market return moments can be expressed in terms of truncated

conditional expected excess return moments.

Proposition 2. Assuming no arbitrage, conditional total excess market return moments obey

the exact relationship

M(n)
t→T [A] =

∑
s∈{d,c,u}

M(n)
t→T [As] , (28)

where M(n)
t→T [As] is defined in Equation 21 and the sets A, Ad, Au, and Ac are defined in

Equations 4-7.

The proof of Proposition 2 follows by taking the expected value of the exact decomposition

(RM,t→T −Rf,t→T )n ≡
∑

s∈{d,c,u}
(RM,t→T −Rf,t→T )n IAs .

1.3 Conditional Risk Premium Decomposition

We now have the necessary machinery to construct our conditional risk premium decompo-

sition for moments of excess market returns.

Definition 1. We define the conditional risk premium on the n-th order truncated excess

market return moment as

RP(n)
t→T [As] ≡

Et [(RM,t→T −Rf,t→T ) IAs ]− E∗t [(RM,t→T −Rf,t→T ) IAs ] for n = 1

Et [(RM,t→T − Et [RM,t→T ])n IAs ]− E∗t [(RM,t→T − E∗t [RM,t→T ])n IAs ] for n > 1.

(29)

The expressions in Definition 1 hold for As ∈ {A,Ad, Ac, Au}. When As = A, these

represent untruncated risk premia; when As ∈ {Ad, Ac, Au}, these represent truncated risk
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premia. When n = 1 and As = A, the standard market risk premium expression obtains.

When n > 1 , this relationship describes standard definitions for the variance risk premium

(n = 2), the skewness risk premium (n = 3), the kurtosis risk premium (n = 4), and so

on.9,10 These truncated risk premia represent compensation for exposure to risk associated

with contingent claims in each of these regions of the market return space. We refer to the

risk premia associated with A, Ad, Ac, and Au in Equation 30 as the total risk premium,

the downside risk premium, the central risk premium, and the upside risk premium, respec-

tively.11 Finally, we express these risk premia in terms of physical and risk-neutral moments

in the following proposition.

Proposition 3. The total risk premium RP(n)
t→T [A] can be decomposed into terms related to

truncated risk premia as

RP(n)
t→T [A] =

∑
s∈{d,c,u}

RP(n)
t→T [As] (30)

for any n. When n = 1, RP(1)
t→T [As] can be computed directly using physical moments from

Corollary 1 as

RP(1)
t→T [As] = M(1)

t→T [As]−M∗(1)
t→T [As] (31)

for As ∈ {A,Ad, Ac, Au}. When n > 1, the risk premium on moments of the excess market

return can be written as

RP(n)
t→T [As] =

n∑
k=0

n! (−1)n−k

(n− k)!k!
M(k)

t→T [As]
(
M(1)

t→T [A]
)n−k

−M∗(n)
t→T [As] (32)

9For example, when n = 2 we can show that RP(n)
t→T [A] = VAR (RM,t→T ) − VAR∗ (RM,t→T ) (i.e., the

physical minus risk-neutral market return variance), consistent with standard definitions of the variance risk
premium.

10With a slight abuse of nomenclature, we refer to the third and fourth excess market returns as“skewness”
and “kurtosis”, respectively.

11The downside, central, and upside risk premia are always with respect to a particular choice of n in
Equation 30. For instance, the downside risk premium component of the market risk premium (n = 1) is
not the same as the downside risk premium component of the variance risk premium (n = 2). We do not
explicitly designate this in the nomenclature of the different components. However, it should be clear in
context when these components are related to the market or variance risk premium.
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for As ∈ {A,Ad, Ac, Au}. The sets A, Ad, Au, and Ac are defined in Equations 4-7.

Proof. See Appendix A. �

Note that risk premia and moments expressed as functions of A represent untruncated

risk premia and moments, whereas those expressed as functions of As represent truncated

risk premia and moments. This proposition shows how the risk premia on arbitrary moments

of the excess market return can be can be expressed in terms of physical and risk-neutral

truncated moments. Corollaries 1 and 2 allow us to express these risk premia entirely in terms

of risk-neutral moments on excess market returns, which can be estimated using option price

data.

2 Data-Implied Risk Premium Decompositions

In this section, we estimate the market (variance) risk premium decomposition described in

Proposition 3, which obtains when n = 1 (n = 2). We estimate this decomposition at five

horizons: 30, 60, 90, 180, and 360 calendar days.

The decomposition depends on having an estimate of the preference parameters τ (xs),

ρ (xs), and κ (xs). We approach this task in two ways in the main text. First, we use data

to estimate preference parameters described in Equations 14, 15, and 16 in sample to gen-

erate an “unrestricted” market risk premium decomposition. To do this, we exploit the link

between physical and risk-neutral market excess return moments provided by Corollary 1.

In particular, we use market return data to proxy for the physical moments and S&P 500

options data to construct proxies for the risk-neutral moments to estimate the preference

parameters. Given estimates of the the preference parameters, we can use risk-neutral mo-

ments to compute implied physical moments according to Corollary 1. We then construct

conditional truncated risk premia according to Proposition 3. Second, we simply choose pref-

erence parameters ex ante based on preference parameter restrictions used in the restricted
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lower bound of Chabi-Yo and Loudis (2020) to generate a “restricted” version of the market

risk premium decomposition. As a third alternative, we also derive closed-form expressions

for the decomposition and estimate it assuming the representative agent has standard prefer-

ences (e.g., log, CRRA, CARA, and HARA). We relegate this analysis to Internet Appendix

IA.3 for brevity.12

2.1 Data

In order to use Corollary 1 to estimate preference parameters τ (xs), ρ (xs), and κ (xs), we

need estimates of risk-neutral moments of the excess market return. We use S&P 500 index

option data to compute all risk-neutral moments (truncated and untruncated). Given a set

of option prices on a cross-section of strikes, we use the the Carr and Madan (2001) spanning

formula to construct the risk-neutral moments described in Equation 20. In theory, we need

to integrate functions of options prices over a continuous set of strikes to compute these

measures. In practice, we accomplish this by curve fitting implied volatility curves at each

maturity and performing numerical integration using the corresponding implied option prices

12We find that the implied risk premium levels under these utility specifications can be quite different
than those from our main data-implied decompositions. However, contributions to the total risk premium
are actually more similar to those from the data-implied decomposition compared to those from the repre-
sentative agent model-implied decompositions we study in Section 3. The additional structure imposed by
the representative agent models can lead to model misspecification that has counterfactual implications for
the relative contributions to the total risk premium to which the utility-based decompositions are immune.
Note that assuming a specific functional form for utility places restrictions on the SDF, but does not place
restrictions on the market return distribution or state variables that describe the economy as is the case with
the representative agent models.
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using the trapezoidal rule.13,14 To mitigate estimation noise but balance this with timeliness

of information in the risk-neutral moments, we use a lagged five-trading day moving average

of the raw moments when estimating preference parameters and to construct our risk pre-

mium decomposition. More details on risk-neutral moment construction can be found in the

Internet Appendix IA.4.

Data is from Option Metrics, is daily, and spans January, 1996 to June, 2019. We apply

standard filters on the options data before constructing risk-neutral moments.15 When con-

structing risk-neutral excess return moments, we use risk-free rates implied by the Option

Metrics Zero Curve data and obtain the S&P 500 Index price from Option Metrics. We con-

struct risk-neutral moments at fixed horizons (30, 60, 90, 180, and 360 days) by computing

risk-neutral moments using options at observed horizons and extrapolating (or interpolating)

to the desired horizon. We cannot construct reliable measures of the necessary risk-neutral

moments at longer horizons due to limitations on options availability.

S&P 500 return data are from CRSP. We use ex-dividend returns since the risk-neutral

13Fitting implied volatility curves for the purposes of computing risk-neutral moments implied by options
prices has become standard in the literature (see Jackwerth and Cuesdeanu, 2018). For other examples of
this approach in practice, see Chang, Christoffersen, and Jacobs (2013), Carr and Wu (2009), Jiang and
Tian (2005), and Ait-Sahalia and Lo (1998). We use piecewise cubic Hermite interpolating polynomials over
observed strikes and assume that implied volatilities above (below) the highest (lowest) observed strikes
are constant and take on the values corresponding to the highest (lowest) observed strikes. We perform
the numerical integration over a strike price-to-index price range of 0.01 to 2 with 1,000 grid points over
this range. We also construct risk-neutral moments by integrating over observed prices directly in Internet
Appendix IA.2.3 and find that this does not alter our results qualitatively, nor does it alter them much
quantitatively.

14One might be concerned that our measures and conclusions are distorted due to potential options
mispricing that induces excessive skewness in the implied volatility smirk (for instance, due to demand-
driven price pressure as described in Garleanu, Pedersen, and Poteshman, 2009). We explore a method to
correct the effect of such mispricing in Internet Appendix IA.2.4 and find that this does not materially alter
our main results or conclusions.

15In particular, we: 1. Delete all options that are not monthlies (i.e., weeklies, quarterlies, and EOM
options); 2. Delete all duplicate records based on same date, expiration date, strike, and option type (we
keep the duplicate with either the most recent trade date, or, if the duplicate has the same most recent trade
date, the record with the highest volume); 3. Delete all options with a closing bid of $0; 4. Delete options
with maturities less than seven days; 5. Delete call options with recorded prices higher than the index price
and put options with prices less than the strike price times the risk-free bond price; 6. Delete all options
with bid prices higher than ask prices; and 7. Remove options that violate convexity restrictions.
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moments are constructed from European options. Therefore, the risk-neutral moment ex-

pressions derived in the Internet Appendix describe risk-neutral moments on ex-dividend

returns. Returns are daily and range from January, 1926 through December, 2019.16 Excess

returns at each horizon are computed by compounding daily returns to the horizon of interest

and subtracting the compounded risk-free rate obtained from Kenneth French’s website.

2.2 Unrestricted Risk Premium Decomposition

We need to estimate the preference parameters τ (xs), ρ (xs), and κ (xs) at three points in

the market return space corresponding to s ∈ {d, c, u}. These preference parameters are

required to compute the physical moments (via Corollary 1) needed to implement the risk

premium decomposition in Proposition 3.

Given realized excess market returns as proxies for physical moments and risk-neutral

moments estimated from options data, we estimate the preference parameters τ (xs), ρ (xs),

and κ (xs) using non-linear weighted least squares to minimize the squared error implied by

Corollary 1 when n = 1, 2, and 3. We use daily data and estimate parameters separately for

the horizons, T , of interest: 30, 60, 90, 180, and 360 calendar days.17 We set x = 0.9 and

x = 1.1 with xd = 0.85, xc = 1, and xd = 1.15 in all reported results. That is, we are interested

in studying risk premia associated with down market returns less than -10%, central market

returns between -10% and +10%, and up market returns greater than +10%. Note that

we must estimate a total of nine preference parameters for each horizon of interest: three

parameters (τ (xs), ρ (xs), and κ (xs)) for each of the three regions of interest (s ∈ {d, c, u})

in the return space. See Internet Appendix IA.5 for more details related to this estimation.

Table 1 provides preference parameter estimates in each region and at each horizon of

16We use returns before 1996 in forecasting regressions to construct out-of-sample R-squared values ac-
cording to Goyal and Welch (2008).

17In our estimation, these preference parameters will be a function of horizon, T , but we suppress this
dependence in their notation for simplicity.
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interest.18 Values in brackets represent 95% confidence intervals based on block-bootstrapped

estimates and indicate all parameter estimates are statistically significant at the 95% level.

We also provide estimates of the relative risk aversion, which is given by 1/τ (xs) according to

Equation 14. Relative risk aversion is generally decreasing with horizon and in region order

(from the downside region to the upside region). Averaging across all horizons, the average

relative risk aversion is 2.87 in the down region, 1.74 in the central region, and 0.94 in the up

region. These results imply investors are more averse to downside risk than to upside risk.

Averaging across regions, relative risk aversion is nearly monotonically decreasing in horizon.

It starts at a value of 2.21 at the 30-day horizon and rises to a value of 2.39 at the 60-day

horizon before monotonically decreasing to 0.86 at the 1-year horizon. These results imply

investors are more averse to short-term risks than to long-term risks.

Similar patterns hold when considering risk tolerance, τ (xs), skewness tolerance, ρ (xs),

and kurtosis tolerance, κ (xs). Since risk tolerance is the inverse of relative risk aversion, its

patterns are reversed relative to those discussed above but the interpretation is the same.

ρ (xs) is increasing in region s. Investors are more tolerant to positive skewness than nega-

tive skewness. It converges to values of around two with increasing horizon, which implies

investors are more tolerant to skewness at longer horizons. κ (xs) is also increasing in region,

implying investors are more tolerant to fat tails in the the upper part of the return distribu-

tion and less tolerant to those in the lower part. κ (xs) converges to approximately four with

increasing horizon, implying that, like with ρ (xs), investors have approximately the same

tolerance for higher moment risk at longer horizons whether it comes from the down or up

region.19,20

18We provide corresponding preference parameter plots in the Internet Appendix IA.2.1 (Figures IA.1
and IA.2) for visualization.

19Note that our estimated preference parameters conform to sign restrictions on investor utility from
standard economic theory (e.g., Sign

[
U (k) (·)

]
= (−1)

k+1
; see Eeckhoudt and Schlesinger, 2006; Deck and

Schlesinger, 2014; and Noussair, Trautmann, and VanDeKuilen, 2014).
20Our estimated preference parameters also pin down the conditional SDF in different regions of the

market return space according to Equation 18. We provide results related to the implied conditional SDF in
Internet Appendix IA.2.1.
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Figure 2 provides plots of the data-implied market risk premia (i.e., when n = 1 in Equa-

tion 29) when preference parameters from Table 1 are used to construct physical moments

according to Corollary 1.21 Panels (a), (b), and (c) plot the risk premium decomposition in

levels, and Panels (d), (e), and (f) plot their contributions to the total risk premium as a

fraction of the total risk premium for horizons of 30, 90, and 360 days, respectively. It is

interesting to note that upside and downside risk premia typically increase conditionally at

the same times, but this is not always the case.

Focusing on the 30-day horizon, the downside risk premium contributes at least 20% of

the total market risk premium regardless of the calendar date. This highlights the fact that

investor concerns about crashes or disasters do not vanish during periods of low market

volatility. The downside risk premium contribution varies over time and increases drastically

during crisis periods. For instance, it increases to over 60% during major crisis periods such

as the collapse of Long Term Capital Management in 1998, the March 2000 Dot-com bubble,

the September 11 terrorist attacks in 2001, the 2002 stock market downturn, the bankruptcy

of Lehman Brothers in 2008, and the 2010 flash crash.

Table 2 provides summary statistics for the data-implied market risk premium decomposi-

tion constructed using preference parameters from Table 1. All risk premia are annualized for

comparability across different horizons. Panels A and B provide summary statistics for the

decomposition in levels and as fractions of the total market risk premium, respectively. We

begin by focusing on the “Unconditional Statistics” in Panel A, which are averaged over our

full sample. The average annualized 30-day (360-day) risk premium during our sample period

is 8.72% (4.44%), which is higher (lower) than the average annualized 30-day (360-day) S&P

21In principle, we could construct total risk premia implied by the unrestricted decomposition using a set
of preference parameters from any of the three regions of interest. In practice, we compute all three sets of
total risk premia and report results for total risk premia using the average of these three time series. The
time series are very similar, and using any one (as opposed to the average) does not change our main results
and conclusions. We apply this procedure when reporting both the total market and variance risk premium
results.
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500 ex-dividend excess returns over the same period, which is 5.99% (5.92%).22 The average

risk premium is monotonically decreasing in horizon (excluding the 30-day horizon) and its

standard deviation is decreasing in horizon.

On average, the downside risk premium is the largest risk premium across all horizons. It

is approximately decreasing in horizon, ranging from 5.71% at the 60-day horizon to 3.03%

at the 360-day horizon. The average upside risk premium is the lowest of all risk premia at

the 30-day horizon (0.97%). It is concave in horizon, rising to a value of 1.64% at the 180-day

horizon before falling to 1.16% at the 360-day horizon. The central risk premium decreases

with horizon from a value of 3.33% at the 30-day horizon to a value of 0.19% at the 360-day

horizon. These results imply investors demand a large premium for exposure to downside

risk compared to that associated with central or upside risk.

We also provide average risk premia conditional on risk-neutral variance of the excess

return at the 30-day horizon, M∗(2)
t→T [A], in the columns labeled “Conditional Means” in Table

2. The “Lo” column corresponds to average risk premia conditional on M∗(2)
t→T [A] being below

its first quartile; the “Mid” column corresponds to M∗(2)
t→T [A] falling between its first and

third quartiles; and the “Hi” column corresponds to M∗(2)
t→T [A] falling above its third quartile.

These ranges correspond to periods of low, moderate, and high market volatility. The total

average risk premium level is increasing in M∗(2)
t→T [A] across all time horizons. That is, the

total risk premium is higher during periods of high market volatility. This pattern also holds

for the upside risk premia, but these do not increase as much as the downside risk premia

when volatility increases. The average central risk premium is increasing in market volatility

at short horizons and decreasing at longer horizons.

Next, we turn to Panel B in Table 2, which provides summary statistics on the time

series of each risk premium as a fraction of the total risk premium. We refer to these as

22Since we include a constant term in the preference parameter estimation (see Equation IA.44) but not
when computing the physical moments used in our risk premium measures (Corollary 1), our average risk
premium need not match the ex post observed average excess market return.

24



risk premium contributions. The results are largely in line with those presented for the risk

premium levels in Panel A.23 The downside risk premium constitutes the largest fraction

of the total risk premium unconditionally (across time). Its contribution is increasing in

both horizon and with market volatility. The upside risk premium constitutes the smallest

fraction of the total risk premium. Its contribution also increases with horizon and market

volatility. The central risk premium constitutes a large fraction of the total risk premium at

short horizons, but this decreases and contributes almost nothing to the total risk premium

at the 360-day horizon. The central risk premium constitutes a large fraction of the total

risk premium during low-volatility periods, but this contribution decreases substantially with

increasing horizon and volatility.

Table 3 provides results from forecasting regressions of the form

RM,t→T −Rf,t→T = aT + bTRP(1)
t→T [As] + εt→T (33)

for horizons of 30, 90, and 360 days. The left portion of the table provides results including all

data and the right portion of the table removes data from the 2008 Financial Crisis (August,

2008 through January, 2009) since this period represents a significant outlier for realized

market returns in our relatively short sample period. If we have reasonable measures for the

total market risk premium, RP(1)
t→T [A], it should forecast realized excess market returns. In

particular, we expect aT = 0 and bT = 1 when As = A. We also explore the ability of the

truncated risk premia to forecast market returns, although in these cases there are no clear

implications for the values of either aT or bT .

We cannot reject the individual null hypotheses that aT = 0 or bT = 1 in the full sample

using the total risk premium. However, it is slightly disconcerting that the bT coefficients are

not statistically significant at short horizons. This is likely a symptom of sample selection

23Note that the mean contributions in Panel B of Table 2 do not necessarily equal the fraction of mean
level risk premia to the total risk premium in Panel A due to Jensen’s inequality effects. That is, Panel B
reports summary statistics for the time-varying fractions, not fractions based on the unconditional summary
statistics reported in Panel A.
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related to including the financial crisis period, which ex post was a period over which real-

ized returns were low for an extended period of time. The fact that the 360-day forecasting

regression yields a statistically significant bT estimate gives some support for this interpre-

tation. Additionally, when we remove six months of crisis period data from the regression,

coefficients become statistically significant at all horizons. We cannot reject either of the

individual null hypothesis in these cases. We also provide pseudo-out-of-sample R-squared

statistics computed according to the methodology in Goyal and Welch (2008). In particu-

lar, these statistics are computed using our raw total market risk premium as a forecasting

variable compared to the alternate model that uses historical average S&P 500 return as a

forecasting variable. We call these “pseudo-out-of-sample” R-squared values since they use

preference parameters estimated from our full sample to construct our risk premium mea-

sures. The main message is similar to that from the regression results. The R-squared values

indicate the risk premium does a relatively poor job forecasting excess returns at short hori-

zons in the Full Sample relative to the historical average excess return (i.e., the R-squared

values are negative at the 30- and 90-day horizons). However, the R-squared values are posi-

tive in the Full Sample at the 360-day horizon (0.02) and even larger in the Ex Crisis sample

(increasing up to 0.09). Results using the truncated risk premia are similar.

Figure 3 provides plots of the data-implied variance risk premium decomposition (i.e.,

when n = 2 in Equation 29) when preference parameters from Table 1 are used to construct

physical moments according to Corollary 1. Panels (a), (b), and (c) plot the risk premium

decomposition in levels, and Panels (d), (e), and (f) plot them in terms of the fraction of the

overall risk premium for horizons of 30, 90, and 360 days, respectively. The downside risk

premium is the main contributor to the total variance risk premium over all horizons and

the upside risk premium becomes a larger contributor as the horizon increases.

Table 2 provides summary statistics for the data-implied variance risk premium decompo-

sition using preference parameters from Table 1. Panels A and B provide summary statistics

for the decomposition in levels and as fractions of the total variance risk premium, respec-
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tively. We begin by focusing on the “Unconditional Statistics” in Panel A, which are averaged

over our full sample. The average annualized 30-day (360-day) variance risk premium during

our sample period is -1.03% (-1.54%). These are similar in magnitude to variance risk pre-

mium estimates reported in Dew-Becker et al. (2017) and Bekaert, Engstrom, and Ermolov

(2020), which were approximately -1.5%24 and -1.9%25 at the monthly horizon, respectively.

Conditionally, the variance risk premium increases during periods of high volatility, which

implies investors are willing to pay relatively more for insurance against volatility during

turbulent times. This finding is consistent with those in Dew-Becker et al. (2017), who use

different data (variance swap contracts) to characterize the variance risk premium.

2.3 Restricted Risk Premium Decomposition

One might be concerned that our measures in the previous sub-section are overly-reliant on

in-sample estimates of the preference parameters. To mitigate this concern, in this sub-section

we impose the same restrictions on our preference parameters as those used by Chabi-Yo and

Loudis (2020) to construct a restricted lower bound on the market risk premium. Namely,

we set τ = 1, ρ = 2, and κ = 4 across all regions and horizons.26 We use Corollary 2 to

compute the physical moments using risk-neutral moments since we only have one set of

preference parameters for the whole return space in this case.27 The restricted preference

24This is based on Figure 2 in Dew-Becker et al. (2017). Specifically, one can approximate the implied vari-
ance risk premium (annualized and in percent) by taking 100×12

(
E
[
F 0
t

]
− E

[
F 1
t

])
using their nomenclature

with 100×
√

12× E [F 0
t ] ≈ 17.4 and 100×

√
12× E [F 1

t ] ≈ 21.2 according to the figure.
25This is based on Table 8 in Bekaert, Engstrom, and Ermolov (2020). The annualized value reported

herein takes their reported monthly value (0.0016) and multiplies it by -1, 12, and 100. The -1 is to account
for the fact that they define the variance risk premium to be the risk-neutral minus physical variance, the
12 is to annualize it, and the 100 is to give it the interpretation of being in percent. Note that they define
the variance risk premium using log market returns whereas we use simple market returns, which could lead
to some discrepancies between the measures.

26See Chabi-Yo and Loudis (2020) for more details on these restrictions. We also note here that Noussair,
Trautmann, and VanDeKuilen (2014) provide evidence that τ < 1, ρ > 1, and κ > 1 in a different empirical
setting, which imply that our choices for the restricted τ , ρ, and κ yield a lower bound on the market risk
premium.

27Technically, with respect to the nomenclature in Corollary 2, we set τ (Rf,t→T ) = 1, ρ (Rf,t→T ) = 2,
and κ (Rf,t→T ) = 4.
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parameter values are similar to the values of τ (xs), ρ (xs), and κ (xs) reported in Table 1

averaged over all horizons and regions, which are 0.73, 2.88, and 2.84, respectively. Under

standard preference assumptions, the market risk premium is decreasing in τ , increasing in ρ,

and decreasing in κ, so we expect the average market risk premium constructed using these

restricted parameters to be lower than that constructed using the estimated parameters and

reported in Table 2.

Table 5 reports summary statistics when the risk premium decomposition is constructed

using the restricted preference parameters. Results are generally in line with those reported

using estimated preference parameters in Table 2 except for one notable exception: average

total risk premia are lower (higher) at short (long) horizons than the related values in Table

2.28 We provide the associated risk premium decomposition plots in Internet Appendix IA.2.2

(Figure IA.4) for brevity since they are visually similar to the unrestricted decomposition

plots in Figure 2. Forecasting regression results using the risk premia from the restricted de-

composition are similar to those from our main unrestricted decomposition and are reported

in Internet Appendix IA.2.2 for brevity.

3 Model-Implied Risk Premium Decompositions

In this section, we consider one application of our data-implied decomposition: using it

as a diagnostic tool to assess whether various prominent representative agent asset pricing

models generate decompositions that are consistent with our data-implied decomposition. To

this end, we develop a methodology for computing the risk premium decomposition implied

by representative agent models in the asset pricing literature. We focus on three long-run

risk models (Bansal and Yaron, 2004, Bansal, Kiku, and Yaron, 2012, and Drechsler and

Yaron, 2011), two habit formation models (Bekaert, Engstrom, and Ermolov, 2020 with and

28This is because: 1. The restricted τ is typically higher (lower) than the estimated value at short (long)
horizons, 2. The restricted ρ is typically lower (higher) than the estimated value at short (long) horizons,
and 3. The restricted κ is typically higher (lower) than the estimated value at short (long) horizons.
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without preference shocks), and two disaster risk models (Gabaix, 2012 and Wachter, 2013).

We show that a projection of the SDF implied by a representative agent model can be recast

as a function of aggregate wealth in Internet Appendix IA.6. Although our model-implied

decompositions do not rely on this result, it does justify using our data-implied decomposition

(which projects the SDF onto aggregate wealth) to evaluate representative agent models. In

all cases, we evaluate models using the original parameterizations reported in each respective

reference. We report market risk premium decomposition results for all models and variance

risk premium decomposition results for all models except the first two long-run-risk models

(Bansal and Yaron, 2004 and Bansal, Kiku, and Yaron, 2012), which feature normal shocks

and were not intended to target the variance risk premium.

Our model-implied decomposition methodology is straightforward and involves two steps.

First, we extract model-implied state variables by matching model-implied asset pricing

moments to those observed in the data at each date. Under each model we can express asset

pricing moments as linear functions of state variables.29 Conversely, given N observed asset

pricing moments at any date, we can exactly identify implied state variables in a model

having N state variables. The maximum number of state variables among all models we

consider is three. We therefore identify a consistent set of three salient asset pricing moments

from the data to use for extracting state variables implied by each model: (1) the log-price-

dividend ratio, (2) risk-neutral excess market return variance, and (3) risk-neutral excess

market return skewness. We proxy for the last two moments using our M∗(2)
t→T and M∗(3)

t→T

measures, respectively, with 30-day horizons since all models were originally calibrated at

the monthly frequency. We proxy for the log-price-dividend ratio using Shiller’s CAPE index,

29One exception is for the Gabaix (2012) model. We describe the state variable extraction process for this
model in more detail in its respective section.
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which we refer to as log (Pt/Et).
30,31 Given these asset pricing moments from the data, we

transform each to have the same sample mean as the unconditional model-implied values

when extracting state variables implied by each model. This transformation ensures that

the extracted state variables have (approximately) the same average values in our sample

as their unconditional values implied by the original model calibrations. It also ensures that

models imply approximately the same average risk premia in our sample as implied by the

original model calibrations.

For the interested reader, summary statistics for the extracted state variables from all

models can be found in Internet Appendix Table IA.5. We also provide summary statistics for

the model-implied values based on original model calibrations with 95% confidence intervals

that we would expect to observe given our sample length under each model’s null. Average

extracted state variable values are similar in magnitude to and fall within the confidence

intervals implied by the calibrated models. This is expected given our state variable extraction

methodology. Although the state variable extraction methodology imposes that we match

model-implied state variable first moments, it does not impose restrictions related to other

moments. For instance, our extracted state variables are typically more volatile than those

implied by the calibrated state variable dynamics from each model, which implies our model-

implied risk premium decompositions will be more volatile than those implied by the original

model calibrations.

30Note that all models we consider are consumption-based models without production. In such models,
dividend cash flows are more analogous to earnings in the data rather than dividends, which is why we choose
log (Pt/Et) in the data as a proxy for log (Pt/Dt) in the models. This approach was also used in Wachter
(2013) to extract the implied conditional state variable in that model.

31For consistency, when evaluating models with one, two, or three state variables we always use
[
M∗(2)t→T

]
,[

M∗(2)t→T , log (Pt/Et)
]

, or
[
M∗(2)t→T , log (Pt/Et) , M∗(3)t→T

]
, respectively, as the asset pricing moments to match

in the state variable extraction procedure. Clearly, we could have chosen to use any observable asset pricing
moments but chose these due to their theoretical connections to risk premia and salience in the asset pricing
literature. The only models with a one state variable are those from Gabaix, 2012 and Wachter, 2013. We

use M∗(2)t→T as the single asset pricing moment for state variable extraction since these models have difficulty
matching the high price-dividend ratios observed in the late 1990s and early 2000s. Results from using
log (Pt/Et) are available upon request.
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Second, noting that risk premia in each model are just functions of the model’s state vari-

ables, we can compute the model-implied risk premium decomposition given the extracted

state variables. All derivations and technical results related to the state variable extrac-

tion procedure and risk premium decomposition calculations for each model are provided in

Internet Appendix IA.7. We provide only the final decomposition results here for brevity.

3.1 Long Run Risk Models

In this subsection, we consider the class of models in which the representative agent has re-

cursive preferences as in Epstein and Zin (1989). Specifically, we estimate our decomposition

for models in Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012), and Drechsler and

Yaron (2011).32

3.1.1 Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

Bansal and Yaron (2004) propose an economic mechanism that relies on long-run risk to

explain key stylized empirical asset pricing facts. Bansal, Kiku, and Yaron (2012) extend

the Bansal and Yaron (2004) model by allowing consumption shocks to affect the dividend

process.33 Both models include two state variables (xt and σ2
t ), so we use log (Pt/Et) and

M∗(2)
t→T to extract implied state variables at each date for both models (independently) using

Result IA.1. We use Results IA.2 and IA.3 to compute the implied physical and risk-neutral

moments, respectively. See Internet Appendix IA.7.3.1 for additional details.

Panels (a) and (d) ((b) and (e)) in Figure 4 plot the risk premium decompositions for the

Bansal and Yaron (2004) (Bansal, Kiku, and Yaron, 2012) model. Compared to the data-

implied 30-day horizon decompositions (Figure 2, Panels (a) and (d)), both the Bansal and

32We also report results for Bollerslev, Tauchen, and Zhou (2009) in Internet Appendix IA.7.3.2, but leave
them out of the main text due to the fact that this model is known to generate implausible risk premia (see,
for instance, Bekaert, Engstrom, and Ermolov (2020) for further documentation of this fact).

33The model in Bansal, Kiku, and Yaron (2012) was designed to highlight important differences in the
asset pricing implications of the long run risk model relative to the habit formation model in Campbell and
Cochrane (1999).
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Yaron (2004) and Bansal, Kiku, and Yaron (2012) decompositions imply that the central risk

premium comprises a larger fraction of the overall risk premium than in the data-implied

decomposition. Consequently, the upside and downside risk premia implied by these models

comprise a smaller fraction of the overall risk premium than in the data-implied decompo-

sition. The discrepancies are a consequence of the fact that these models are conditionally

log-normal and therefore do not often generate realized returns in regions of the return space

for which we define downside and upside risk. Interestingly, the unconditional contribution

of downside and upside risk is not (effectively) zero, as implied by the unconditional models

and documented by Beason and Schreindorfer (2020). This is related to the fact that our

state variables are more volatile than those implied by the calibrated state variable processes

in each of these models, which occasionally widens the return distribution enough so that the

downside and upside risk premia contribute to the overall risk premium in a non-negligible

manner.34

Table 6 provides summary statistics for these market risk premium decompositions. The

average total risk premia implied by the data for Bansal and Yaron (2004) and Bansal, Kiku,

and Yaron (2012) are 5.66% and 6.75%, respectively, which are similar to model-implied

values based on simulation (5.55% and 6.67%, respectively).35 The conditional means of the

risk premium decomposition measures imply that all components of the risk premium are

increasing with market volatility, which is what we observe in the data. However, as implied

by the risk premium plots, the central risk premium comprises the majority of the total

risk premium in both models, which is inconsistent with observations from the data-implied

34It is also interesting to note that the upside risk premium is larger in magnitude than the downside
risk premium. If we were concerned with the risk premium on log-returns, we would expect the downside
and upside risk premia to be symmetric. However, since we use simple returns this induces positive skewness
in the simple return distribution relative to the log return distribution, causing the upside risk premium to
be larger in magnitude than the downside risk premium in these models. This is counterfactual to what we
observe in the data.

35This is true for all models we investigate since we transform the logPt/Et and risk-neutral moments
from the data to have the same unconditional means as the logPt/Dt and risk-neutral moments implied by
each model for the purposes of state variable extraction.

32



decomposition.

Table 8 provides the average differences between the data-implied market risk premia and

those implied by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012). The data-

implied total, downside, and upside risk premia are significantly larger than those implied by

the models. The data-implied central risk premium is significantly lower than that implied

by the models.

3.1.2 Drechsler and Yaron (2011)

Drechsler and Yaron (2011) extend the Bansal and Yaron (2004) model by allowing for

jumps in both consumption growth and its volatility. Doing so allows them to better match

the mean, volatility, skewness, and kurtosis of consumption growth and stock market returns

observed in the data. Their model also generates a variance risk premium that forecasts

market excess returns, which is a key stylized fact in the data. The model includes three

state variables (xt, σ
2
t and σ2

t ), so we use log (Pt/Et), M∗(2)
t→T , and M∗(3)

t→T to extract implied

state variables at each date using Result IA.7. We use Results IA.8 and IA.9 to compute the

implied physical and risk-neutral moments, respectively. See Internet Appendix IA.7.3.3 for

additional details.

Panels (c), and (f) in Figure 4 plot the market risk premium decompositions. The downside

risk premium is typically a large contributor to the total risk premium. However, during

periods of low volatility the central risk premium becomes the dominant contributor to

the total risk premium. Panels (a) and (d) in Figure 7 plot the variance risk premium

decomposition, which shows that the downside risk premium effectively constitutes the entire

variance risk premium except during periods when the total risk premium is small.

Table 6 (Table 7) provides summary statistics for the market (variance) risk premium

decomposition. Conditionally, the average the downside market and variance risk premia

increase in magnitude as risk-neutral volatility increases, similar to the data-implied results.

Table 8 provides the average difference between the data-implied risk premia and those

33



implied by the Drechsler and Yaron (2011) model, and shows that the contributions of the

downside/central/upside market (variance) risk premia are significantly lower/higher/higher

(lower/lower/higher) than those implied by the data.

3.2 Habit Formation Models: Bekaert, Engstrom, and Ermolov (2020)

Bekaert, Engstrom, and Ermolov (2020) and Bekaert and Engstrom (2017) develop a new

class of habit formation models that aim to better capture features of macroeconomic vari-

ables.36 The Bekaert and Engstrom (2017) model requires a computationally intensive nu-

merical solution procedure, but Bekaert, Engstrom, and Ermolov (2020) propose a more

tractable version of the model that is able to explain key stylized asset pricing facts while re-

taining the desirable features of the consumption growth distribution featured in Bekaert and

Engstrom (2017). We therefore focus on the habit formation model from Bekaert, Engstrom,

and Ermolov (2020) in our analysis.

The Bekaert, Engstrom, and Ermolov (2020) model has two variants: one with preference

shocks and one without preference shocks. The model without preference shocks has two

state variables (qt and nt), so we use log (Pt/Et) and M∗(2)
t→T to extract implied state variables

for this model at each date. The model with preference shocks has three state variables (qt,

nt, and st), so we use log (Pt/Et), M∗(2)
t→T , and M∗(3)

t→T to extract implied state variables at each

date. We can use Result IA.10 for the state variable extraction in both cases. We use Results

IA.11 and IA.12 to compute the implied physical and risk-neutral moments, respectively. See

Internet Appendix IA.7.4 for additional details.

Panels (a) and (d) ((b) and (e)) in Figure 5 plot the market risk premium decompositions

under the model with (without) preference shocks. The models with and without preference

shocks yield decompositions with quite different implications regarding which regions of the

return space contribute most to the total risk premium. In the case of the model without pref-

36Their models represent an improvement on the habit formation model in Campbell and Cochrane (1999).
In particular, their setup allows them to better match observed consumption growth skewness in the data.
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erence shocks (Panel (d)) it is clear that the downside risk premium is the largest contributor

to the the total risk premium, consistently contributing approximately 80%. The central risk

premium typically contributes between approximately 15%-20% to the total risk premium.

In the case of the model with preference shocks (Panel (c)), the central risk premium is

typically the largest contributor ranging between approximately 60-80%. The downside risk

premium contribution ranges between approximately 20-60% and occasionally contributes

more than the central risk premium. In both cases, the upside risk premium provides only a

minor contribution to the total risk premium.

Comparing these results to those implied by the data at the 30-day horizon (Figure 2,

Panels (a) and (d)), the model without preference shocks matches many key features of

the data. The contribution of the central risk premium is relatively large during low market

volatility periods, but is outweighed by the contribution of the downside risk premium during

high market volatility periods. The downside and upside risk premia also typically increase

in tandem in both the data- and the model-implied decompositions.

Table 6 provides summary statistics for implied market risk premium decomposition. The

average total risk premia implied by the data for the models with and without preference

shocks are 4.84% and 5.92%, respectively, which are similar to model-implied values based on

simulation (4.26% and 5.56%, respectively). The conditional means of the market risk pre-

mium decomposition measures imply that all components of the risk premium are increasing

with market volatility, which is what we observe in the data. The downside risk premium

comprises the majority of the total risk premium in the model without preference shocks,

which is inconsistent with observations from the data-implied decomposition. However, the

contributions and time series behavior of the downside, upside, and central risk premia in

the model with preference shocks are qualitatively more similar to the data-implied decom-

position than for other models we study.

Table 8 provides the average difference between the data-implied risk premia and those

implied by the models with and without preference shocks. The data-implied total, downside,
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central, and upside risk premia are significantly larger than those implied by the models in

level (Panel A). This holds in all cases except for the downside risk premium in the model

without preference shocks, which is significantly lower than what the data implies. In terms

of the contribution to total risk premium (Panel B), the data implies a central risk premium

contribution that is significantly lower than that implied by model with preference shocks.

The data also implies downside risk premium contribution that is significantly lower than that

implied by the model with preference shocks. In all other cases, the data implies contributions

that are higher than those implied by the models.

Figure 7 provides plots for the variance risk premium decomposition for the model with

preference shocks. It shows that the primary contributor is the downside risk premium, al-

though there are periods where the central risk premium becomes a sizable contributor. Plots

for the variance risk premium decomposition from the model without preference shocks are

similar so we omit them for brevity. In this case, the central (downside) risk premium con-

tributes less (more) to total risk premium than in the model with preference shocks. Table 7

provides summary statistics for the implied variance risk premium decompositions and Table

8 provides the average difference between the data-implied risk premia and those implied by

the Bekaert, Engstrom, and Ermolov (2020) models. Table 8 shows that the contributions

of the downside/central/upside variance risk premia are significantly lower/higher/higher

(higher/lower/higher) in the model with (without) preference shocks than those implied by

the data.

3.3 Disaster Risk Models

3.3.1 Gabaix (2012)

Gabaix (2012) develops a time-varying disaster risk model that is able to quantitatively

explain many standard asset pricing puzzles. We follow the Dew-Becker et al. (2017) im-
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plementation (including their parameter choices) in our analysis.37 In this model, the log

price-dividend ratio is non-linear in the model’s single state variable, Lt. Therefore, we solve

for M∗(2)
t→T as a function of the state variable numerically given the assumed Lt process condi-

tionally as a function of Lt. Given an estimate for the the model-implied M∗(2)
t→T as a function

of Lt, we extract the implied Lt at each date by matching the transformed M∗(2)
t→T from the

data as usual. Given the extracted state variable, we estimate physical and risk-neutral mo-

ments needed for our decomposition at each date via simulation according to expressions for

these moments in Internet Appendix IA.7.5.1.

Panels (a) and (c) in Figure 6 plot the market risk premium decomposition. The downside

risk premium is consistently the largest contributor to the total risk premium with the

upside risk premium contributing essentially nothing. Table 6 (Table 7) provides summary

statistics for the implied market (variance) risk premium decomposition. Conditionally, both

the average downside market and variance risk premia increase in magnitude as risk-neutral

volatility increases, which is similar to the data-implied results. Table 8 provides the average

difference between the data-implied risk premia and those implied by the Gabaix (2012)

model. The contributions of the downside/central/upside market (variance) risk premia are

significantly higher/lower/lower (higher/lower/higher) than those implied by the data.

3.3.2 Wachter (2013)

Wachter (2013) develops a time-varying disaster risk model that aims to explain the excess

volatility puzzle. We follow the Dew-Becker et al. (2017) discretization of Wachter (2013)

(including their parameter choices) since this provides a convenient version of the model that

is calibrated at the monthly frequency. The model includes one state variable, λt, so we use

M∗(2)
t→T to extract the implied state variable at each date using Result IA.15. We then use

37This calibration is similar to that in Gabaix (2012) and is also able to match the Sharpe ratio of one-
month variance swaps reported in Dew-Becker et al. (2017). We use this version of the model since we are
also interested in evaluating the model’s ability to match the conditional variance risk premium and its
decomposition.
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Results IA.14 and IA.15 to compute the implied physical and risk-neutral moments needed

for the risk premium decompositions. See Internet Appendix IA.7.3.2 for additional details.

Panels (b) and (d) in Figure 6 plot the market risk premium decomposition. The central

risk premium contributes the majority of the total risk premium. The downside risk premium

contributes less than the central risk premium, but more than the upside risk premium.

Interestingly, the time variation in these decomposition contributions are similar to those

from the data (see Figure 2, Panel (d)). Panels (c) and (f) in Figure 7 plot the variance

risk premium decomposition. It is clear from this figure that the downside risk premium

effectively constitutes the entire variance risk premium.

Table 6 (Table 7) provides summary statistics for the implied market (variance) risk

premium decomposition and Table 8 provides the average difference between the data-

implied risk premia and those implied by the Wachter (2013) model. The contributions of the

downside/central/upside market (variance) risk premia are significantly lower/higher/higher

(higher/lower/lower) than those implied by the data.

4 Conclusions

In this paper, we propose a novel methodology that allows us to decompose the risk premium

on arbitrary moments of excess market returns into components related to compensation for

exposure to the left tail, the center, and the right tail of the market return distribution at

each date. Under the assumption of no-arbitrage, we derive analytic expressions for each

of these components in terms of option prices without making any assumptions about the

market return distribution or the functional form of investor preferences. This allows us to

quantify the contributions from conditional downside, central, and upside risk premia to the

conditional total risk premium at any date and across investment horizons ranging from one

month to one year. We provide empirical results for to two special cases where we estimate

decompositions for the market risk premium and the variance risk premium.
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The downside risk premium comprises a large fraction of the total market risk premium

across all dates and horizons. The central risk premium comprises a large fraction of the

total market risk premium as well, but its contribution decreases with both horizon and in

risk (as measured by market volatility). The upside risk premium contributes less to the

total market risk premium unconditionally than the first two, but, like the downside risk

premium, its contribution increases with horizon and when market volatility increases.

The downside risk premium also comprises a large fraction of the total variance risk pre-

mium regardless of horizon. The central risk premium comprises a small fraction of the total

variance risk premium, and its contribution decreases with horizon. The upside risk premium

also comprises a small fraction of the total variance risk premium, and its contribution in-

creases with horizon.

These data-implied decompositions provide powerful tools for understanding risk premium

dynamics. Although these decompositions may be useful in many settings, we choose to use

them to evaluate prominent representative agent asset pricing models to highlight one appli-

cation. A common feature among all these models is that they (typically) have state variables

that vary over time, leading to time-varying risk premia. Despite this, the success of a model

is often judged based on its ability to match unconditional moments in the data. Part of

the hurdle to evaluating these models conditionally has been identifying a consistent method

to link state variables to observable information. Another hurdle has been the difficulty of

measuring conditional risk premia in the data that can be used to evaluate implications

from the models. We overcome the latter hurdle with our data-implied decomposition. We

overcome the former by developing a consistent (across models) methodology for extracting

conditional state variables given salient asset pricing data.

We identify clear inconsistencies between the model- and data-implied decompositions.

First, imposing that a model match the conditional log price-dividend ratio and risk-neutral

moments of the excess market return typically yields extracted state variable time series

having higher volatility than that implied by assumptions in the original models. This im-
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plies that more effort should be placed in ensuring that modeling assumptions with respect

to state variable processes are consistent with their data-implied counterparts. Second, we

find statistically significant differences between the data-implied and model-implied decom-

positions across almost all models and components of the market and variance risk premia.

This is particularly true of log-normal models, which have a difficult time matching the total

downside risk premium implied by the data, but it is also true of models with shocks that

produce higher tail risk via non-Gaussian shocks.

Admittedly, moments from these decompositions were not targeted in the original calibra-

tions of any of the models we investigate and represent high hurdles for parsimonious repre-

sentative agent models to tackle. However, the reasonably good performance of the Bekaert,

Engstrom, and Ermolov (2020) and Wachter (2013) models provides hope that such models

will be up to the challenge of explaining conditional risk premia and their components. We

hope our data-implied decomposition provides a useful tool for calibrating similar models in

the future, and helps provide a deeper understanding the sources of conditional risk premia.
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(a) RP(1)
t→T [As] Levels: BEE (w/ Pref. Shocks) (b) RP(1)

t→T [As] Levels: BEE (w/o Pref. Shocks)
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Figure 5
Model-Implied Market Risk Premium Decompositions (Habit Models)

These graphs plot model-implied market risk premium decompositions based on Proposition 3 for the habit formation
models we study (see Subsection 3.2). Panels (a)/(c) plot results from the Bekaert, Engstrom, and Ermolov (2020)
model with preference shocks. Panels (b)/(d) plot results from the Bekaert, Engstrom, and Ermolov (2020) model
without preference shocks. Panels (a)-(b) plot the annualized risk premium levels for each model at each date in
percent. Panels (c)-(d) plot each component’s contribution to the total risk premium for each model at each date as a
fraction of the total risk premium. The dark/medium/light shaded regions represent the downside/central/upside risk
premium contributions, respectively. All decompositions use a 30-day horizon to match model calibration frequencies
in the original papers (monthly), and set Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞). All time series are smoothed
by averaging over two months of lagged daily data to reduce the appearance of noise.
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(a) RP(1)
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Figure 6
Model-Implied Market Risk Premium Decompositions (Disaster Models)

These graphs plot model-implied market risk premium decompositions based on Proposition 3 for the disaster models
we study (see Subsection 3.3). Panels (a)/(c) plot results from the Gabaix (2012). Panels (b)/(d) plot results from
the Wachter (2013) model. Panels (a)-(b) plot the annualized risk premium levels for each model at each date in
percent. Panels (c)-(d) plot each component’s contribution to the total risk premium for each model at each date as a
fraction of the total risk premium. The dark/medium/light shaded regions represent the downside/central/upside risk
premium contributions, respectively. All decompositions use a 30-day horizon to match model calibration frequencies
in the original papers (monthly), and set Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞). All time series are smoothed
by averaging over two months of lagged daily data to reduce the appearance of noise.
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Table 1
Preference Parameter Estimates

This table reports preference parameters estimates for τ (xs) (Equation 14), ρ (xs) (Equation 15), and κ (xs)
(Equation 16) with s ∈ {d, c, u} and xd = 0.85, xc = 1.00, and xu = 1.15. These correspond to the three regions
of interest in the gross market return space defined by Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞). 1/τ (xs)
is the relative risk aversion. Parameters are estimated separately for each of five horizons (30, 60, 90, 180, and
360 days). Estimations are done using nonlinear least squares according to the description in Subsection 2.2.
Values in brackets represent the 95% confidence intervals obtained from 10,000 block bootstrap simulations. The
block length is set to be four years for simulations at all horizons. Parameters are estimated using daily S&P 500
excess market return data (ex dividend) from CRSP and risk-neutral moments computed from daily option prices
obtained from Option Metrics. Data is daily and ranges from January, 1996 through June, 2019.

Horizon (days)

Region Parameter 30 60 90 180 360

Ad

1/τ (xd) 3.54 3.98 3.38 2.41 1.03

[1.76, 7.04] [2.21, 6.77] [1.78, 6.05] [1.24, 6.79] [0.71, 2.38]

τ (xd) 0.28 0.25 0.30 0.42 0.97

[0.14, 0.57] [0.15, 0.45] [0.17, 0.56] [0.15, 0.81] [0.42, 1.42]

ρ (xd) 0.99 1.03 1.05 1.20 1.92

[0.81, 1.33] [0.97, 1.34] [0.96, 1.52] [0.97, 1.99] [1.02, 2.52]

κ (xd) 0.81 0.95 0.96 1.27 3.09

[0.62, 1.38] [0.89, 1.54] [0.87, 1.98] [0.92, 3.37] [0.98, 5.19]

Ac

1/τ (xc) 2.04 2.19 2.01 1.60 0.85

[1.13, 4.21] [1.33, 3.29] [1.16, 3.21] [0.97, 3.44] [0.70, 1.77]

τ (xc) 0.49 0.46 0.50 0.63 1.18

[0.24, 0.88] [0.30, 0.75] [0.31, 0.86] [0.29, 1.03] [0.56, 1.43]

ρ (xc) 1.82 1.75 1.74 1.86 2.29

[0.76, 2.83] [1.19, 2.67] [1.00, 2.82] [1.01, 3.01] [0.79, 3.40]

κ (xc) 1.79 1.86 1.82 2.14 3.82

[0.57, 2.69] [1.20, 3.14] [1.00, 3.62] [1.08, 4.46] [1.13, 5.14]

Au

1/τ (xu) 1.04 1.01 0.97 0.95 0.71

[0.75, 3.74] [0.79, 1.86] [0.74, 2.16] [0.68, 2.09] [0.59, 1.44]

τ (xu) 0.96 0.99 1.03 1.05 1.41

[0.27, 1.34] [0.54, 1.26] [0.46, 1.35] [0.48, 1.46] [0.69, 1.70]

ρ (xu) 5.76 7.10 6.82 4.91 3.00

[0.65, 6.71] [1.34, 8.76] [0.77, 9.07] [0.28, 8.44] [0.00, 8.56]

κ (xu) 3.97 5.29 5.08 4.88 4.94

[0.45, 4.66] [2.00, 5.76] [0.98, 6.25] [1.18, 7.66] [1.06, 7.81]
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Table 2
Unrestricted Data-Implied Market Risk Premium Decomposition Summary Statistics

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according to
Proposition 3 using preference parameters reported in Table 1 with n = 1 (i.e., the market risk premium). Panel
A reports statistics for the risk premium levels (annualized, in percent) and Panel B reports statistics for the
contributions of risk premia from each region to the total risk premium (as fractions of the total risk premium, in
percent). Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞) and these labels correspond to the downside, central, and
upside risk premia, respectively. A = Ad∪Ac∪Au and this label corresponds to the total risk premium. Statistics
reported under“Unconditional”use the full estimated time series for each risk premium measure. Statistics reported
under “Cond. Means” report the means for each time series conditional on 30-day risk-neutral variance (M∗(2)

t→T [A])
falling below it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”).
These correspond to periods of low, moderate, or high market volatility, respectively. Statistics are reported for
risk premium decompositions at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January,
1996 through June, 2019.

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Horizon
(days)

Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

30

A 3.19 6.92 17.82 8.72 7.50

Ad 1.21 3.13 10.35 4.45 4.97 38.05 44.67 55.30 45.67 9.33

Ac 1.88 3.37 4.71 3.33 1.18 59.84 50.43 30.67 47.84 13.32

Au 0.07 0.38 3.05 0.97 2.15 2.11 4.90 14.02 6.48 6.14

60

A 3.98 8.03 18.44 9.62 6.99

Ad 2.01 4.53 11.76 5.71 4.90 51.23 56.71 62.22 56.72 7.04

Ac 1.73 2.47 2.68 2.34 0.46 45.38 32.87 16.73 31.96 12.05

Au 0.13 0.92 4.15 1.53 2.13 3.39 10.42 21.05 11.32 8.17

90

A 3.98 7.50 15.80 8.69 5.60

Ad 2.31 4.62 10.45 5.50 4.01 58.70 61.77 64.86 61.78 5.70

Ac 1.36 1.62 1.55 1.54 0.19 35.53 23.34 11.05 23.32 10.16

Au 0.23 1.20 3.90 1.63 1.75 5.77 14.88 24.09 14.91 8.52

180

A 3.82 6.52 12.33 7.29 4.15

Ad 2.57 4.39 8.56 4.98 3.06 67.91 67.67 68.45 67.92 4.56

Ac 0.68 0.64 0.58 0.64 0.09 18.54 10.89 5.17 11.37 5.63

Au 0.50 1.43 3.21 1.64 1.22 13.55 21.44 26.38 20.71 6.70

360

A 2.54 4.02 7.17 4.44 2.48

Ad 1.79 2.76 4.82 3.03 1.71 71.39 69.12 67.10 69.18 4.86

Ac 0.19 0.19 0.20 0.19 0.05 8.08 5.20 2.95 5.36 2.45

Au 0.50 1.02 2.12 1.16 0.81 20.53 25.68 29.95 25.46 5.52
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Table 4
Unrestricted Data-Implied Variance Risk Premium Decomposition Summary Statistics

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according
to Proposition 3 using preference parameters reported in Table 1 with n = 2 (i.e., the variance risk premium).
Panel A reports statistics for the risk premium levels and Panel B reports statistics for the contributions of risk
premia from each region to the total risk premium (as fractions of the total risk premium, in percent). Risk
premia are annualized by multiplying by each horizon (in units of fractions of a year). Ad=[0, 0.9], Ac=[0.9, 1.1],
and Au=[1.1,+∞) and these labels correspond to the downside, central, and upside risk premia, respectively.
A = Ad ∪Ac ∪Au and this label corresponds to the total risk premium. Statistics reported under “Unconditional”
use the full estimated time series for each risk premium measure. Statistics reported under “Cond. Means” report
the means for each time series conditional on 30-day risk-neutral variance (M∗(2)

t→T [A]) falling below it’s first quartile
(“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These correspond to periods
of low, moderate, or high market volatility, respectively. Statistics are reported for risk premium decompositions
at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January, 1996 through June, 2019.

Panel A: RP(2)
t→T [As] (%) Panel B: RP(2)

t→T [As]/RP
(2)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Horizon
(days)

Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

30

A -0.29 -0.67 -2.50 -1.03 1.46

Ad -0.25 -0.60 -2.22 -0.92 1.19 83.28 89.15 92.11 88.42 6.94

Ac -0.05 -0.09 -0.11 -0.09 0.10 19.19 14.56 7.63 13.99 6.87

Au 0.01 0.02 -0.14 -0.02 0.33 -2.47 -3.71 0.26 -2.41 4.54

60

A -0.51 -1.10 -3.65 -1.59 1.99

Ad -0.44 -0.97 -2.97 -1.34 1.46 87.83 89.79 85.96 88.34 4.05

Ac -0.07 -0.10 -0.02 -0.07 0.12 14.06 9.94 2.43 9.09 5.63

Au 0.01 -0.01 -0.61 -0.16 0.63 -1.89 0.27 11.62 2.57 6.77

90

A -0.62 -1.26 -3.72 -1.71 1.91

Ad -0.54 -1.08 -2.88 -1.39 1.32 88.44 87.61 81.84 86.37 4.38

Ac -0.07 -0.08 0.03 -0.05 0.10 12.56 7.56 -0.01 6.92 5.98

Au 0.01 -0.07 -0.83 -0.24 0.69 -1.00 4.83 18.17 6.71 8.60

180

A -0.88 -1.63 -4.13 -2.07 2.03

Ad -0.73 -1.31 -3.05 -1.60 1.39 85.57 82.37 76.88 81.80 4.35

Ac -0.08 -0.04 0.08 -0.02 0.11 8.99 2.95 -2.30 3.15 5.86

Au -0.04 -0.25 -1.11 -0.41 0.71 5.44 14.68 25.42 15.06 9.04

360

A -0.81 -1.34 -2.67 -1.54 1.21

Ad -0.62 -0.98 -1.83 -1.10 0.82 78.33 74.97 69.77 74.51 4.61

Ac -0.06 -0.05 -0.05 -0.06 0.09 7.09 3.72 0.93 3.87 5.20

Au -0.11 -0.28 -0.77 -0.36 0.39 14.58 21.31 29.30 21.62 7.41
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Table 5
Restricted Data-Implied Market Risk Premium Decomposition Summary Statistics

This table reports summary statistics for the restricted data-implied risk premium decomposition according to
Proposition 3 with n = 1 (i.e., the market risk premium). The decompositions set preference parameters to
be τ = 1, ρ = 2, and κ = 4 across all regions and horizons. Panel A reports statistics for the risk premium
levels (annualized, in percent) and Panel B reports statistics for the contributions of risk premia from each
region to the total risk premium (as fractions of the total risk premium, in percent). Ad=[0, 0.9], Ac=[0.9, 1.1],
and Au=[1.1,+∞) and these labels correspond to the downside, central, and upside risk premia, respectively.
A = Ad ∪Ac ∪Au and this label corresponds to the total risk premium. Statistics reported under “Unconditional”
use the full estimated time series for each risk premium measure. Statistics reported under “Cond. Means” report
the means for each time series conditional on 30-day risk-neutral variance (M∗(2)

t→T [A]) falling below it’s first quartile
(“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These correspond to periods
of low, moderate, or high market volatility, respectively. Statistics are reported for risk premium decompositions
at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January, 1996 through June, 2019.

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Horizon
(days)

Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

30

A 1.61 3.53 10.19 4.72 4.96

Ad 0.64 1.65 6.05 2.50 3.30 39.75 45.91 57.16 47.18 10.09

Ac 0.93 1.68 2.36 1.66 0.60 58.20 49.26 29.12 46.46 13.74

Au 0.03 0.19 1.71 0.53 1.36 2.05 4.83 13.71 6.35 6.07

60

A 1.91 3.94 10.33 5.03 4.69

Ad 1.03 2.32 6.71 3.09 3.22 53.32 58.51 64.17 58.63 7.81

Ac 0.81 1.16 1.25 1.09 0.22 43.42 31.38 15.18 30.34 12.16

Au 0.06 0.44 2.31 0.81 1.41 3.26 10.11 20.65 11.03 8.20

90

A 2.16 4.23 10.31 5.24 4.45

Ad 1.34 2.72 6.88 3.41 3.06 61.23 64.12 66.53 64.00 6.36

Ac 0.70 0.83 0.79 0.79 0.10 33.25 21.46 9.46 21.40 10.01

Au 0.12 0.65 2.58 1.00 1.41 5.52 14.43 24.01 14.60 8.78

180

A 2.70 4.84 10.30 5.67 4.07

Ad 1.91 3.36 7.03 3.92 2.77 70.41 69.71 68.61 69.61 5.20

Ac 0.44 0.42 0.37 0.41 0.06 17.05 9.74 4.23 10.19 5.43

Au 0.33 1.02 2.83 1.30 1.34 12.55 20.55 27.16 20.20 7.50

360

A 3.35 5.50 10.34 6.17 3.79

Ad 2.49 3.91 6.97 4.32 2.49 74.17 71.38 68.01 71.24 5.09

Ac 0.24 0.24 0.25 0.24 0.06 7.51 4.80 2.62 4.93 2.31

Au 0.60 1.32 3.05 1.57 1.31 18.32 23.81 29.37 23.83 6.00
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Table 6
Representative Agent Model-Implied Market Risk Premium Decomposition Summary

Statistics

This table reports summary statistics for the model-implied risk premium decompositions based on representative
agent models described in Section 3 with n = 1 (i.e., the market risk premium). Panel A reports statistics for the
risk premium levels (annualized, in percent) and Panel B reports statistics for the contributions of risk premia
from each region to the total risk premium (as fractions of the total risk premium, in percent). Results are reported
for the following models: Bansal and Yaron (2004) (“BY”), Bansal, Kiku, and Yaron (2012) (“BKY”), Drechsler
and Yaron (2011) (“DY”), Bekaert, Engstrom, and Ermolov (2020) (“BEE”) with and without preference shocks,
Gabaix (2012) (“Gabaix”), and Wachter (2013) (“Wachter”). Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞) and
these labels correspond to the downside, central, and upside risk premia, respectively. A = Ad ∪Ac ∪Au and this
label corresponds to the total risk premium. Statistics reported under “Unconditional” use the full estimated time
series for each risk premium measure. Statistics reported under “Cond. Means” report the means for each time
series conditional on 30-day risk-neutral variance (M∗(2)

t→T [A]) falling below it’s first quartile (“Lo”), between its
first and third quartiles (“Mid”), or above its third quartile (“Hi”). These correspond to periods of low, moderate,
or high market volatility, respectively. Results are based on state variables extracted from the data under each
model using their original calibrations, which are monthly in all cases, and use daily data from January, 1996
through June, 2019.

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

LRR

BY

A 0.63 3.84 14.33 5.66 7.61

Ad 0.00 0.03 1.04 0.28 0.98 0.00 0.47 4.98 1.48 2.66

Ac 0.63 3.70 10.44 4.62 4.38 100.00 97.66 81.18 94.13 9.69

Au 0.00 0.11 2.84 0.76 2.73 0.00 1.86 13.84 4.39 7.05

BKY

A 3.59 5.64 12.13 6.75 4.68

Ad 0.01 0.13 0.99 0.32 0.70 0.37 2.04 6.76 2.80 2.89

Ac 3.53 5.17 8.59 5.61 2.27 98.41 92.30 76.04 89.76 10.06

Au 0.05 0.35 2.54 0.82 1.88 1.22 5.66 17.20 7.44 7.20

DY

A 1.76 5.54 21.21 8.51 11.23

Ad 0.08 2.20 10.29 3.69 5.50 4.17 34.73 48.68 30.58 18.44

Ac 1.56 2.78 5.13 3.06 1.46 89.20 56.25 30.30 58.00 23.54

Au 0.12 0.56 5.79 1.76 4.91 6.63 9.02 21.02 11.42 7.25

55



Table 6
Representative Agent Model-Implied Market Risk Premium Decomposition Summary

Statistics (continued)

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

Habit

BEE (w/ Pref. Shocks)

A 1.35 3.29 11.47 4.85 5.84

Ad 0.27 1.11 6.46 2.23 3.80 19.47 30.77 52.66 33.42 13.94

Ac 1.09 2.18 3.83 2.32 1.12 80.53 69.23 42.11 65.28 16.79

Au 0.00 0.00 1.18 0.30 1.47 0.00 0.00 5.23 1.31 4.43

BEE (w/o Pref. Shocks)

A 0.65 3.35 12.07 4.86 6.36

Ad 0.52 2.79 9.27 3.84 4.48 68.94 83.47 79.53 78.85 14.31

Ac 0.13 0.56 2.26 0.88 1.09 31.06 16.53 19.33 20.86 14.31

Au 0.00 0.00 0.55 0.14 1.40 0.00 0.00 1.14 0.29 2.65

Disaster

Gabaix

A 4.72 7.06 10.82 7.42 2.50

Ad 3.28 5.58 9.29 5.93 2.47 69.07 78.61 85.48 77.94 6.52

Ac 1.40 1.43 1.49 1.44 0.04 30.02 20.76 14.12 21.42 6.31

Au 0.04 0.04 0.04 0.04 0.00 0.91 0.63 0.39 0.64 0.20

Wachter

A 3.04 5.73 14.31 7.20 6.24

Ad 0.83 1.93 6.36 2.76 3.21 27.26 32.91 42.48 33.89 6.18

Ac 2.13 3.17 3.92 3.10 0.72 70.37 57.20 33.14 54.48 15.33

Au 0.08 0.63 4.03 1.34 2.67 2.37 9.89 24.38 11.63 9.17
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Table 7
Representative Agent Model-Implied Variance Risk Premium Decomposition Summary

Statistics

This table reports summary statistics for the model-implied risk premium decompositions based on representa-
tive agent models described in Section 3 with n = 2 (i.e., the variance risk premium). Panel A reports statistics
for the risk premium levels (annualized by multiplying by 12, in percent) and Panel B reports statistics for the
contributions of risk premia from each region to the total risk premium (as fractions of the total risk premium, in
percent). Results are reported for the following models: Drechsler and Yaron (2011) (“DY”), Bekaert, Engstrom,
and Ermolov (2020) (“BEE”) with and without preference shocks, Gabaix (2012) (“Gabaix”), and Wachter (2013)
(“Wachter”). Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞) and these labels correspond to the downside, central,
and upside risk premia, respectively. A = Ad∪Ac∪Au and this label corresponds to the total risk premium. Statis-
tics reported under “Unconditional” use the full estimated time series for each risk premium measure. Statistics
reported under “Cond. Means” report the means for each time series conditional on 30-day risk-neutral variance
(M∗(2)

t→T [A]) falling below it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third
quartile (“Hi”). These correspond to periods of low, moderate, or high market volatility, respectively. Results are
based on state variables extracted from the data under each model using their original calibrations, which are
monthly in all cases, and use daily data from January, 1996 through June, 2019.

Panel A: RP(2)
t→T [As] (%) Panel B: RP(2)

t→T [As]/RP
(2)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

LRR DY

A 0.00 -0.42 -1.94 -0.69 0.99

Ad -0.01 -0.44 -1.96 -0.71 1.01 -62.36 100.17 101.62 59.90 209.08

Ac 0.00 -0.01 0.06 0.01 0.25 4.09 1.83 1.26 2.25 4.87

Au 0.01 0.03 -0.03 0.01 0.21 158.28 -2.00 -2.88 37.85 206.57

Habit

BEE (w/ Pref. Shocks)

A -0.07 -0.31 -2.46 -0.79 1.62

Ad -0.03 -0.25 -2.27 -0.70 1.46 46.26 70.41 92.51 69.90 19.57

Ac -0.04 -0.06 -0.14 -0.07 0.07 53.75 29.65 7.11 30.04 19.68

Au 0.00 0.00 -0.05 -0.01 0.12 0.00 -0.06 0.38 0.06 0.96

BEE (w/o Pref. Shocks)

A -0.17 -0.91 -3.19 -1.30 1.60

Ad -0.16 -0.86 -2.74 -1.15 1.28 86.96 94.28 88.78 91.08 15.13

Ac -0.01 -0.06 -0.34 -0.12 0.19 13.04 5.74 10.55 8.77 15.07

Au 0.00 0.00 -0.10 -0.02 0.27 0.00 -0.02 0.67 0.16 2.22

Disaster

Gabaix

A -0.87 -2.46 -6.81 -3.15 2.68

Ad -0.87 -2.45 -6.74 -3.13 2.65 101.16 99.67 98.96 99.86 0.92

Ac 0.01 -0.01 -0.08 -0.03 0.04 -0.90 0.40 1.14 0.26 0.84

Au 0.00 0.00 0.01 0.00 0.01 -0.26 -0.06 -0.11 -0.12 0.11

Wachter

A -0.38 -0.78 -1.90 -0.96 0.76

Ad -0.39 -0.82 -2.10 -1.03 0.87 102.14 104.70 109.47 105.25 3.07

Ac 0.00 0.00 0.07 0.02 0.08 -0.44 0.19 -2.11 -0.54 1.67

Au 0.01 0.04 0.13 0.06 0.06 -1.70 -4.89 -7.36 -4.71 2.33
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Appendix A Proofs

Proof for the Coefficients in the Taylor expansion in Equation 13. Derivatives

of fxs (x) are given by:

∂fxs (x)

∂x
= −WtU

′
[Wtxs]

U
′′

[Wtx]

(U ′ [Wtx])
2 ,

∂2fxs
(x)

∂2x
= −W 2

t U
′
(Wtxs)

 U
′′′

(Wtx)

(U ′ (Wtx))
2 − 2

(
U
′′

(Wtx)
)2

(U ′ (Wtx))
3

 , and

∂3fxs
(x)

∂3x
= −W 3

t U
′
(Wtxs)

 U
′′′′

(Wtx)

(U ′ (Wtx))
2 − 6U

′′′
(Wtx)u

′′
(Wtx)

(U ′ (Wtx))
3 + 6

(
U
′′
(Wtx)

)3

(U ′ (Wtx))
4

 .

Evaluating these derivatives at xs and substituting in the definitions of τ (xs), ρ (xs), and

κ (xs) in Equations 14, 15, and 16 gives the desired result. �

Proof of Proposition 1. Assuming no-arbitrage, we can write

M(n)
t→T [As] ≡ Et

[
Mt→T

Et [Mt→T ]

Et [Mt→T ]

Mt→T

(
RM,t→T −Rf,t→T

)n IAs

]
= E∗t

[
Et [Mt→T ]

Mt→T

(
RM,t→T −Rf,t→T

)n IAs

]
.(A.1)

Replacing Et [Mt→T ] /Mt→T in Equation A.1 with the expression in Equation 18 yields:

M(n)
t→T [As] = E∗t [gxs

(RM,t→T ) (RM,t→T −Rf,t→T )
n IAs

] . (A.2)

Next, we replace the function gxs (RM,t→T )in Equation A.2 with the expressions in Equations

10 and 11 and apply the definition of the covariance operator (COV∗t [x, y] ≡ E∗t [xy] −
E∗t [x]E∗t [y]) to obtain

M(n)
t→T [As] =

∞∑
k=1

θk (xs)COV∗t
[
(RM,t→T − xs)k , (RM,t→T −Rf,t→T )

n IAs

]
1 +

∞∑
k=1

θk (xs)E∗t
[
(RM,t→T − xs)k

] + E∗t [(RM,t→T −Rf,t→T )
n IAs ] .

Using our definition of M∗(n)
t→T [As] and rearranging yields

M(n)
t→T [As]−M∗(n)t→T [As] =

∞∑
k=1

θk (xs)COV∗t
[
(RM,t→T − xs)k , (RM,t→T −Rf,t→T )

n IAs

]
1 +

∞∑
k=1

θk (xs)E∗t
[
(RM,t→T − xs)k

] . (A.3)

�
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Proof of Corollary 1. Replacing (RM,t→T − xs)k in Equation A.3 with the expression in

Equation 17 yields

M(n)
t→T [As]−M∗(n)t→T [As] =

∞∑
k=1

k∑
j=0

λt (xs, k, j)COV∗t
[
(RM,t→T −Rf,t→T )

k−j
, (RM,t→T −Rf,t→T )

n IAs

]
1 +

∞∑
k=1

k∑
j=0

λt (xs, k, j)E∗t
[
(RM,t→T −Rf,t→T )

k−j
]

(A.4)

where λt (xs, k, j) is as defined in Equation 26. Applying the definition of the covariance

operator (COV∗t [x, y] ≡ E∗t [xy]− E∗t [x]E∗t [y]), Equation A.4 simplifies to the result. �

Proof of Proposition 3. We only consider the case where n > 1 (the case where n = 1 is

straightforward). In this case, we start with the identity

(RM,t→T − EtRM,t→T )
n

=
∑

s∈{d,c,u}

(RM,t→T − EtRM,t→T )
n IAs

and take expectations under the physical and risk-neutral measures to show

RP(n)
t→T =

∑
s∈{d,c,u}

Et [(RM,t→T − EtRM,t→T )
n IAs

]−
∑

s∈{d,c,u}

E∗t [(RM,t→T − E∗tRM,t→T )
n IAs

] ,

≡
∑

s∈{d,c,u}

RP(n)
t→T [As] ,

where the second equality follows from our risk premium definition in Equation 29. Next, we

can rewrite our expression for the risk premium when n > 1 in Equation 29 as

RP(n)
t→T [As] = Et [(RM,t→T −Rf,t→T +Rf,t→T − EtRM,t→T )

n IAs
]−M∗(n)t→T [As]

= Et

[
n∑
k=0

n! (−1)
n−k

(n− k)!k!
(Et [RM,t→T −Rf,t→T ])

n−k
(RM,t→T −Rf,t→T )

k IAs

]
−M∗(n)t→T [As]

=

n∑
k=0

n! (−1)
n−k

(n− k)!k!

(
M(1)
t→T [A]

)n−k
M(k)
t→T [As]−M∗(n)t→T [As] ,

where the second line follows from the Binomial theorem and the last time from our definition

of M(n)
t→T [As]. �
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IA.1 Notation

Symbol Description

t Generic current date

T Generic future date

St Market index value at date t

RM,t→T Gross market return from date t to T (Note: RM,t→T = ST/St)

Rf,t→T Risk-free rate from date t to T

Ct→T [K] Call price at date t with expiration at date T and strike price K

Pt→T [K] Put price at date t with expiration at date T and strike price K
∗ Denotes the risk-neutral measure; for instance, VAR∗ denotes

risk-neutral variance.

E∗t [·] Expectation at time t under the risk-neutral measure

Et [·] Expectation at time t under the physical measure

Prob∗t [B] Risk-neutral probability at time t of event B

As Set describing regions of the gross market return space with
s ∈ {d, c, u} (see Equations 4, 5, and 6); note that A ≡ Ad ∪ Ac ∪ Au

IAs Indicator function for gross market return inclusion in set As
x Threshold in gross market return space for computing downside

truncated moments (see Equation 4); we set x = 0.9 for all empirical
results

x Threshold in gross market return space for computing upside
truncated moments (see Equation 6); we set x = 1.1 for all empirical
results

xs Points in gross market return space around which Taylor expansions
are taken and at which preference parameters are estimated;
s ∈ {d, c, u} (see Equations 4, 5, and 6); we set xd = 0.85, xc = 1, and
xu = 1.15 for all empirical results

τ (xs) Risk tolerance evaluated at xs (see Equation 14)

ρ (xs) Skewness tolerance evaluated at xs (see Equation 15)

κ (xs) Kurtosis tolerance evaluated at xs (see Equation 16)

θk (xs) Parameters related to utility function derivatives (see Equation 12)

λt (xs, k, j) Function of preference parameters defined in Equation 26

M∗(n)
i,t→T [As] Shorthand for E∗t [(Ri,t→T −Rf,t→T )n IAs ] (see Equation 20)

M(n)
i,t→T [As] Shorthand for Et [(Ri,t→T −Rf,t→T )n IAs ] (see Equation 21)

RP(n)
t→T [As] Shorthand for the risk premia defined in Equation 29

U (WT ) Generic representative investor utility function evaluated at investor
wealth, WT

Mt→T Stochastic discount factor realization over the time period from t to T
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IA.2 Robustness and Additional Results

In this section, we explore the robustness of our results to various modifications and provide
some additional results. In Subsection IA.2.1, we provide plots of the preference parameters
reported in Table 1 and discuss their implications for the conditional SDF. In Subsection
IA.2.2, we provide market risk premium decomposition plots under the restricted preference
parameter assumptions from Subsection 2.3. In Subsection IA.2.3, we construct all risk-
neutral moments from observed options prices rather than using the implied volatility curve
fitting technique (see Footnote 13) and show this does not materially alter our main results. In
Subsection IA.2.4, we explore the effect of potential option mispricing due to supply/demand
imbalances and show that this does not materially alter our main results.

IA.2.1 Unrestricted Preference Parameter Plots and the Implied SDF

Figure IA.1 plots estimates relative risk aversion and Figure IA.2 plots estimates of τ , ρ,
and κ reported in Table 1 for visualization. These estimated preference parameters have
implications for the behavior of the SDF in different regions of the return space. Given a
set of estimated preference parameters in each region and measures of risk neutral moments
at date t for horizon T , we can construct the conditional implied SDF in each region as
the inverse of Equation 18. We do this for three different dates in Figure IA.3. The dates
are chosen to be on dates with low market volatility (3 January, 2006 and 2 January, 2014)
and one date with large market volatility (15 September, 2008). Within a given horizon,
the SDF plots are very consistent across dates implying that the SDF does not change
much over time.38 It should also be noted that, although different preference parameters
are used to construct the implied SDF in different regions, the SDF does not jump much
at the boundaries between different regions relative to the overall range of the SDF across
the plotted market return space. The SDF flattens with horizon, implying investor marginal
utility increases more for equivalent decreases in market value in the short term than the
long term.

IA.2.2 Restricted Preference Parameter Decomposition (Additional Re-
sults)

We provide market risk premium decomposition plots under the restricted preference param-
eter assumptions from Subsection 2.3 in Figure IA.4. We provide these plots here to save
space in the main draft and since they are similar in appearance to those from our main
unrestricted preference parameter results provided in Figure 2.

38The only exception is during November, 2008 in the peak of the financial crisis. During this period, the
upper limit of the SDF became lower in the down region of the return space. This implies that during the
financial crises investor marginal utility was particularly high in states of the world with very low realized
market returns.
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Table IA.1 provides forecasting regression results of the form in Equation 33 but using
the risk premium decomposition constructed using the restricted preference parameters. In
this case, we do not necessarily expect the null hypotheses that aT = 0 and bT = 1 to be
satisfied to the extent that the total risk premium computed here represents a lower bound,
except in the case that this lower bound is tight. In the table, we see patterns similar to
those in Table 3. In fact, we cannot reject the separate nulls that aT = 0 at any horizon
whether we use the Full Sample or Ex Crisis samples. However, we can reject the null that
bT = 1 at the 30- and 90-day horizons when using the Ex Crisis sample. The fact that bT > 1
is consistent with this measure representing a lower bound on the risk premium. All of the
out-of-sample R-squared values are slightly negative when using the Full Sample. However,
the out-of-sample R-squared values become positive in the Ex Crisis period with magnitudes
similar to those using risk premia computed from estimated preference parameters.

IA.2.3 Observed Prices Instead of Implied Volatility Fitting

In this subsection, we explore whether constructing risk-neutral moments by numerically in-
tegrating over observed options prices rather than using the implied volatility fitting method-
ology alters our main results related to the market risk premium decomposition. Aside from
numerically integrating over observed option prices (using the same equations summarized
in Internet Appendix IA.4) rather than prices imputed from fitted implied volatility curves,
all procedures are the same. This includes re-estimating preference parameters, which are
similar to the original estimates so we do not report these. Results for the modified market
risk premium decomposition are provided in Figure IA.5 and Table IA.2. These results can
be compared with our analogous main results in Figure 2 and Table 2. The modified decom-
position produces results that are both qualitatively and quantitatively similar to our main
results and we conclude that the choice to compute risk-neutral moments by integrating over
options prices implied by fitted implied volatility curves versus integrating over observed
prices is innocuous.

IA.2.4 Potentially Overpriced Options

There is evidence that the well-known implied volatility smirk displayed by index option
prices is at least partially the result of supply/demand imbalances caused by the inability
of market makers to perfectly hedge option exposures (Garleanu, Pedersen, and Poteshman,
2009). These imbalances imply that observed option prices are mispriced and do not reflect
no-arbitrage prices. Garleanu, Pedersen, and Poteshman (2009) define mispricing in the cross-
section of option moneyness as deviations in measured Black-Scholes implied volatility from
the physical volatility estimated using Bates (2006). The authors show that this difference is
on average decreasing in option moneyness (see Figure 1 in their paper). Importantly, they
show that (on average) the implied volatility of OTM calls is approximately the same as the
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Bates (2006) volatility measure (i.e., these options are “correctly” priced if the Bates (2006)
measure is the correct measure of volatility).

If the option prices we observed deviate from their no-arbitrage prices due to demand
pressure, this is a problem for the risk-neutral moments we construct and use to perform the
empirical implementation of our risk premium decomposition. Although a full estimation of
demand-driven option pricing models and their effects on observed option prices is beyond
the scope of this paper, we construct a heuristic method for assessing the potential effect of
such demand pressure on observed options prices. We do this by modifying our measured
implied volatility curves for cross-sections of option prices (in moneyness) at each date and for
each maturity. Our main task is to provide a reasonable transformation of observed implied
volatility curves to account for potential demand-driven mispricing and effectively correct
observed options prices so that they reflect no-arbitrage relationships.

One approach would be to simply use the Bates (2006) volatility measure as the “correct”
measure of implied volatility across all strikes for each date/maturity combination. We feel
that this is too restrictive since it implies index prices are log-normal (i.e., the standard
Black-Scholes assumption). There is significant evidence that this is not the case and that
index prices are negatively skewed. To allow for this empirical fact, we consider approaches
to shrink observed implied volatility curves towards the constant Black-Scholes benchmark.
Two key insights from Garleanu, Pedersen, and Poteshman (2009) are that demand-corrected
implied volatility curves should be lower than observed implied volatility curves and that
OTM calls are approximately correctly priced. Given these insights, we assume that the
OTM call with the lowest observed implied volatility is approximately correctly priced for
sets of options at each date/maturity. We denote the associated implied volatility and strike
price as IV0 and K0, respectively. We then construct a transformed implied volatility curve
for each date/maturity as follows. Let all observed volatilities and strikes be denoted by
IVi and Ki. Let the transformed implied volatilities be denoted by ˜IV i. For any OTM
calls with Ki > K0, we set ˜IV i = IV0. Next, for any options with IVi < IV0, we set
˜IV i = IV0. Finally, we select a constant, a, and transform all other implied volatilities

according to: ˜IV i = IVi − a (IVi − IV0). As long as a ∈ [0, 1], this transformation shrinks
the observed implied volatilities, IVi, towards IV0. When a = 1, we have ˜IV i = IV0 ∀i (i.e.,
the transformed implied volatility curve is flat and takes on a value equal to the implied
volatility of the OTM call option with the lowest implied volatility). When a = 0, we obtain
the original implied volatilities (i.e., ˜IV i = IVi ∀i).

The final ingredient in our heuristic correction is to select a. We do this in a conserva-
tive way that sets the risk-neutral market return skewness (approximately) to the physical
skewness. Our baseline risk-neutral and physical skewness measures imply that risk-neutral
skewness measured from observed options prices is approximately twice that of the physical
skewness implied by our estimated preference parameters in Table 1. This holds uncondi-
tionally and is approximately true conditionally. As outside validation of this result, results
reported in Beason and Schreindorfer (2020) imply that the ratio of unconditional risk-
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neutral to physical skewness is about 2. As an identifying assumption, we assume that this
relationship holds conditionally and identify the a value such that this is true. We find that
this holds on average when a ≈ 0.45 and set a to this value in our analysis.

This implied volatility transformation attempts to match risk-neutral implied volatility
and skewness to those from the physical market return distribution by shrinking the implied
volatility curve towards IV0. The idea is that any differences between IVi and ˜IV i represent
options price premia that are the result of supply/demand imbalances unrelated to risk.
To the extent that these price pressures exist, our transformation should produce implied
options prices that are closer to their no-arbitrage benchmarks.

Given our estimated value of a, we re-estimate all risk-neutral moments using the trans-
formed implied volatility curves, re-estimate preference parameters, and report the resulting
unrestricted market risk premium decomposition in Figure IA.6 and Table IA.3. These re-
sults can be compared with our analogous main results in Figure 2 and Table 2. The modified
decomposition produces results that are both qualitatively and quantitatively similar to our
main results. The most noticeable difference is that this modification results in the central
risk premium becoming a relatively larger component of the total risk premium at the ex-
pense of the downside risk premium. This is expected given that we have effectively decreased
the implied risk-neutral skewness, making it more similar to the physical distribution skew-
ness. The effect of this is to reduce the importance of the downside risk premium. It should
be noted, though, that the downside risk premium still maintains a large contribution to
the total risk premium. The upside risk premium contribution is very similar to in our main
specification. The implied volatility transformation we impose in this subsection represents
a drastic shift of the risk-neutral distribution towards the physical distribution (it effectively
cuts the implied volatility smirk slope in half), yet the analysis produces similar results for
the risk premium decomposition. We conclude that potential demand-driven options mis-
pricing (or any other mispricing that generates an excessive implied volatility smirk) does
not significantly alter our main results and conclusions.

IA.3 Utility Function-Implied Decompositions: Log, CRRA,
CARA, and HARA Utilities

This section derives exact closed-form expressions for physical truncated moments in terms
of risk neutral quantities when investor utility takes on various commonly specified func-
tional forms. We focus on the log, CRRA, CARA, and HARA utility since these represent
the most common forms of time-separable utility functions in extant literature. Given the
utility-implied physical moments and corresponding risk-neutral moments, we can estimate
risk premium decompositions implied under these various preference assumptions. Analytic
expressions for the physical and risk-neutral moments as functions of option prices are pro-
vided in Internet Appendix IA.4. Note that, given any utility function, one can compute such
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closed-form expressions in terms of risk-neutral moments that can be estimated from option
prices.

These formulations of our decomposition put slightly more structure on the decomposition
than in the data-implied decomposition since they make assumptions about the functional
form of representative investor preferences. Hence, they impose restrictions on the preference
parameters that we estimate from the data for our unrestricted decomposition. They do not,
however, impose as much structure as the representative agent models discussed in Section
3, which make assumptions about both the functional forms of preferences and state variable
processes that govern the economy. Importantly, to derive results under these specific utility
assumptions, we do not make any assumptions about the distribution of market returns or
other state variables that govern the economy.

Remark 1. Assume there exists a representative agent with log utility whose wealth is entirely
invested in the market. Given no-arbitrage, the inverse SDF is given by

Et [Mt→T ]

Mt→T
=

RM,t→T

E∗t [RM,t→T ]

and the conditional physical truncated moments are given by

M(n)
t→T [As] =

1

Rf,t→T
M∗(n+1)

t→T [As] + M∗(n)
t→T [As] (IA.1)

for any n and any As ∈ {A,Ad, Ac,Au}. Closed form expressions for these risk-neutral mo-
ments are provided in Internet Appendix IA.4.

Proof. See Internet Appendix IA.4. �

Remark 2. Assume there exists a representative agent with CRRA utility over final wealth
given by

U (WT ) =
W 1−α
T − 1

1− α

where α is the relative risk aversion, WT ≡ WtRM,t→T is the final wealth, Wt is the initial
wealth, and RM,t→T is the return on the market. Assuming no-arbitrage, the inverse SDF is
given by

Et [Mt→T ]

Mt→T
=

Rα
M,t→T

E∗t
[
Rα
M,t→T

]
and the conditional physical truncated moments are given by

M(n)
t→T [As] =

E∗t
[
Rα
M,t→T (RM,t→T −Rf,t→T )n IAs

]
E∗t
[
Rα
M,t→T

] (IA.2)
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for any n and any As ∈ {A,Ad, Ac,Au}. Closed-form expressions for Equation IA.2 are
provided in Internet Appendix IA.4.

Proof. See Internet Appendix IA.4. �

Remark 3. Assume there exists a representative agent with CARA utility of the form

U (WT ) = 1− e−α̃WT

where α̃ is the absolute risk aversion, WT ≡ WtRM,t→T is the final wealth, Wt is the initial
wealth, and RM,t→T is the return on the market. Define relative risk aversion as α ≡ α̃Wt.
Assuming no-arbitrage, the inverse SDF is given by

Et [Mt→T ]

Mt→T
=

eαRM,t→T

E∗t [eαRM,t→T ]

and the conditional physical truncated moments are given by

M(n)
t→T [As] =

E∗t
[
eαRM,t→T (RM,t→T −Rf,t→T )n IAs

]
E∗t [eαRM,t→T ]

(IA.3)

for any n any As ∈ {A,Ad, Ac,Au}. Closed-form expressions for Equation IA.3 are provided
in Internet Appendix IA.4.

Proof. See Internet Appendix IA.4. �

Remark 4. Assume there exists a representative agent with HARA utility of the form

U (WT ) =
1− γ
γ

(
aWT

1− γ
+ b

)γ
with a > 0 and

aWT

1− γ
+ b > 0,

where WT ≡ WtRM,t→T is the final wealth, Wt is the initial wealth, and RM,t→T is the return
on the market. Assuming no-arbitrage and decreasing relative risk aversion,39 the inverse
SDF is given by

Et [mt→T ]

mt→T
=

(−a∗ (RM,t→T/Rf,t→T )− 1)1−γ

E∗t
[
(−a∗ (RM,t→T/Rf,t→T )− 1)1−γ]

where

a∗ =

(
1− γ
R
− 1

)−1

39Decreasing relative risk aversion implies b < 0. We could also derive a similar expression assuming
increasing relative risk aversion (b > 0), but choose to omit this less economically relevant case.
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and R is the relative risk aversion evaluated at WtRf,t→T . The conditional physical truncated
moment is given by

M(n)
t→T [As] =

E∗t
[
(−a∗ (RM,t→T/Rf,t→T )− 1)1−γ (RM,t→T −Rf,t→T )n IAs

]
E∗t
[
(−a∗ (RM,t→T/Rf,t→T )− 1)1−γ] (IA.4)

for any n any As ∈ {A,Ad, Ac,Au}. The closed-form expression for Equation IA.4 is provided
in Internet Appendix IA.4.

Proof. See Internet Appendix IA.4. �

Given these physical moments and measured risk-neutral moments, we can compute our
risk premium decomposition according to Equation 29 under these various preference spec-
ifications. Closed-form expressions that allow us to compute these moments directly from
option prices are provided in Internet Appendix IA.4. Table IA.4 provides a summary of the
average risk premium levels and contributions from each region under each set of preference
assumptions. In the case of CRRA and CARA utility, we provide results for levels of rela-
tive risk aversion at three, five, and seven. In the case of HARA utility, we are limited to
relatively low levels of risk aversion due to the functional form, and set these to 1.0, 1.1,
and 1.2. Although the levels of risk premia implied by each specific utility function (Panel
A) can be quite different than those from our data-implied decomposition, the contributions
(Panel B) are actually more similar to those from the data-implied decomposition relative
to those from the representative agent model-implied decompositions. This implies that the
additional structure implied by these models can lead to model misspecification that has
counterfactual implications for the relative contributions to the total risk premium to which
the utility-based decomposition are immune.

IA.4 Expressions for Computing Risk-Neutral Moments

In this section, we use the Carr and Madan (2001) spanning formula to derive expressions
for various risk-neutral moments needed for our decomposition as functions of observable
options prices. The spanning formula can be written as:

h (y) = h (y0) + (y − y0)hy (y0) +

∫ y0

0

hyy (K) (K − y)
+
dK +

∫ ∞
y0

hyy (K) (y −K)
+
dK (IA.5)

where h (y) represents a generic function of y. We refer to y0 as the “Carr and Madan
expansion point.” In our case, we are interested in functions of the future market index at
time T , ST (i.e., we set y = ST ). We can think of y0 as a baseline market index value (e.g.,
y0 = Rf,t→TSt, where St is the current market price at time t). We switch between using
RM,t→T with the equivalent expression ST/St in this section when appropriate for clarity.
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We also make use of the following indicator functions when computing truncated moments:
IAc ≡ I{xSt≤ST≤xST }, IAd ≡ I{ST<xSt}, and IAu ≡ I{ST>xSt}.

Expressions in this section require us to compute integrals of functions of option prices with
respect to the strike price. Using the Black-Scholes formula, there is a one-to-one mapping
between observed prices and implied volatilities. To compute risk-neutral moments we map
observed prices to implied volatilities, fit the implied volatilities according to the procedure
described in Footnote 13, then invert the fitted volatilities to obtain prices needed for the
expressions in this section.

IA.4.1 Risk-Neutral Moments Centered on Rf,t→T

In this subsection, we derive expressions for risk-neutral moments of the form
E∗ [(RM,t→T −Rf,t→T )n] and E∗ [(RM,t→T −Rf,t→T )n IAs ] where RM,t→T is the gross market
return from time t to T , Rf,t→T is the risk-free rate from time t to T , and IAs is an indicator
function for realized market returns belonging to sets As defined in Equations 4, 5, and 6.
Note that we can express the gross market return as RM,t→T = ST/St.

IA.4.1.1 Untruncated Risk-Neutral Moments Centered on Rf,t→T :
E∗ [(RM,t→T −Rf,t→T )n]

Set the function h (·) in Equation IA.5 to

h (ST ) =

(
ST
St
−Rf,t→T

)n
. (IA.6)

Derivatives of this function are

hy (ST ) =
n

St

(
ST
St
−Rf,t→T

)n−1
and (IA.7)

hyy (ST ) =
n (n− 1)

S2
t

(
ST
St
−Rf,t→T

)n−2
. (IA.8)

Next, set y0 = Rf,t→TSt. Evaluating the function and its derivatives at values needed for
Equation IA.5 yields:

h (Rf,t→TSt) = 0,

hy (Rf,t→TSt) = 0, and

hyy (K) =
n (n− 1)

S2
t

(
K

St
−Rf,t→T

)n−2
.
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Substituting these expressions into Equation IA.5 yields:(
ST
St
−Rf,t→T

)n
=

n (n− 1)

S2
t

∫ Rf,t→TSt

0

(
K

St
−Rf,t→T

)n−2
(K − ST )

+
dK

+
n (n− 1)

S2
t

∫ ∞
Rf,t→TSt

(
K

St
−Rf,t→T

)n−2
(ST −K)

+
dK.

Taking expectations under the risk-neutral measure at time t yields:

E∗t [(RM,t→T −Rf,t→T )
n
]

=
n (n− 1)Rf,t→T

S2
t

∫ Rf,t→TSt

0

(
K

St
−Rf,t→T

)n−2
Pt→T [K] dK

+
n (n− 1)Rf,t→T

S2
t

∫ ∞
Rf,t→TSt

(
K

St
−Rf,t→T

)n−2
Ct→T [K] dK (IA.9)

where Pt→T [K] and Ct→T [K] are the put and call prices with strike prices K at time t and
expiration date T . Note that when n = 1 the expression yields E∗t [(RM,t→T −Rf,t→T )] = 0
as expected (i.e., because the risk-neutral expected market return is the risk-free rate).

IA.4.1.2 Downside Risk-Neutral Moments Centered on Rf,t→T :
E∗ [(RM,t→T −Rf,t→T )n IAd ]

Set the function h (·) in Equation IA.5 to that in Equation IA.6. Next, set y0 = xSt. Evalu-
ating the function and its first derivative at values needed for Equation IA.5 yields:

h (xSt) = (x−Rf,t→T )
n

and

hy (xSt) =
n

St
(x−Rf,t→T )

n−1
.

Substituting these expressions into Equation IA.5 yields:(
ST
St
−Rf,t→T

)n
= (x−Rf,t→T )

n
+ n (x−Rf,t→T )

n−1
(
ST
St
− x
)

+
n (n− 1)

S2
t

∫ xSt

0

(
K

St
−Rf,t→T

)n−2
(K − ST )

+
dK

+
n (n− 1)

S2
t

∫ ∞
xSt

(
K

St
−Rf,t→T

)n−2
(ST −K)

+
dK.
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Multiplying by I{ST<xSt} yields:(
ST
St
−Rf,t→T

)n
I{ST<xSt} = (x−Rf,t→T )

n I{ST<xSt} + n (x−Rf,t→T )
n−1

(
ST
St
− x
)
I{ST<xSt}

+
n (n− 1)

S2
t

∫ xSt

0

(
K

St
−Rf,t→T

)n−2
(K − ST )

+ I{ST<xSt}dK

+
n (n− 1)

S2
t

∫ ∞
xSt

(
K

St
−Rf,t→T

)n−2
(ST −K)

+ I{ST<xSt}dK.

Simplifying this expression yields:(
ST
St
−Rf,t→T

)n
I{ST<xSt} = (x−Rf,t→T )

n I{ST<xSt} − n (x−Rf,t→T )
n−1 1

St
(xSt − ST ) I{ST<xSt}

+
n (n− 1)

S2
t

∫ xSt

0

(
K

St
−Rf,t→T

)n−2
(K − ST )

+
dK.

Taking expectations under the risk-neutral measure at time t yields:

E∗ [(RM,t→T −Rf,t→T )
n IAd

]

= (x−Rf,t→T )
n
Prob∗t [RM,t→T < x]− n (x−Rf,t→T )

n−1 Rf,t→T
St

Pt→T [xSt]

+
n (n− 1)Rf,t→T

S2
t

∫ xSt

0

(
K

St
−Rf,t→T

)n−2
Pt→T [K] dK (IA.10)

where Prob∗t [RM,t→T < x] is the risk-neutral probability at time t that RM,t→T < x and can
be computed as:

Prob∗t [RM,t→T < x] = Rf,t→T
∂Pt→T [K]

∂K

∣∣∣∣
K=xSt

(IA.11)

where ∂Pt→T [K]
∂K

∣∣∣
K=xSt

is the partial derivative of the put price with respect to K evaluated

at K = xSt. We also make use of the definitions IAd ≡ I{ST<xSt} and RM,t→T ≡ ST/St. We

compute ∂Pt→T [K]
∂K

∣∣∣
K=xSt

by computing the slope between put prices with strikes that span

xSt.

IA.4.1.3 Upside Risk-Neutral Moments Centered on Rf,t→T : E∗ [(RM,t→T −Rf,t→T )n IAu ]

Set the function h (·) in Equation IA.5 to that in Equation IA.6. Next, set y0 = xSt. Evalu-
ating the function and its first derivative at values needed for Equation IA.5 yields:

h (xSt) = (x−Rf,t→T )
n

and

hy (xSt) =
n

St
(x−Rf,t→T )

n−1
.
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Substituting these expressions into Equation IA.5 yields:(
ST
St
−Rf,t→T

)n
= (x−Rf,t→T )

n
+ n (x−Rf,t→T )

n−1
(
ST
St
− x
)

+
n (n− 1)

S2
t

∫ xSt

0

(
K

St
−Rf,t→T

)n−2
(K − ST )

+
dK

+
n (n− 1)

S2
t

∫ ∞
xSt

(
K

St
−Rf,t→T

)n−2
(ST −K)

+
dK.

Multiplying by I{ST>xSt} yields:(
ST
St
−Rf,t→T

)n
I{ST>xSt} = (x−Rf,t→T )

n I{ST>xSt} + n (x−Rf,t→T )
n−1

(
ST
St
− x
)
I{ST>xSt}

+
n (n− 1)

S2
t

∫ xSt

0

(
K

St
−Rf,t→T

)n−2
(K − ST )

+ I{ST>xSt}dK

+
n (n− 1)

S2
t

∫ ∞
xSt

(
K

St
−Rf,t→T

)n−2
(ST −K)

+ I{ST>xSt}dK.

Simplifying this expression yields:(
ST
St
−Rf,t→T

)n
I{ST>xSt} = (x−Rf,t→T )

n I{ST>xSt} + n (x−Rf,t→T )
n−1 1

St
(ST − xSt)+

+
n (n− 1)

S2
t

∫ ∞
xSt

(
K

St
−Rf,t→T

)n−2
(ST −K)

+
dK.

Taking expectations under the risk-neutral measure at time t yields:

E∗ [(RM,t→T −Rf,t→T )
n IAu ]

= (x−Rf,t→T )
n
Prob∗t [RM,t→T > x] + n (x−Rf,t→T )

n−1 Rf,t→T
St

Ct→T [xSt]

+
n (n− 1)Rf,t→T

S2
t

∫ ∞
xSt

(
K

St
−Rf,t→T

)n−2
Ct→T [K] dK (IA.12)

where Prob∗t [RM,t→T > x] is the risk-neutral probability at time t that RM,t→T > x and can
be computed as:

Prob∗t [RM,t→T > x] = −Rf,t→T
∂Ct→T [K]

∂K

∣∣∣∣
K=xSt

(IA.13)

where ∂Ct→T [K]
∂K

∣∣∣
K=xSt

is the partial derivative of the call price with respect to K evaluated

at K = xSt. We also make use of the definitions IAu ≡ I{ST>xSt} and RM,t→T ≡ ST/St. We

compute ∂Ct→T [K]
∂K

∣∣∣
K=xSt

by computing the slope between call prices with strikes that span

xSt.
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IA.4.1.4 Central Risk-Neutral Moments Centered on Rf,t→T : E∗ [(RM,t→T −Rf,t→T )n IAc ]
Observe the following identity:

I{xSt≤ST≤xST } ≡ 1− I{ST<xSt} − I{ST>xSt}. (IA.14)

This identity implies the following identity relating the risk-neutral moments:

E∗ [(RM,t→T −Rf,t→T )
n IAc ] ≡ E∗t [(RM,t→T −Rf,t→T )

n
]

−E∗ [(RM,t→T −Rf,t→T )
n IAd

]

−E∗ [(RM,t→T −Rf,t→T )
n IAu ]

where we have made use of the definitions IAc ≡ I{xSt≤ST≤xST }, IAd ≡ I{ST<xSt}, and IAu ≡
I{ST>xSt}. Substituting in expressions from Equations IA.9, IA.10, and IA.12 and simplifying
yields:

E∗ [(RM,t→T −Rf,t→T )
n IAc

]

= − (x−Rf,t→T )
n
Prob∗t [ST < xSt]− (x−Rf,t→T )

n
Prob∗t [ST > xSt]

+n (x−Rf,t→T )
n−1 Rf,t→T

St
Pt→T [xSt]− n (x−Rf,t→T )

n−1 Rf,t→T
St

Ct→T [xSt]

+
n (n− 1)Rf,t→T

S2
t

[∫ Rf,t→TSt

xSt

(
K

St
−Rf,t→T

)n−2
Pt→T [K] dK

]

+
n (n− 1)Rf,t→T

S2
t

[∫ xSt

Rf,t→TSt

(
K

St
−Rf,t→T

)n−2
Ct→T [K] dK

]
. (IA.15)

IA.4.2 Risk-Neutral Moments for log Utility-Based Physical Moments

Proof. Proof of Remark 1. Assuming no-arbitrage conditions, we can show

M(n)
t→T [As] ≡ Et

[
Mt→T

Et [Mt→T ]

Et [Mt→T ]

Mt→T
(RM,t→T −Rf,t→T )

n IAs

]
= E∗t

[
Et [Mt→T ]

Mt→T
(RM,t→T −Rf,t→T )

n IAs

]
=

E∗t [RM,t→T (RM,t→T −Rf,t→T )
n IAs

]

E∗t [RM,t→T ]

=
E∗t [(RM,t→T −Rf,t→T +Rf,t→T ) (RM,t→T −Rf,t→T )

n IAs
]

E∗t [RM,t→T ]

=
M∗(n+1)

t→T [As]

Rf,t→T
+ M∗(n)t→T [As] . (IA.16)

�
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IA.4.3 Risk-Neutral Moments for CRRA Utility-Based Physical Moments

Proof. Proof of Remark 2. Assuming no-arbitrage conditions, we can show

M(n)
t→T [As] ≡ Et

[
Mt→T

Et [Mt→T ]

Et [mt→T ]

mt→T
(RM,t→T −Rf,t→T )

n IAs

]
= E∗t

[
Et [mt→T ]

mt→T
(RM,t→T −Rf,t→T )

n IAs

]
=

E∗t
[
RαM,t→T (RM,t→T −Rf,t→T )

n IAs

]
E∗t
[
RαM,t→T

] . (IA.17)

The second expression is obtained by replacing the inverse of the SDF by its expression. This
ends the proof.

�

We then show how to compute risk-neutral moments in Remark 2 (Equation IA.2). Specif-

ically, we would like to compute moments of the form E∗t
[
(RM,t→T )α

(
ST
St
−Rf,t→T

)n
IAs
]
.

We first apply the binomial theorem to show:

= E∗t [(RM,t→T )
α

(RM,t→T −Rf,t→T )
n IAs

]
n∑
k=0

(−1)
n−k n!

k! (n− k)!
(Rf,t→T )

n−k E∗t
[
(RM,t→T )

k+α IAs

]
. (IA.18)

So we need only compute moments of (RM,t→T )k+α IAs in order to construct moments of
(RM,t→T )α (RM,t→T −Rf,t→T )n IAs . We again make use of the Carr and Madan (2001) span-
ning formula (Equation IA.5) to compute these moments as functions of options prices.

IA.4.3.1 CRRA: Untruncated Risk-Neutral Moments: E∗t
[
(RM,t→T )k+α

]
Set the function h (·) in Equation IA.5 to

hCRRA (ST ) =

(
ST
St

)k+α
. (IA.19)

Derivatives of this function are

hCRRAy (ST ) =
k + α

St

(
ST
St

)k+α−1
and (IA.20)

hCRRAyy (ST ) =
(k + α) (k + α− 1)

S2
t

(
ST
St

)k+α−2
. (IA.21)

IA.14



Next, set y0 = Rf,t→TSt. Evaluating the function and its derivatives at values needed for
Equation IA.5 yields:

hCRRA (Rf,t→TSt) = (Rf,t→T )
k+α

,

hCRRAy (Rf,t→TSt) =
k + α

St
(Rf,t→T )

k+α−1
, and

hCRRAyy (K) =
(k + α) (k + α− 1)

S2
t

(
K

St

)k+α−2
.

Substituting these expressions into Equation IA.5 yields:(
ST
St

)k+α
= (Rf,t→T )

k+α
+ (k + α)

(
ST
St
−Rf,t→T

)
(Rf,t→T )

k+α−1

+
(k + α) (k + α− 1)

S2
t

∫ Rf,t→TSt

0

(
K

St

)k+α−2
(K − ST )

+
dK

+
(k + α) (k + α− 1)

S2
t

∫ ∞
Rf,t→TSt

(
K

St

)k+α−2
(ST −K)

+
dK.

Taking expectations under the risk-neutral measure at time t yields:

E∗t
[
(RM,t→T )

k+α
]

= (Rf,t→T )
k+α

+
(k + α) (k + α− 1)Rf,t→T

S2
t

∫ Rf,t→TSt

0

(
K

St

)k+α−2
Pt→T [K] dK

+
(k + α) (k + α− 1)Rf,t→T

S2
t

∫ ∞
Rf,t→TSt

(
K

St

)k+α−2
Ct→T [K] dK. (IA.22)

Equation IA.22 can be combined with Equation IA.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 when IAs = 1 (i.e., the untruncated moment case).

IA.4.3.2 CRRA: Downside Risk-Neutral Moments: E∗t
[
(RM,t→T )k+α IAd

]
Set the function h (·) in Equation IA.5 to that in Equation IA.19. Next, set y0 = xSt.
Evaluating the function and its first derivative at values needed for Equation IA.5 yields:

hCRRA (xSt) = (x)
k+α

and

hCRRAy (xSt) =
k + α

St
(x)

k+α−1
.
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Note that hCRRAyy (K) based on Equation IA.21 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{ST<xSt} to obtain:(

ST
St

)k+α
I{ST<xSt} = (x)

k+α I{ST<xSt} + (ST − xSt)
k + α

St
(x)

k+α−1 I{ST<xSt}

+
(k + α) (k + α− 1)

S2
t

∫ xSt

0

(
K

St

)k+α−2
(K − ST )

+ I{ST<xSt}dK

+
(k + α) (k + α− 1)

S2
t

∫ ∞
xSt

(
K

St

)k+α−2
(ST −K)

+ I{ST<xSt}dK.

Rearranging and simplifying (noting that the second integral is zero) yields:(
ST
St

)k+α
I{ST<xSt} = (x)

k+α I{ST<xSt} − (k + α) (x)
k+α−1 1

St
(xSt − ST )

+

+
(k + α) (k + α− 1)

S2
t

∫ xSt

0

(
K

St

)k+α−2
(K − ST )

+
dK.

Taking expectations under the risk-neutral measure yields:

E∗t
[
(RM,t→T )

k+α IAd

]
= (x)

k+α
Prob∗t [ST < xSt]− (k + α) (x)

k+α−1 Rf,t→T
St

Pt→T [xSt]

+
(k + α) (k + α− 1)Rf,t→T

S2
t

∫ xSt

0

(
K

St

)k+α−2
Pt→T [K] dK. (IA.23)

Equation IA.23 can be combined with Equation IA.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 with IAs = IAd .

IA.4.3.3 CRRA: Upside Risk-Neutral Moments: E∗t
[
(RM,t→T )k+α IAu

]
Set the function h (·) in Equation IA.5 to that in Equation IA.19. Next, set y0 = xSt.
Evaluating the function and its first derivative at values needed for Equation IA.5 yields:

hCRRA (xSt) = (x)
k+α

and

hCRRAy (xSt) =
k + α

St
(x)

k+α−1
.

Note that hCRRAyy (K) based on Equation IA.21 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
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by I{ST>xSt} to obtain:(
ST
St

)k+α
I{ST>xSt} = (x)

k+α I{ST>xSt} + (ST − xSt)
k + α

St
(x)

k+α−1 I{ST>xSt}

+
(k + α) (k + α− 1)

S2
t

∫ xSt

0

(
K

St

)k+α−2
(K − ST )

+ I{ST>xSt}dK

+
(k + α) (k + α− 1)

S2
t

∫ ∞
xSt

(
K

St

)k+α−2
(ST −K)

+ I{ST>xSt}dK.

Rearranging and simplifying (noting that the first integral is zero) yields:(
ST
St

)k+α
I{ST>xSt} = (x)

k+α I{ST>xSt} +
k + α

St
(x)

k+α−1
(ST − xSt)+

+
(k + α) (k + α− 1)

S2
t

∫ ∞
xSt

(
K

St

)k+α−2
(ST −K)

+
dK.

Taking expectations under the risk-neutral measure yields:

E∗t
[
(RM,t→T )

k+α IAu

]
= (x)

k+α
Prob∗t [ST > xSt] + (k + α) (x)

k+α−1 Rf,t→T
St

Ct→T [xSt]

+
(k + α) (k + α− 1)Rf,t→T

S2
t

∫ ∞
xSt

(
K

St

)k+α−2
Ct→T [K] dK. (IA.24)

Equation IA.24 can be combined with Equation IA.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 with IAs = IAu .

IA.4.3.4 CRRA: Central Risk-Neutral Moments: E∗t
[
(RM,t→T )k+α IAc

]
The identity in Equation IA.14 implies the following identity relating the risk-neutral mo-
ments:

E∗
[
(RM,t→T )

k+α IAc

]
≡ E∗t

[
(RM,t→T )

k+α
]

−E∗
[
(RM,t→T )

k+α IAd

]
−E∗

[
(RM,t→T )

k+α IAu

]
where we have made use of the definitions IAc ≡ I{xSt≤ST≤xST }, IAd ≡ I{ST<xSt}, and IAu ≡
I{ST>xSt}. Substituting in expressions from Equations IA.22, IA.23, and IA.24 and simplifying
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yields:

E∗
[
(RM,t→T )

k+α IAc

]
= (Rf,t→T )

k+α − (x)
k+α

Prob∗t [ST < xSt]− (x)
k+α

Prob∗t [ST > xSt]

+ (k + α) (x)
k+α−1 Rf,t→T

St
Pt→T [xSt]− (k + α) (x)

k+α−1 Rf,t→T
St

Ct→T [xSt]

+
(k + α) (k + α− 1)Rf,t→T

S2
t

∫ Rf,t→TSt

xSt

(
K

St

)k+α−2
Pt→T [K] dK

+
(k + α) (k + α− 1)Rf,t→T

S2
t

∫ xSt

Rf,t→TSt

(
K

St

)k+α−2
Ct→T [K] dK. (IA.25)

Equation IA.25 can be combined with Equation IA.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 with IAs = IAc .

IA.4.4 Risk-Neutral Moments for CARA Utility-Based Physical Moments

Proof. Proof of Remark 3. The conditional truncated moment is

M(n)
t→T [As] = E∗t

[
Et [mt→T ]

mt→T
(RM,t→T −Rf,t→T )

n IAs

]
= E∗t

[
eαRM,t→T

E∗t [eαRM,t→T ]
(RM,t→T −Rf,t→T )

n IAs

]
=

E∗t
[
eαRM,t→T (RM,t→T −Rf,t→T )

n IAs

]
E∗t [eαRM,t→T ]

. (IA.26)

This ends the proof. �

The last expression is obtained by replacing the inverse of the SDF by its ex-
pression. In this sub-section, we show how to compute risk-neutral moments in Re-
mark 3 (Equation IA.3). Specifically, we would like to compute moments of the form
E∗t
[
eαRM,t→T (RM,t→T −Rf,t→T )n IAs

]
. We first apply the binomial theorem to show:

E∗t
[
eαRM,t→T (RM,t→T −Rf,t→T )

n IAs

]
=

n∑
k=0

(−1)
n−k n!

k! (n− k)!
(Rf,t→T )

n−k E∗t
[
eαRM,t→T (RM,t→T )

k IAs

]
. (IA.27)

So we need only compute moments of eαRM,t→T (RM,t→T )k IAs in order to construct moments of
eαRM,t→T (RM,t→T −Rf,t→T )n IAs . We again make use of the Carr and Madan (2001) spanning
formula (Equation IA.5) to compute these moments as functions of options prices.
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IA.4.4.1 CARA: Untruncated Risk-Neutral Moments: E∗t
[
eαRM,t→T (RM,t→T )k

]
Set the function h (·) in Equation IA.5 to

hCARA (ST ) = eα
ST
St

(
ST
St

)k
. (IA.28)

Derivatives of this function are

hCARAy (ST ) =
α

St
eα

ST
St

(
ST
St

)k
+

k

St
eα

ST
St

(
ST
St

)k−1
and (IA.29)

hCARAyy (ST ) =
α2

S2
t

eα
ST
St

(
ST
St

)k
+ 2

αk

S2
t

eα
ST
St

(
ST
St

)k−1
+
k (k − 1)

S2
t

eα
ST
St

(
ST
St

)k−2
. (IA.30)

Next, set y0 = Rf,t→TSt. Evaluating the function and its derivatives at values needed for
Equation IA.5 yields:

hCARA (Rf,t→TSt) = eαRf,t→T (Rf,t→T )
k
,

hCARAy (Rf,t→TSt) =
α

St
eαRf,t→T (Rf,t→T )

k
+

k

St
eαRf,t→T (Rf,t→T )

k−1
, and

hCARAyy (K) =
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2
.

Substituting these expressions into Equation IA.5 yields:

eα
ST
St

(
ST
St

)k
= eαRf,t→T (Rf,t→T )

k
+ (ST −Rf,t→TSt)

[
α

St
eαRf,t→T (Rf,t→T )

k
+

k

St
eαRf,t→T (Rf,t→T )

k−1
]

+

∫ Rf,t→TSt

0

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(K − ST )

+
dK

+

∫ ∞
Rf,t→TSt

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(ST −K)

+
dK.
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Taking expectations under the risk-neutral measure at time t yields:

E∗t
[
eαRM,t→T (RM,t→T )

k
]

= eαRf,t→T (Rf,t→T )
k

+
Rf,t→T
S2
t

∫ Rf,t→TSt

0

eα
K
St

[
α2

(
K

St

)k
+ 2αk

(
K

St

)k−1
+ k (k − 1)

(
K

St

)k−2]
Pt→T [K] dK

+
Rf,t→T
S2
t

∫ ∞
Rf,t→TSt

eα
K
St

[
α2

(
K

St

)k
+ 2αk

(
K

St

)k−1
+ k (k − 1)

(
K

St

)k−2]
Ct→T [K] dK.(IA.31)

Equation IA.31 can be combined with Equation IA.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 when IAs = 1 (i.e., the untruncated moment case).

IA.4.4.2 CARA: Downside Risk-Neutral Moments: E∗t
[
eαRM,t→T (RM,t→T )k IAd

]
Set the function h (·) in Equation IA.5 to that in Equation IA.28. Next, set y0 = xSt.
Evaluating the function and its first derivative at values needed for Equation IA.5 yields:

hCARA (xSt) = eαx (x)
k

and

hCARAy (xSt) =
α

St
eαx (x)

k
+

k

St
eαx (x)

k−1
.

Note that hCARAyy (K) based on Equation IA.30 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{ST<xSt} to obtain:

eα
ST
St

(
ST
St

)k
I{ST<xSt}

= eαx (x)
k I{ST<xSt} + (ST − xSt)

[
α

St
eαx (x)

k
+

k

St
eαx (x)

k−1
]
I{ST<xSt}

+

∫ xSt

0

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(K − ST )

+ I{ST<xSt}dK

+

∫ ∞
xSt

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(ST −K)

+ I{ST<xSt}dK.
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Rearranging and simplifying (noting that the second integral is zero) yields:

eα
ST
St

(
ST
St

)k
I{ST<xSt}

= eαx (x)
k I{ST<xSt} −

[
αeαx (x)

k
+ keαx (x)

k−1
] 1

St
(xSt − ST )

+

+

∫ xSt

0

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(K − ST )

+
dK.

Taking expectations under the risk-neutral measure yields:

E∗t
[
eαRM,t→T (RM,t→T )

k IAd

]
= eαx (x)

k
Prob∗t [ST < xSt]−

[
αeαx (x)

k
+ keαx (x)

k−1
] Rf,t→T

St
Pt→T [xSt]

+
Rf,t→T
S2
t

∫ xSt

0

eα
K
St

[
α2

(
K

St

)k
+ 2αk

(
K

St

)k−1
+ k (k − 1)

(
K

St

)k−2]
Pt→T [K] dK. (IA.32)

Equation IA.32 can be combined with Equation IA.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 with IAs = IAd .

IA.4.4.3 CARA: Upside Risk-Neutral Moments: E∗t
[
eαRM,t→T (RM,t→T )k IAu

]
Set the function h (·) in Equation IA.5 to that in Equation IA.28. Next, set y0 = xSt.
Evaluating the function and its first derivative at values needed for Equation IA.5 yields:

hCARA (xSt) = eαx (x)
k

and

hCARAy (xSt) =
α

St
eαx (x)

k
+

k

St
eαx (x)

k−1
.

Note that hCARAyy (K) based on Equation IA.30 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{ST>xSt} to obtain:

eα
ST
St

(
ST
St

)k
I{ST>xSt}

= eαx (x)
k I{ST>xSt} + (ST − xSt)

[
α

St
eαx (x)

k
+

k

St
eαx (x)

k−1
]
I{ST>xSt}

+

∫ xSt

0

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(K − ST )

+ I{ST>xSt}dK

+

∫ ∞
xSt

[
α2

S2
t

eα
K
St

(
K

St

)k
+ 2

αk

S2
t

eα
K
St

(
K

St

)k−1
+
k (k − 1)

S2
t

eα
K
St

(
K

St

)k−2]
(ST −K)

+ I{ST>xSt}dK.
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Rearranging and simplifying (noting that the first integral is zero) yields:

eα
ST
St

(
ST
St

)k
I{ST>xSt}

= eαx (x)
k I{ST>xSt} +

[
αeαx (x)

k
+ keαx (x)

k−1
] 1

St
(ST − xSt)+

+
1

S2
t

∫ ∞
xSt

[
α2eα

K
St

(
K

St

)k
+ 2αkeα

K
St

(
K

St

)k−1
+ k (k − 1) eα

K
St

(
K

St

)k−2]
(ST −K)

+
dK.

Taking expectations under the risk-neutral measure yields:

E∗t
[
eαRM,t→T (RM,t→T )

k IAu

]
= eαx (x)

k
Prob∗t [ST > xSt] +

[
αeαx (x)

k
+ keαx (x)

k−1
] Rf,t→T

St
Ct→T [xSt]

+
Rf,t→T
S2
t

∫ ∞
xSt

eα
K
St

[
α2

(
K

St

)k
+ 2αk

(
K

St

)k−1
+ k (k − 1)

(
K

St

)k−2]
Ct→T [K] dK. (IA.33)

Equation IA.33 can be combined with Equation IA.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 with IAs = IAu .

IA.4.4.4 CARA: Central Risk-Neutral Moments: E∗t
[
eαRM,t→T (RM,t→T )k IAc

]
The identity in Equation IA.14 implies the following identity relating the risk-neutral mo-
ments:

E∗
[
eαRM,t→T (RM,t→T )

k IAc

]
≡ E∗t

[
eαRM,t→T (RM,t→T )

k
]

−E∗
[
eαRM,t→T (RM,t→T )

k IAd

]
−E∗

[
eαRM,t→T (RM,t→T )

k IAu

]
where we have made use of the definitions IAc ≡ I{xSt≤ST≤xST }, IAd ≡ I{ST<xSt}, and IAu ≡
I{ST>xSt}. Substituting in expressions from Equations IA.31, IA.32, and IA.33 and simplifying
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yields:

E∗
[
eαRM,t→T (RM,t→T )

k IAc

]
= eαRf,t→T (Rf,t→T )

k − eαx (x)
k
Prob∗t [ST < xSt]− eαx (x)

k
Prob∗t [ST > xSt]

+
[
αeαx (x)

k
+ keαx (x)

k−1
] Rf,t→T

St
Pt→T [xSt]−

[
αeαx (x)

k
+ keαx (x)

k−1
] Rf,t→T

St
Ct→T [xSt]

+
Rf,t→T
S2
t

∫ Rf,t→TSt

xSt

eα
K
St

[
α2

(
K

St

)k
+ 2αk

(
K

St

)k−1
+ k (k − 1)

(
K

St

)k−2]
Pt→T [K] dK

+
Rf,t→T
S2
t

∫ xSt

Rf,t→TSt

eα
K
St

[
α2

(
K

St

)k
+ 2αk

(
K

St

)k−1
+ k (k − 1)

(
K

St

)k−2]
Ct→T [K] dK. (IA.34)

Equation IA.34 can be combined with Equation IA.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 with IAs = IAc .

IA.4.5 Risk-Neutral Moments for HARA Utility-Based Physical Moments

Proof. Proof of Remark 4. The conditional truncated moment is

M(n)
t→T [As] = E∗t

[
Et [mt→T ]

mt→T
(RM,t→T −Rf,t→T )

n IAs

]

=
E∗t
[
(−a∗ (RM,t→T /Rf,t→T )− 1)

1−γ
(RM,t→T −Rf,t→T )

n IAs

]
E∗t
[
(−a∗ (RM,t→T /Rf,t→T )− 1)

1−γ
] . (IA.35)

�

Next, we show how to compute risk-neutral moments in Remark 4 (Equa-
tion IA.4). Specifically, we would like to compute moments of the form

E∗t
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ
(RM,t→T −Rf,t→T )n IAs

]
. We first apply the binomial

theorem to show:

E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T −Rf,t→T )
n IAs

]

=
n∑
k=0

(−1)
n−k

n!

k! (n− k)!
(Rf,t→T )

n−k E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k IAs

]
. (IA.36)

So we need only compute moments of
(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ
(RM,t→T )k IAs in order to

construct moments of
(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ
(RM,t→T −Rf,t→T )n IAs . We again make use

of the Carr and Madan (2001) spanning formula (Equation IA.5) to compute these moments
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as functions of options prices.

IA.4.5.1 HARA: Untruncated Risk-Neutral Moments:

Our goal is to compute:

E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )k
]

Set the function h (·) in Equation IA.5 to

hHARA (ST ) =

(
− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k
. (IA.37)

Derivatives of this function are

hHARAy (ST ) = − (1− γ)
a∗

Rf,t→TSt

(
− a∗

Rf,t→T

(
ST
St

)
− 1

)−γ (
ST
St

)k
+
k

St

(
− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k−1
and (IA.38)

hHARAyy (ST ) = −γ (1− γ)

(
a∗

Rf,t→TSt

)2(
− a∗

Rf,t→T

(
ST
St

)
− 1

)−γ−1(
ST
St

)k
−2

k (1− γ) a∗

Rf,t→TS2
t

(
− a∗

Rf,t→T

(
ST
St

)
− 1

)−γ (
ST
St

)k−1
+
k (k − 1)

S2
t

(
− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k−2
. (IA.39)

Next, set y0 = Rf,t→TSt. Evaluating the function and its derivatives at values needed for
Equation IA.5 yields:

hHARA (Rf,t→TSt) = (−a∗ − 1)
1−γ

(Rf,t→T )
k
,

hHARAy (Rf,t→TSt) = − (1− γ)
a∗

Rf,t→TSt
(−a∗ − 1)

−γ
(Rf,t→T )

k

+
k

St
(−a∗ − 1)

1−γ
(Rf,t→T )

k−1
, and
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hHARAyy (K) = −γ (1− γ)

(
a∗

Rf,t→TSt

)2(
− a∗

Rf,t→T

(
K

St

)
− 1

)−γ−1(
K

St

)k
−2

k (1− γ) a∗

Rf,t→TS2
t

(
− a∗

Rf,t→T

(
K

St

)
− 1

)−γ (
K

St

)k−1
+
k (k − 1)

S2
t

(
− a∗

Rf,t→T

(
K

St

)
− 1

)1−γ (
K

St

)k−2
.

Substituting these expressions into Equation IA.5 yields:(
− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k
= (−a∗ − 1)

1−γ
(Rf,t→T )

k

+ (ST −Rf,t→TSt)hHARAy [Rf,t→TSt]

+

∫ Rf,t→TSt

0

hHARAyy (K) (K − ST )
+
dK

+

∫ ∞
Rf,t→TSt

hHARAyy (K) (ST −K)
+
dK.

Taking expectations under the risk-neutral measure at time t yields:

E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k

]
= (−a∗ − 1)

1−γ
(Rf,t→T )

k

+Rf,t→T

∫ Rf,t→TSt

0

hHARAyy (K)Pt→T [K] dK

+Rf,t→T

∫ ∞
Rf,t→TSt

hHARAyy (K)Ct→T [K] dK. (IA.40)

Equation IA.40 can be combined with Equation IA.36 to compute the risk-neutral moments
required for Equation IA.4 in Remark 4 when IAs = 1 (i.e., the untruncated moment case).

IA.4.5.2 HARA: Downside Risk-Neutral Moments: E∗t
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ
(RM,t→T )k IAd

]
Set the function h (·) in Equation IA.5 to that in Equation IA.37. Next, set y0 = xSt.
Evaluating the function and its first derivative at values needed for Equation IA.5 yields:

hHARA (xSt) =

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k

and
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hHARAy (xSt) = − (1− γ)
a∗

Rf,t→TSt

(
− a∗

Rf,t→T
x− 1

)−γ
(x)

k

+
k

St

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k−1

.

Note that hHARAyy (K) based on Equation IA.39 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{ST<xSt} to obtain: (

− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k
I{ST<xSt}

=

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k I{ST<xSt}

+ (ST − xSt)hHARAy (xSt) I{ST<xSt}

+

∫ xSt

0

hHARAyy (K) (K − ST )
+ I{ST<xSt}dK

+

∫ ∞
xSt

hHARAyy (K) (ST −K)
+ I{ST<xSt}dK.

Rearranging and simplifying (noting that the second integral is zero) yields:(
− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k
I{ST<xSt}

=

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k I{ST<xSt}

−hHARAy (xSt) (xSt − ST )
+

+

∫ xSt

0

hHARAyy (K) (K − ST )
+
dK.

Taking expectations under the risk-neutral measure yields:

E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k IAd

]

=

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k
Prob∗t [ST < xSt]

−Rf,t→ThHARAy (xSt)Pt→T [xSt]

+Rf,t→T

∫ xSt

0

hHARAyy (K)Pt→T [K] dK. (IA.41)

Equation IA.41 can be combined with Equation IA.36 to compute the risk-neutral moments
required for Equation IA.4 in Remark 4 with IAs = IAd .
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IA.4.5.3 HARA: Upside Risk-Neutral Moments: E∗t
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ
(RM,t→T )k IAu

]
Set the function h (·) in Equation IA.5 to that in Equation IA.37. Next, set y0 = xSt.
Evaluating the function and its first derivative at values needed for Equation IA.5 yields:

hHARA (xSt) =

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k

and

hHARAy (xSt) = − (1− γ)
a∗

Rf,t→TSt

(
− a∗

Rf,t→T
x− 1

)−γ
(x)

k

+
k

St

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k−1

.

Note that hHARAyy (K) based on Equation IA.39 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{ST>xSt} to obtain: (

− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k
I{ST>xSt}

=

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k I{ST>xSt}

+ (ST − xSt)hHARAy (xSt) I{ST>xSt}

+

∫ xSt

0

hHARAyy (K) (K − ST )
+ I{ST>xSt}dK

+

∫ ∞
xSt

hHARAyy (K) (ST −K)
+ I{ST>xSt}dK.

Rearranging and simplifying (noting that the first integral is zero) yields:(
− a∗

Rf,t→T

(
ST
St

)
− 1

)1−γ (
ST
St

)k
I{ST>xSt}

=

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k I{ST>xSt}

+hHARAy (xSt) (ST − xSt)+

+

∫ ∞
xSt

hHARAyy (K) (ST −K)
+
dK.
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Taking expectations under the risk-neutral measure yields:

E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k I{ST>xSt}

]

=

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k
Prob∗t [ST > xSt]

+Rf,t→Th
HARA
y (xSt)Ct→T [xSt]

+Rf,t→T

∫ ∞
xSt

hHARAyy (K)Ct→T [K] dK. (IA.42)

Equation IA.42 can be combined with Equation IA.36 to compute the risk-neutral moments
required for Equation IA.4 in Remark 4 with IAs = IAu .

IA.4.5.4 HARA: Central Risk-Neutral Moments: E∗t
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ
(RM,t→T )k IAc

]
The identity in Equation IA.14 implies the following identity relating the risk-neutral mo-
ments:

E∗
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k IAc

]

≡ E∗t

[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k

]

−E∗
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k IAd

]

−E∗
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k IAu

]

where we have made use of the definitions IAc ≡ I{xSt≤ST≤xST }, IAd ≡ I{ST<xSt}, and IAu ≡
I{ST>xSt}. Substituting in expressions from Equations IA.40, IA.41, and IA.42 and simplifying
yields:

E∗
[(
− a∗

Rf,t→T
RM,t→T − 1

)1−γ

(RM,t→T )
k IAc

]
= (−a∗ − 1)

1−γ
(Rf,t→T )

k

−
(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k
Prob∗t [ST < xSt]−

(
− a∗

Rf,t→T
x− 1

)1−γ

(x)
k
Prob∗t [ST > xSt]

+Rf,t→T
(
hHARAy (xSt)Pt→T [xSt]− hHARAy (xSt)Ct→T [xSt]

)
+Rf,t→T

(∫ Rf,t→TSt

xSt

hHARAyy (K)Pt→T [K] dK +

∫ xSt

Rf,t→TSt

hHARAyy (K)Ct→T [K] dK

)
. (IA.43)
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Equation IA.43 can be combined with Equation IA.36 to compute the risk-neutral moments
required for Equation IA.4 in Remark 4 with IAs = IAc .

IA.5 Nonlinear Least Squares Estimation of Preference Parame-
ters

We would like to estimate the preference parameters τ (xs), ρ (xs), and κ (xs) at three points
in the market return space corresponding to s ∈ {d, c, u}. These preference parameters
are required to compute the physical moments (via Corollary 1)40 needed to implement the
risk premium decomposition in Proposition 3. We use the relationship between physical and
risk-neutral moments from Corollary 1 to estimate preference parameters. Start by writing
powers of realized excess market returns as:

(RM,t→T −Rf,t→T )n = Et [(RM,t→T −Rf,t→T )n] + ε
(n)
t→T,s

Applying Corollary 1, we can replace Et [(RM,t→T −Rf,t→T )n] to obtain:

(RM,t→T −Rf,t→T )n = M∗(n)
t→T +

∞∑
k=1

k∑
j=0

λt (xs, k, j)
(
M∗(n+k−j)

t→T −M∗(k−j)t→T M∗(n)
t→T

)
1 +

∞∑
k=1

k∑
j=0

λt (xs, k, j)M∗(k−j)t→T

+ ε
(n)
t→T,s.

We truncate this summation at k = 3 for tractability. This balances truncation error induced
by choosing lower k with the fact that estimated higher-order risk-neutral moments (needed
for higher k) can be inaccurate.41 Assuming the truncation error is time invariant, we can
write:

(RM,t→T −Rf,t→T )
n

= a
(n)
T,s + M∗(n)t→T +

3∑
k=1

k∑
j=0

λt (xs, k, j)
(
M∗(n+k−j)t→T −M∗(k−j)t→T M∗(n)t→T

)
1 +

3∑
k=1

k∑
j=0

λt (xs, k, j)M∗(k−j)t→T

+ ε
(n)
t→T,s(IA.44)

where we include the constant a
(n)
T,s to account for the truncation error induced by limiting

the upper limit on the sum over k to be 3.42 To the extent that this error may be time

40Recall that this relationship is based on Corollary1, M∗(n)t→T are untruncated risk-neutral moments, and
λt (xs, k, j) is a function of the preference parameters τ (xs), ρ (xs), and κ (xs) according to Equations 26
and 12.

41For example, see Rompolis and Tzavalis (2017), who investigate the accuracy of higher-order risk-neutral
moments computed from options when the cross-section of options is limited.

42Note that all moments in Equation IA.44 are untruncated moments (i.e., M∗(n)t→T [A]). We suppress the
[A] dependence here for simplicity.
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varying, it will be relegated to the error term, ε
(n)
t→T, s. Note that this can be applied to

moments of any order (n), any time horizon (T ). Recall that λt (xs, k, j) is a function of the
preference parameters τ (xs), ρ (xs), and κ (xs) according to Equations 26 and 12. We set
x = 0.9 and x = 1.1 with xd = 0.85, xc = 1, and xd = 1.15 in all reported results. That
is, we are interested in studying risk premia associated with down market returns less than
-10%, central market returns between -10% and +10%, and up market returns greater than
+10%.

Note that we must estimate nine total preference parameters for each horizon of interest:
three parameters (τ (xs), ρ (xs), and κ (xs)) for each of the three regions of interest (s ∈
{d, c, u}) in the return space. Given realized excess market returns and measured risk-neutral
moments, we estimate the preference parameters τ (xs), ρ (xs), and κ (xs) using non-linear
weighted least squares to minimize the squared error using three versions of Equation IA.44:
n = 1, 2, and 3. Each value of n brings with it three equations: one for each set of preference
parameters in each of our three regions of interest. Therefore, we have nine total equations
and sets of error terms that are generated using Equation IA.44 in our estimation.

Since we are also interested in estimating truncated risk premia, we need to ensure that
the preference parameters satisfy the restriction that the sum of truncated physical moments
equals the untruncated physical moment (at least on average across time). This restriction
can be introduced to the nonlinear least squares estimation by considering relationships of
the form

(
RM,t→T −Rf,t→T

)n
= a

(n)
T +

∑
s∈{d,c,u}

M∗(n)t→T [As] +

3∑
k=1

k∑
j=0

λt (xs, k, j)
(
M∗(n+k−j)t→T [As]−M∗(k−j)t→T [A]M∗(n)t→T [As]

)
1 +

∞∑
k=1

k∑
j=0

λt (xs, k, j)M∗(k−j)t→T [A]

+ ε
(n)
t→T . (IA.45)

This relationship follows from Corollary 1 and the identity in Equation 28. We allow for the
relationship to not hold exactly both conditionally (through inclusion of ε

(n)
t→T ) and on average

across time (through the inclusion of a
(n)
T ). We do not require the relationship to hold exactly

conditionally due to the use of slightly different data from options prices when computing
truncated moments relative to untruncated moments (see Internet Appendix IA.4.1.1 for a
description of how these moments are computed using option price data). Given our estimated
parameter values, though, we also find that this restriction holds well both conditionally and
unconditionally (i.e., a

(n)
T ≈ 0 and the magnitude of ε

(n)
t→T are small relative to the magnitude

of the estimated physical moments, M(n)
t→T ≡ Et [(RM,t→T −Rf,t→T )n]). With n = 1, 2, and 3,

Equation IA.45 adds three additional equations and sets of error terms to include in the
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estimation.43

When minimizing the sum of squared errors implied by Equations IA.44 and IA.45, we
weight the error terms by the inverse standard deviation of the left-hand-side time series asso-
ciated with each equation (i.e. the inverse of the standard deviation of (RM,t→T −Rf,t→T )n).
We do this because the volatilities of each left-hand-side variable are naturally of a different
magnitude for different n values. We would like the error terms associated with equations
having different n values to have approximately the same weight in the least squares mini-
mization, which is effectively achieved using this weighting scheme.

The final ingredient in our estimation comes in the form of a Ridge-type penalty on the
estimated preference parameters. That is, in addition to the sum of squared error terms from
the twelve sets of restrictions discussed above, we add an additional term of the form

ε̃2
T = φT

∑
s∈{d,c,u}

[
τT (xs)

2 + ρT (xs)
2 + κT (xs)

2] (IA.46)

where φT is a tuning parameter. We add this penalty to the squared error objective function
for estimations at each horizon, T . We include the parameter horizon dependence here explic-
itly for clarity. We include the penalty term since the right-hand-side risk-neutral moments
are highly correlated. This can induce excessive noise in the preference parameter estimates
(see Hastie, Tibshirani, and Friedman, 2009, pp. 63-64). Adding a small penalty of this form
can help reduce variance in the estimated parameters without increasing estimation bias
much. We select the tuning parameter, φT , using a standard approach. We apply a 10-fold
cross validation to the estimation and find that the test error is approximately flat for tuning
parameter values below 10−3. We select a moderate value of φT = 2×10−5 across all horizons
to mitigate estimation bias induced by the penalty.

Given these ingredients, we estimate preference parameters separately at each horizon
of interest (30, 60, 90, 180, and 360 days) by minimizing an objective function that sums
squared errors from the 12 sets of equations described above (Equations IA.44 and IA.45)
and the penalty term in Equation IA.46 using daily data from January, 1996 through June,
2019.

IA.6 Projection of Generic SDF onto Aggregate Wealth

Without loss of generality, we set T = t + 1 to be consistent with the notation in the rep-
resentative agent models. Denote by Mt→t+1 the projection of the representative agent SDF

43We could also include equation restrictions related to individual truncated moments (i.e., expressions for

M(n)
t→T [As] according to Corollary 1 and using (RM,t→T −Rf,t→T )

n IAs
as realizations in the left hand side

of Equation IA.45 (without the summation). We choose not to use these since there are not many instances
where IAd

= 1 nor are there many instances of IAu = 1 in the data (i.e., the extreme market events for which
we are interested in estimating risk premia) are not often realized in the data.
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on a set spanned by aggregate wealth
{

1, Wt+1,.W 2
t+1,.W 3

t+1...
}

. The projected SDF, which
can be written as Mt→t+1 = h [Wt+1], can alternatively be expressed as

Mt→t+1 = h (WctRM,t→t+1) ,

where Wct = Wt − Ct and RM,t→t+1 is a proxy for the market return. This projected SDF
can alternatively be written as

Mt→t+1 = µtg (WctRM,t→t+1) ,

where µt is a constant. Here, the function g [.] is defined as g [x] = (µt)
−1 h [Wctx]. Since

the projected SDF correctly prices any contingent claim whose payoff depends only on the
market return, the constant µt can be written as

µt = Mt→T (g (WctRM,t→t+1))−1

where µt is a constant equal to its own expected value. This enables us to write,

µt = (Et [Mt→t+1])Et
[

Mt→t+1

Et [Mt→t+1]
(g (WctRM,t→t+1))−1

]
= (Et [Mt→t+1])E∗t

[
(g (WctRM,t→t+1))−1] .

Thus,

Et [Mt→t+1]

Mt→t+1

=

1

g(WctRM,t→t+1)

E∗t
[

1

g(WctRM,t→t+1)

] . (IA.47)

As seen above, the inverse of the SDF has a similar functional form when compared to the
inverse of the SDF in Section 1.1. Note that for the projected SDF correctly prices the market
return and any contingent claim whose payoff is a function of the market return. Thus, the
results in Section 1.1 hold. The functional form of the inverse SDF in equation IA.47 is the
same as that used to construct our data-implied decomposition (see Equation 3). However,
given a particular representative agent model, the analogous coefficients, θk (·), that come
out of a Taylor series expansion of the inverse SDF will be pinned down by the assumptions
and parameters in the given model.

IA.7 Results and Proofs Related to Representative Agent Models

Our goal in this section is to derive relationships between state variables and asset pricing
moments in each model to allow us to extract state variables at each date, and to compute
the model-implied risk premia implied by each model given state variables. The state variable
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extraction procedure is done as described in the paper with related results necessary for the
extraction below. Summary statistics for extracted state variables are provided in Table IA.5.

The risk premia are the same as we have defined in our main draft, RP(n)
t→T [As] (see

Equation 29). We therefore need to compute the model-implied physical and risk-neutral

moments as defined in our main draft, M(n)
t→T [As] and M∗(n)

t→T [As] (see Equations 20 and 21).
Note that in many cases it will be easier to compute non-central market return moments

rather than excess market return moments as required in our definition of RP(n)
t→T [As]. In

these cases, we can use the binomial theorem to transform non-centered moments of the
market return to excess return moments according to

Et [(RM,t→t+1 −Rf,t→t+1)
n
] =

n∑
k=0

n!

(n− k)!k!

(
Et
[
RkM,t→t+1

])
(−1)

n−k
Rn−kf,t→t+1,

Et
[
(RM,t→t+1 −Rf,t→t+1)

n I{RM,t→t+1>a}
]

=
n∑
k=0

n!

(n− k)!k!

(
Et
[
RkM,t→t+1I{RM,t→t+1>a}

])
(−1)

Rn−k
Rn−kf,t→t+1

and

E∗t [(RM,t→t+1 −Rf,t→t+1)
n
] =

n∑
k=0

n!

(n− k)!k!

(
E∗t
[
RkM,t→t+1

])
(−1)

n−k
Rn−kf,t→t+1,

E∗t
[
(RM,t→t+1 −Rf,t→t+1)

n I{RM,t→t+1>a}
]

=
n∑
k=0

n!

(n− k)!k!

(
E∗t
[
RkM,t→t+1I{RM,t→t+1>a}

])
(−1)

n−k
Rn−kf,t→t+1.

Results needed to compute these moments given model state variables are provided below.

IA.7.1 Risk-Neutral Moments when the SDF and Returns are Log-Normally
Distributed

The following analysis will be useful for deriving some results related to representative agent
models. Without loss of generality, set T = t + 1 . Note that

log
(
E∗t
(
Rn

t→t+1

))
= log

(
Et
(

Mt→t+1

EtMt→t+1
Rn

t→t+1

))
= logRf,t→t+1 + log

(
EtMt→t+1R

n
t→t+1

)
= logRf,t→t+1 + Et log (Mt→t+1 ) + nEt log (Rt→t+1 ) + 1

2VARt (logMt→t+1 )

+n2

2 V ARt logRt→t+1 + nCOVt (logMt→t+1 , logRt→t+1 )

which simplifies to

log
(
E∗t
(
Rn

t→t+1

))
= logRf,t→t+1 + Et log (Mt→t+1 ) + 1

2VARt (logMt→t+1 ) + n2

2 VARt logRt→t+1

+n(Et log (Rt→t+1 ) + COVt (logMt→t+1 , logRt→t+1 )).

IA.33



The Euler equation EtMt→t+1 = 1
Rf ,t→t+1

allows us to write

− logRf,t→t+1 = Et log (Mt→t+1 ) +
1

2
VARt (logMt→t+1 )

Thus,

log
(
E∗t
(
Rn

t→t+1

))
= n(Et log (Rt→t+1 ) + COVt (logMt→t+1 , logRt→t+1 )) + n2

2 VARt logRt→t+1
.

Under the log-normality assumption, the Euler equation EtMt→t+1Rt→t+1 = 1 can be expressed
as

Et log (Mt→t+1 ) + Et log (Rt→t+1 ) + 1
2VARt logRt→t+1

+ 1
2VARt (logMt→t+1 ) + COVt (logMt→t+1 , logRt→t+1 ) = 0.

The above expression is equivalent to

− logRf,t→t+1 +Et log (Rt→t+1 ) + 1
2VARt logRt→t+1 + COVt (logMt→t+1 , logRt→t+1 ) = 0

which simplifies to

Et log (Rt→t+1 ) + COVt (logMt→t+1 , logRt→t+1 ) = logRf,t→t+1 − 1
2VARt logRt→t+1 .

Finally

log
(
E∗t
(
Rn

t→t+1

))
= n logRf,t→t+1 + n(n−1)

2 VARt logRt→t+1
. (IA.48)

IA.7.2 Truncated Moments of a Log Normal Distribution

The following lemma will be useful for deriving some results related to representative agent
models.

Lemma IA.1. Assume that a random variable logX follows a normal distribution, from Lien
(1985), it follows that

E[XIX>a]=(N [d1]) exp

(
E (logX) +

1

2
VAR (logX)

)
with

d1 =
VAR (logX) + E (logX)− log a√

VAR (logX)
.

and
d2 = d1 −

√
VARt [logX].
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IA.7.3 Long-Run Risk Models

Solving the representative agent problem via indirect utility, Epstein and Zin (1989) show
that the SDF has the form

Mt→t+1 = δθ
(
Ct+1

Ct

)− θ
ψ

R
−(1−θ)
a,t→t+1, (IA.49)

where Ct+1 is the consumption level, δ is the time discount rate, and Ra,t→t+1 is the gross

return on aggregate consumption. The parameter θ = (1− γ) /
(

1− 1
ψ

)
where γ is the risk

aversion parameter and ψ is the intertemporal elasticity of substitution (IES). This is the
utility specification used by all models in this subsection.

IA.7.3.1 Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

The economies in both Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) can
be described by the following time series

∆ct+1 = µc + xt + φcσtηc,t+1,

xt+1 = ρxt + φxσtηx,t+1,

σ2
t+1 = σ2 (1− ν) + νσ2

t + φσωt+1,

∆dt+1 = µd + φxt + φdσtηd,t+1 + φd,cσtηc,t+1, (IA.50)

where ηc,t+1, ηx,t+1, ηd,t+1, and ωt+1 are i.i.d, ∆ct+1 = log Ct+1

Ct
is the log consumption growth,

and ∆dt+1 = log Dt+1

Dt
is the log dividend growth. The Bansal and Yaron (2004) model obtains

when φd,c = 0. In both models, σ2
t drives uncertainty in the economies. There are two state

variables in each model: xt and σ2
t . Given this setup, we show the following results.

Main Results

Result IA.1. Given the state variables xt and σ2
t , the Bansal and Yaron (2004) and Bansal,

Kiku, and Yaron (2012) model-implied log price-dividend ratio is given by

log
Pt
Dt

= A0,m + A1,mxt + A2,mσ
2
t , (IA.51)

and the risk-neutral market return variance is given by

M∗(2)
t→t+1 [A] = exp

(
Asq

0 + Asq
1 xt + Asq

2 σ
2
t

)
− exp

(
2Arf

0 + 2Arf
1 xt + 2Arf

2 σ
2
t

)
. (IA.52)

The coefficients A0 ,m , A1 ,m , A2 ,m , Asq
0 , Asq

1 , and Asq
2 are defined below.
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Proof. See below. �

Result IA.2. The conditional non-central physical moment and non-central truncated physical
moments of the market return are

Et
[
RnM,t→t+1

]
= exp

{
nEt [logRM,t→t+1] +

n2

2
VARt [logRM,t→t+1]

}
,

Et
[
RnM,t→t+1I{RM,t+1>a}

]
= N

[
d1,n

]
exp

{
n (Et [logRM,t→t+1]) +

n2

2
(VARt [logRM,t→t+1])

}
,

and

d1,n =
n2 (VARt [logRM,t→t+1]) + nEt [logRM,t→t+1]− n log a

n
√
VARt [logRM,t→t+1]

,

where
Et [logRM,t→t+1] = Aer

0 + Aer
1 xt + Aer

2 σ
2
t and VARt [logRM,t→t+1] = Avr

0 + Avr
1 σ

2
t

Further
N
[
d2,n

]
= Pt [n logRM,t→t+1 > n log a]

where
d2,n = d1,n − n

√
VARt [logRM,t→t+1].

All parameters are defined below.

Proof. See below. �

Result IA.3. The conditional non-central moment and truncated non-central moment of the
market return under the risk neutral measure are

E∗t
[
RnM,t→t+1

]
= exp

(
n logRf,t→t+1 +

n (n− 1)

2
VARt [logRM ,t→t+1 ]

)
.

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= N

[
d
∗
1,n

]
E∗t
[
RnM,t→t+1

]
,

where

d
∗
1,n =

A′n,tAn,t − log a∗n√
A′n,tAn,t

,

and
log a∗n = A

′

n,tAR
n,t

(
AR′

n,tAR
n,t

)−1 (
n log a− µR

n,t

)
with

µx,σn,t = A0,n + A1,nxt + A2,nσ
2
t ,

A
′

n,t = [A3,nσt, A4,nσt, A5,n, A6,nσt] ,

µR
n,t = nAer

0 + nAer
1 xt + nAer

2 σ
2
t ,

AR′

n,t = [nκ1,mA1,mφxσt, nφd,cσt, nκ1,mA2,mφσ, nφdσt] .
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Further,

d
∗
2,n = d

∗
1,n −

√
A′n,tAn,t

and
E∗t
[
I{RM,t→t+1>a}

]
= N

[
d
∗
2,n

]
.

All parameters are defined below.

Proof. See below. �

Derivations and Proofs We can use the Campbell and Shiller (1988) approximation to
write the log gross return as

logRa,t→t+1 = κ0 + κ1zt+1 − zt + ∆ct+1,

where z is the log price-consumption ratio and

κ0 = log
(
1 + ez

)
− κ1z and κ1 =

ez

1 + ez
.

The log price consumption ratio follows

zt = A0 +A1xt +A2σ
2
t ,

where

A0 =

(
log δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2 (1− ν) + 1
2θ (κ1A2φσ)

2
)

(1− κ1)
, (IA.53)

A1 =
1− 1

ψ

1− κ1ρ
, (IA.54)

A2 =
1

2

θ
(

1− 1
ψ

)2
φ2c + θ (κ1A1φx)

2

1− κ1ν
. (IA.55)

The proof of these coefficients A0, A1, and A2 are given below. Using the Campbell and Shiller
(1988) approximation, the log market return can be written as

logRM,t→t+1 = κ0,m + κ1,mzm,t+1 − zm,t + ∆dt+1, (IA.56)

where rt+1 = logRM,t→t+1, zm,t = log (St/Dt) is the log price-dividend ratio and dt+1 is the
dividend growth. The price dividend ratio is

zm,t = A0,m +A1,mxt +A2,mσ
2
t . (IA.57)
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where

A0,m =
1

(1− κ1,m)


µd + θ log δ − (1− θ)κ0 + κ0,m + (1− θ)A0 (1− κ1) +

(
− θ
ψ
− (1− θ)

)
µc

+ {− (1− θ)κ1A2 + κ1,mA2,m}σ2 (1− ν) + 1
2

(− (1− θ)κ1A2 + κ1,mA2,m)2 φ2σ

 (IA.58)

A1,m =
φ− 1

ψ

1− κ1,mρ
, (IA.59)

A2,m =
1

(1− κ1,mν)


1
2

(
φd,c − θ

ψ
φc − (1− θ)φc

)2
+ 1

2
(κ1,mA1,m − (1− θ)κ1A1)2 φ2x

+ (1− θ)A2 (1− κ1ν) + 1
2
φ2d

 . (IA.60)

We also show that the log risk-free return is

logRf,t = Arf
0 + Arf

1 xt + Arf
2 σ

2
t with , (IA.61)

Arf
0 = −


θ log δ − γµc − (1− θ)κ0 + (1− κ1) (1− θ)A0

− (1− θ)κ1A2σ
2 (1− ν) + 1

2 (1− θ)2 κ21A2
2φ

2
σ

 , (IA.62)

Arf
1 = −{−γ + (1− κ1ρ) (1− θ)A1} , (IA.63)

Arf
2 = −

{
(1− κ1ν) (1− θ)A2 +

1

2
γ2φ2c +

1

2
(1− θ)2 κ21A2

1φ
2
x

}
. (IA.64)

where the proof of Arf
0 , Arf

1 , and Arf
2 are is given below:

Proof of the A Coefficients. Observe that

logMt+1 + logRa,t+1

=

(
θ log δ − θ

ψ
∆ct+1 − (1− θ) logRa,t+1

)
+ logRa,t+1

= θ log δ +

(
θ − θ

ψ

)
∆ct+1 + (θκ0 + θκ1zt+1 − θzt)

=

{
θ log δ +

(
θ − θ

ψ

)
µc + θκ0 + θκ1A0 + θκ1A2σ

2 (1− ν)− θA0

}
+

{(
θ − θ

ψ

)
+ θκ1A1ρ− θA1

}
xt +

(
θ − θ

ψ

)
φcσtηc,t+1

+θκ1A1φxσtηx,t+1 + {θκ1A2ν − θA2}σ2
t + θκ1A2φσωt+1.
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Therefore, the log of the expected value of Mt→t+1Ra,t→t+1 is

log (E [Mt→t+1Ra,t→t+1]) =

{
θ log δ +

(
θ − θ

ψ

)
µc + θκ0 + θκ1A0 + θκ1A2σ

2 (1− ν)− θA0 + 1
2 (θκ1A2φσ)

2

}
+

{(
θ − θ

ψ

)
+ θκ1A1ρ− θA1

}
xt.

+

{
1
2

(
θ − θ

ψ

)2
φ2c + 1

2 (θκ1A1φx)
2

+ (θκ1A2ν − θA2)

}
σ2
t

Thus, the Euler equation EtMt→t+1Ra,t→t+1=1 implies{
θ log δ +

(
θ − θ

ψ

)
µc + θκ0 + (κ1 − 1) θA0 + θκ1A2σ

2 (1− ν) + 1
2 (θκ1A2φσ)

2

}
= 0

θ − θ

ψ
+ θκ1A1ρ− θA1 = 0{

θκ1A2ν − θA2 + 1
2

(
θ − θ

ψ

)2
φ2c + 1

2 (θκ1A1φx)
2

}
= 0

which implies

A0 =

{
log δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2 (1− ν) + 1
2θ (κ1A2φσ)

2

}
(1− κ1)

,

A1 =
1− 1

ψ

1− κ1ρ
,

A2 =
1

2

θ
(

1− 1
ψ

)2
φ2c + θ (κ1A1φx)

2

1− κ1ρ
.

Next, note that

logMt→t+1 + logRM,t→t+1 = θ log δ − θ

ψ
∆ct+1 − (1− θ) (κ0 + κ1zt+1 − zt + ∆ct+1) + κ0,m + κ1,mzm,t+1 − zm,t + ∆dt+1

which simplifies to

logMt→t+1 + logRM,t→t+1

=


θ log δ − (1− θ)κ0 − (1− θ)κ1A0 +

(
− θ
ψ − (1− θ)

)
µc + (1− θ)A0 + κ0,m + κ1,mA0,m −A0,m + µd

+ {− (1− θ)κ1A2 + κ1,mA2,m}
{
σ2 (1− ν)

}


+

{
− θ
ψ − (1− θ) + (1− θ)A1 + φ−A1,m + (κ1,mA1,m − (1− θ)κ1A1) ρ

}
xt

+

{(
− θ
ψ
− (1− θ)

)
φcσt + φd,cσt

}
ηc,t+1 +

{
(− (1− θ)κ1A2 + κ1,mA2,m) ν + (1− θ)A2 −A2,m

}
σ2
t

+ {κ1,mA1,m − (1− θ)κ1A1}φxσtηx,t+1 + {− (1− θ)κ1A2 + κ1,mA2,m}φσωt+1 + φdσtηd,t+1.

IA.39



Thus the quantity below
θ log δ − (1− θ)κ0 − (1− θ)κ1A0 +

(
− θ
ψ − (1− θ)

)
µc + (1− θ)A0 + κ0,m + κ1,mA0,m −A0,m + µd

+ {− (1− θ)κ1A2 + κ1,mA2,m}
{
σ2 (1− ν)

}
+ 1

2 (− (1− θ)κ1A2 + κ1,mA2,m)
2
φ2σ


+

{
− θ
ψ − (1− θ) + (1− θ)A1 −A1,m + {− (1− θ)κ1A1 + κ1,mA1,m} ρ+ φ

}
xt

+


1
2

(
− θ
ψφc + φd,c − (1− θ)φc

)2
+ 1

2 (κ1,mA1,m − (1− θ)κ1A1)
2
φ2x

+ (1− θ)A2 −A2,m + (κ1,mA2,m − (1− θ)κ1A2) ν + 1
2φ

2
d

σ2
t .

is equal to zero. This implies that

A0,m =
1

(1− κ1,m)


µd + θ log δ − (1− θ)κ0 + κ0,m + (1− θ)A0 (1− κ1) +

(
− θ
ψ − (1− θ)

)
µc

+ {− (1− θ)κ1A2 + κ1,mA2,m}σ2 (1− ν) + 1
2 (− (1− θ)κ1A2 + κ1,mA2,m)

2
φ2σ


A1,m =

φ− 1
ψ

1− κ1,mρ

A2,m =
1

(1− κ1,mν)

{
1
2

(
φd,c − θ

ψφc − (1− θ)φc
)2

+ 1
2 (κ1,mA1,m − (1− θ)κ1A1)

2
φ2x + (1− θ)A2 (1− κ1ν) + 1

2φ
2
d

}
.

Now, observe that:

logRM,t→t+1 = κ0,m + κ1,mzm,t+1 − zm,t + ∆dt+1

= Aer
0 + Aer

1 xt + Aer
2 σ

2
t + κ1,mA1,mφxσtηx,t+1 + κ1,mA2,mφσωt+1 + φdσtηd,t+1 + φd,cσtηc,t+1

with

Aer
0 = κ0,m + (κ1,m − 1)A0,m + µd + κ1,mA2,mσ

2 (1− ν) ,

Aer
1 = (κ1,mρ− 1)A1,m + φ,

Aer
2 = (κ1,mν − 1)A2,m.

Therefore,
Et [logRM,t→t+1] = Aer

0 + Aer
1 xt + Aer

2 σ
2
t

and
VARt [logRM,t→t+1] = Avr

0 + Avr
1 σ

2
t

with

Avr
0 = κ21,mA

2
2,mφ

2
σ

Avr
1 = κ21,mA

2
1,mφ

2
x + φ2d + φ2d,c.
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Thus,

Et
[
RnM,t→t+1

]
= exp

(
n
(
Aer

0 + Aer
1 xt + Aer

2 σ
2
t

)
+
n2

2

(
Avr

0 + Avr
1 σ

2
t

))
Now, let us find the risk free rate.

logMt→t+1 = θ log δ − θ

ψ
∆ct+1 − (1− θ) logRa,t→t+1

= θ log δ +

{
− θ
ψ
− (1− θ)

}
µc − (1− θ)κ0 − (1− θ)κ1A0 − (1− θ)κ1A2σ

2 (1− ν) + (1− θ)A0

+

{
− θ
ψ
− (1− θ)− (1− θ)κ1A1ρ+ (1− θ)A1

}
xt + (1− κ1ν) (1− θ)A2σ

2
t

+

{
− θ
ψ
− (1− θ)

}
φcσtηc,t+1 − (1− θ)κ1A1φxσtηx,t+1 − (1− θ)κ1A2φσωt+1.

Thus

− logRf,t→t+1 = θ log δ +

{
− θ
ψ
− (1− θ)

}
µc − (1− θ)κ0 − (1− θ)κ1A0 − (1− θ)κ1A2σ

2 (1− ν) + (1− θ)A0

+

{
− θ
ψ
− (1− θ)− (1− θ)κ1A1ρ+ (1− θ)A1

}
xt +

1

2
(1− θ)2 κ21A2

2φ
2
σ

+

{
(1− κ1ν) (1− θ)A2σ

2
t + 1

2

(
− θ
ψ − (1− θ)

)2
φ2cσ

2
t + 1

2 (1− θ)2 κ21A2
1φ

2
xσ

2
t

}
.

This simplifies to
logRf,t→t+1 = Arf

0 + Arf
1 xt + Arf

2 σ
2
t

with

Arf
0 = −


θ log δ +

{
− θ
ψ − (1− θ)

}
µc − (1− θ)κ0 − (1− θ)κ1A0

− (1− θ)κ1A2σ
2 (1− ν) + (1− θ)A0 + 1

2 (1− θ)2 κ21A2
2φ

2
σ

 ,

Arf
1 = −

{
− θ
ψ
− (1− θ)− (1− θ)κ1A1ρ+ (1− θ)A1

}
,

Arf
2 = −

{
(1− κ1ν) (1− θ)A2 +

1

2

(
− θ
ψ
− (1− θ)

)2

φ2c +
1

2
(1− θ)2 κ21A2

1φ
2
x

}
.

�

We now provide a proof of Result IA.1.

Proof. Proof of Result IA.1. From Equation IA.48, it follows that

log
(
E∗t
(
R2

M ,t→t+1

))
= 2 logRf,t→t+1 + VARt logRM ,t→t+1
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which simplifies to

log
(
E∗t
(
R2

M ,t→t+1

))
=
(
2Arf

0 + Avr
0

)
+ 2Arf

1 xt +
(
2Arf

2 + Avr
1

)
σ2
t

since
logRf,t→t+1 = Arf

0 + Arf
1 xt + Arf

2 σ
2
t

and
VARt [logRM,t→t+1] = Avr

0 + Avr
1 σ

2
t .

Thus,

VAR∗t [RM,t→t+1] = exp
(
Asq0 + Asq1 xt + Asq2 σ

2
t

)
− exp

(
2Arf

0 + 2Arf
1 xt + 2Arf

2 σ
2
t

)
. (IA.65)

with
Asq0 = 2Arf

0 + Avr
0 , A

sq
1 = 2Arf

1 . A
sq
2 = 2Arf

2 + Avr
1 .

Next, from Equation IA.57, the price-dividend ratio is of the form

log
Pt
Dt

= A0,m +A1,mxt +A2,mσ
2
t . (IA.66)

Combining Equations IA.65 and IA.66 ends the proof.
�

Next, denote

A0,n =


logRf,t→t+1 + θ log δ − γµc − (1− θ)κ0 + nκ0,m + nµd + (κ1,m − 1)nA0,m

+ (1− κ1) (1− θ)A0 + (nκ1,mA2,m − (1− θ)κ1A2)σ2 (1− ν)


A1,n = {−γ + nφ+ (1− θ)A1 (1− κ1ρ) + (κ1,mρ− 1)nA1,m}
A2,n = {(1− κ1ν) (1− θ)A2 + n (κ1,mν − 1)A2,m}
A3,n = (nκ1,mA1,mφx − (1− θ)κ1A1φx)

A4,n = (nφd,c − γφc)
A5,n = (nκ1,mA2,mφσ − (1− θ)κ1A2φσ)

A6,n = nφd

and

Aer
0 = κ0,m + (κ1,m − 1)A0,m + µd + κ1,mA2,mσ

2 (1− ν) ,

Aer
1 = (κ1,mρ− 1)A1,m + φ,

Aer
2 = (κ1,mν − 1)A2,m,

Avr
0 = κ21A

2
2,mφ

2
σ,

Avr
1 = κ21A

2
1,mφ

2
x + φ2d + φ2d,c.

We now provide a proof for Result IA.2.
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Proof. Proof of Result IA.2. Observe that

Et
[
RnM,t→t+1

]
= exp

(
nEt [logRM,t→t+1] +

n2

2
VARt [logRM,t→t+1]

)
with

Et [logRM,t→t+1] = Aer
0 + Aer

1 xt + Aer
2 σ

2
t and VARt [logRM,t→t+1] = Avr

0 + Avr
1 σ

2
t . (IA.67)

Now we will provide the formula for

Et
[
RnM,t→t+1I{RM,t→t+1>a}

]
= Et

[
exp (n logRM,t→t+1) IlogRM,t→t+1>log a

]
= Et [exp (n logRM,t→t+1) | logRM,t→t+1 > log a]Pt [logRM,t→t+1 > log a]

We then exploit Lemma IA.1 and show

Et [exp (n logRM,t→t+1) | logRM,t→t+1 > log a] = Et [exp (n logRM,t→t+1) |n logRM,t→t+1 > n log a]

=
exp

[
nEt [logRM,t→t+1] + n2

2 VARt [logRM,t→t+1]
]
N
[
d1,n

]
N
[
d2,n

]
where N

[
d2,n

]
= Pt [n logRM,t→t+1 > n log a] and

d1,n =
n2VARt [logRM,t→t+1] + nEt [logRM,t→t+1]− n log a

n
√
VARt [logRM,t→t+1]

d2,n = d1,n − n
√
VARt [logRM,t→t+1]

and N represents the CDF function for the standard normal distribution. Thus,

Et
[
RnM,t→t+1I{RM,t→t+1>a}

]
=

exp
[
n
(
Aer

0 + Aer
1 xt + Aer

2 σ
2
t

)
+ n2

2

(
Avr

0 + Avr
1 σ

2
t

)]
N
[
d1,n

]
N
[
d2,n

]
N [d2,n]

where

d1,n =
n2
(
Avr

0 + Avr
1 σ

2
t

)
+ n

(
Aer

0 + Aer
1 xt + Aer

2 σ
2
t

)
− n log a

n
√
Avr

0 + Avr
1 σ

2
t

d2,n = d1,n − n
√

Avr
0 + Avr

1 σ
2
t .

�

We now provide a proof of Result IA.3.

Proof. Proof of Result IA.3. Observe that

E∗t
[
RnM,t→t+1

]
= Et

[
Mt→t+1

Et [Mt→t+1]
RnM,t→t+1

]
.
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We then show:

log

(
Mt→t+1

Et [Mt→t+1]
RnM,t→t+1

)
= logRf,t→t+1 + θ log δ +

{
− θ
ψ
− (1− θ)

}
∆ct+1 − (1− θ)κ0

− (1− θ)κ1zt+1 + (1− θ) zt + nκ0,m + nκ1,mzm,t+1 − nzm,t + n∆dt+1

and

log

(
Mt→t+1

Et [Mt→t+1]
RnM,t→t+1

)
= A0,n + A1,nxt + A2,nσ

2
t + A3,nσtηx,t+1 + A4,nσtηc,t+1 + A5,nωt+1 + A6,nσtηd,t+1

with

A0,n =


logRf,t→t+1 + θ log δ − γµc − (1− θ)κ0 + nκ0,m + nµd + nκ1,mA0,m − nA0,m

− (1− θ)κ1A0 + (1− θ)A0 − (1− θ)κ1A2σ
2 (1− ν) + nκ1,mA2,mσ

2 (1− ν)


A1,n =

{
−γ + nφ− nA1,m + (1− θ)A1 − (1− θ)κ1A1ρ+ nκ1,mA1,mρ

}
A2,n =

{
− (1− θ)κ1A2ν + (1− θ)A2 − nA2,m + nκ1,mA2,mν

}
A3,n = nκ1,mA1,mφx − (1− θ)κ1A1φx

A4,n = nφd,c − γφc
A5,n = − (1− θ)κ1A2φσ + nκ1,mA2,mφσ

A6,n = nφd.

Thus

logE∗t
[
RnM,t→t+1

]
= log

(
Mt→t+1

Et [Mt→t+1]
RnM,t→t+1

)
= µx,σn,t + A

′

n,tηx,c,ω,d

where

µx,σn,t = A0,n + A1,nxt + A2,nσ
2
t

A
′

n,t = [A3,nσt,A4,nσt,A5,n,A6,nσt]

η
′

x,c,ω,d = [ηx,t+1, ηc,t+1, ωt+1,ηd,t+1] .

Further, from Equation IA.48, we can also infer that

E∗t
[
RnM,t→t+1

]
= exp

(
n logRf,t→t+1 +

n (n− 1)

2
VARt [logRM ,t→t+1 ]

)
.

Next, recall that

logRM,t→t+1 = Aer
0 + Aer

1 xt + Aer
2 σ

2
t + κ1,mA1,mφxσtηx,t+1 + κ1,mA2,mφσωt+1 + φdσtηd,t+1 + φd,cσtηc,t+1
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which simplifies to n logRM,t→t+1 = µR
n,t + AR′

n,tηx,c,ω,d with

µR
n,t = nAer

0 + nAer
1 xt + nAer

2 σ
2
t

AR′

n,t = [nκ1,mA1,mφxσt, nφd,cσt, nκ1,mA2,mφσ, nφdσt]

Then

E∗t
[
RnM,t→t+1

]
= exp

(
n logRf,t→t+1 +

n (n− 1)

2
VARt [logRM ,t→t+1 ]

)
.

Now let us compute

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= Et

[
Mt→t+1

Et [Mt→t+1]
RnM,t→t+1I{RM,t→t+1>a}

]
= exp

(
µx,σn,t

)
Et
[(

exp
(
A
′

n,tηx,c,ω,d

))
I{µR

n,t+AR′
n,tηx,c,ω,d>n log a}

]
= exp

(
µx,σn,t

)
Et
[(

exp
(
A
′

n,tηx,c,ω,d

))
I{AR′

n,tηx,c,ω,d>(n log a)−µR
n,t}
]
.

Now observe that

I{AR′
n ηx,c,ω,d>(log a)−µR

n,t} = I{A′n,tAR
n(AR′

n AR
n)
−1AR′

n ηx,c,ω,d>A′n,tAR
n(AR′

n AR
n)
−1

((n log a)−µR
n,t)

}
= I{A′n,tηx,c,ω,d>log a∗n}.

with log a∗n = A′n,tAR
n,t

(
AR′

n,tAR
n,t

)−1 (
n log a− µR

n,t

)
. We then exploit Lemma IA.1 to show

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= exp

(
µx,σn,t

)
Et
[
exp

(
A
′

n,tηx,c,ω,d

)
I{exp(A′n,tηx,c,ω,d)>a∗n}

]
.

Thus

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= exp

(
µx,σn,t

)
N
[
d
∗
1,n

]
exp

(
1

2
A
′

n,tAn,t
)

where d
∗
1,n =

A
′
n,tAn,t−log a∗n√

A′n,tAn,t

and d
∗
2,n = d

∗
1,n −

√
A′n,tAn,t and E∗t

[
I{RM,t→t+1>a}

]
= N

[
d
∗
2,n

]
.

�

IA.7.3.2 Bollerslev, Tauchen, and Zhou (2009)

Bollerslev, Tauchen, and Zhou (2009) use the Epstein and Zin (1989) SDF and approximate
Ra,t→t+1 in Equation IA.49 by the market returnRM,t→t+1. They set up an economy governed
by the following time series

gt+1 = dt+1 = µg + σg,tzg,t+1,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

qt+1 = aq + ρqqt + φq
√
qtzq,t+1 (IA.68)
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where gt+1 represents consumption growth. There are two state variables in their framework,
σ2
g,t and qt.

Bollerslev, Tauchen, and Zhou (2009) build a model that combines stochastic volatility
with Epstein and Zin (1989) preferences to provide a theoretical foundation for the empirical
fact that the variance risk premium can be used to forecast market returns at short horizons.
Their model includes two state variables (σ2

g,t and qt), so we use log (Pt/Et) and M∗(2)
t→T to

extract implied state variables at each date using Result IA.4.
Summary statistics for the extracted state variables can be found in Table IA.5. Average

state variable values are similar in magnitude to and fall within the confidence intervals
implied by the calibrated model. Data-implied σ2

g,t and qt standard deviations are higher
than those implied by the models and fall outside the model-implied confidence intervals.
The data-implied σ2

g,t (gt) autocorrelation is lower (higher) than the model-implied value.
Given values for the data-implied state variables, we can compute the physical and risk-

neutral moments necessary for the risk premium decomposition using model-implied mo-
ments from Results IA.5 and IA.6, which can be found below. Table IA.6 provides summary
statistics for the market risk premium decomposition and Table IA.7 provides the average
difference between the data-implied risk premia and those implied by the Bollerslev, Tauchen,
and Zhou (2009) model. The risk premia implied by Bollerslev, Tauchen, and Zhou (2009)
are quite surprising. For instance, the total risk premium is often negative. We confirm that
this also happens in the simulated model in approximately 44% of the simulated values.44

We also find that the data-implied risk premium standard deviation is quite high at about
145% (annualized), which is higher than the model-implied value of 19% and is likely caused
by the relatively high data-implied state variable volatility compared to the model-implied
values. Despite the high fraction of negative values, the unconditional risk premium implied
by the simulated model is more reasonable at 8.67%. This is slightly lower than the average
risk premium implied using extracted state variables (10.71%),45 although the discrepancy is
small relative to the risk premium volatility based on our extracted state variables. Uncondi-
tionally, the central risk premium contributes about 80% of the total risk premium, although
the contribution varies significantly over time. For instance, during the 2008 Financial Crisis,
the upside risk premium actually contributed up to almost 90% of the total risk premium.
During the Dot-com bust, the total risk premium implied by the model actually becomes
negative, and the downside risk premium actually comprised approximately 90% of this pre-
mium. That is, the model implies that during this period investors were willing to accept

44This finding is consistent with related issues documented by Bekaert, Engstrom, and Ermolov (2020)
with respect to the Bollerslev, Tauchen, and Zhou (2009) model.

45This discrepancy is primarily caused by the fact that the extracted state variables are more volatile
than the model-implied state variables. Since the risk premium is related to exponentials of functions that
are affine in state variables, Jensen’s inequality effects cause the risk premium based on our extracted state
variables to be higher than that implied by the simulated model using the state variable processes from the
original calibrated model.
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negative expected returns for exposure to downside risk.

Main Results Given this setup, we show the following results.

Result IA.4. Given the state variables σ2
g,t and qt, the Bollerslev, Tauchen, and Zhou (2009)

model-implied log price-dividend ratio is given by

log
Pt
Dt

= A0 + Aσσ
2
g,t + Aqqt, (IA.69)

and the risk-neutral market return variance is given by

M∗(2)
t→t+1 [A] = exp

(
Bsq

0 + Bsq
1 σ

2
g,t + Bsq

2 qt
)
− exp

(
Arf

0 + Arf
1 σ

2
g,t + Arf

2 qt

)
. (IA.70)

The coefficients A0 , Aσ, Aq , Bsq
0 , Bsq

1 , and Bsq
2 are defined below.

Proof. See below. �

Result IA.5. The conditional non-central physical moment of the market return is

Et
[
RnM,t→t+1

]
= exp

(
nEt [logRM,t→t+1] +

n2

2
VARt [logRM,t→t+1]

)
.

where

Et [logRM,t→t+1] = κ0 + κ1A0 −A0 + κ1Aσaσ + κ1Aqaq + µg

+ (κ1ρσ − 1)Aσσ
2
g,t + (κ1ρq − 1)Aqqt

and
VARt [logRM,t→t+1] = (κ1Aσ)

2
qt + (κ1Aqφq)

2
qt + σ2

g,t.

Using Lemma IA.1, the conditional non-central truncated physical moment of the market
return is

Et
[
RnM,t→t+1I{RM,t→t+1>a}

]
= Et

[
en logRM,t→t+1I{n logRM,t→t+1>n log a}

]
=

(
exp

{
nEt [logRM,t→t+1] +

n2

2
VARt [logRM,t→t+1]

})
N
[
d1
]

where

d1 =
nEt [logRM,t→t+1] + n2VARt [logRM,t→t+1]− n log a

n
√
VARt [logRM,t→t+1]

with d2 = d1 − n
√

VARt [logRt+1]. All parameters are defined below.

Proof. See below. �
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Result IA.6. The conditional non-central risk neutral moment of the market return is

E∗t
[
RnM,t→t+1

]
= exp

{
n logRf,t→t+1 +

n (n− 1)

2
VARt [logRM,t→t+1]

}
The conditional non-central truncated risk neutral moment of the market return is

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= eA

mr
0 N

[
d1
]

exp

{
1

2
λm
′

t λmt

}
where

d1 =
λm
′

t λmt − λ
(
n log a− Ar0,t

)√
λm
′

t λmt

and d2 = d1 −
√
λm
′

t λmt . All parameters are defined below.

Proof. See below. �

Derivations and Proofs

We can use the Campbell and Shiller (1988) approximation to write the log gross return as

logRa,t→t+1 = κ0 + κ1zt+1 − zt + gt+1.

In this model, there is no distinction between the aggregate and market returns, so we
denote rt+1 = logRM ,t→t+1 = logRa,t→t+1 . The log price-consumption ratio is given by

zt = A0 +Aσσ
2
g,t +Aqqt.

The representative agent’s first-order conditions imply

log (Et exp {mt+1 + rt+1}) = 0.

Under this model, we can write

mt+1 + rt+1 = θ log δ − θ

ψ
gt+1 + θrt+1

= θ log δ − θ

ψ
µg −

θ

ψ
σg,tzg,t+1 + θκ0 + θκ1zt+1 − θzt + θgt+1

= θ log δ − θ

ψ
µg −

θ

ψ
σg,tzg,t+1

+θκ0 + θκ1A0 + θκ1Aσaσ + θκ1Aσρσσ
2
g,t + θκ1Aσ

√
qtzσ,t+1

+θκ1Aqaq + θκ1Aqρqqt + θκ1Aqφq
√
qtzq,t+1

−θA0 − θAσσ2
g,t − θAqqt + θµg + θσg,tzg,t+1
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which simplifies to

mt+1 + rt+1 =

{
θ log δ − θ

ψ
µg + θκ0 + θκ1A0 + θκ1Aσaσ + θκ1Aqaq + θµg − θA0

}
+

{
θσg,t −

θ

ψ
σg,t

}
zg,t+1 + {θκ1Aσρσ − θAσ}σ2

g,t + θκ1Aσ
√
qtzσ,t+1

+ {θκ1Aqρq − θAq} qt + θκ1Aqφq
√
qtzq,t+1.

Therefore, {
θ log δ − θ

ψµg + θκ0 + θκ1A0 + θκ1Aσaσ + θκ1Aqaq + θµg − θA0

}
+

{
θκ1Aσρσ − θAσ +

1

2

{
θ − θ

ψ

}2
}
σ2
g,t

+

{
1

2
(θκ1Aσ)

2
+ (θκ1ρq − θ)Aq +

1

2
(θκ1φq)

2
A2
q

}
qt

= 0

which implies that

A0 =
θ log δ − θ

ψµg + θκ0 + θκ1Aσaσ + θκ1Aqaq + θµg

(1− κ1) θ
,

Aσ =
1

2

(1− γ)
2

(1− κ1ρσ) θ
,

and
(κ1ρq − 1)Aq + θ (κ1Aσ)

2
+ θ (κ1φq)

2
A2
q = 0.

Consequently,

Aq =
(1− κ1ρq)±

√
(1− κ1ρq)2 − θ2κ41A2

σφ
2
q

θ (κ1φq)
2 .

Now, let us find the risk-free rate. Notice that

mt+1 = θ log δ −
θ

ψ
gt+1 − (1− θ) rt+1

=


θ log δ − θ

ψ
µg − (1− θ)κ0 − (1− θ)µg − κ1 (1− θ)A0

−Aσκ1 (1− θ) aσ −Aqκ1 (1− θ) aq + (1− θ)A0


−γσg,tzg,t+1 + {(1− θ)Aσ −Aσκ1 (1− θ) ρσ}σ2

g,t

−Aσκ1 (1− θ)√qtzσ,t+1

+ {(1− θ)Aq −Aqκ1 (1− θ) ρq} qt −Aqκ1 (1− θ)φq
√
qtzq,t+1.
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Hence

logRf,t→t+1 = −


θ log δ − θ

ψµg − (1− θ)κ0 − (1− θ)µg

+ (1− θ)A0 (1− κ1)−Aσκ1 (1− θ) aσ

−Aqκ1 (1− θ) aq


−
{

1

2
γ2 + (1− θ)Aσ (1− κ1ρσ)

}
σ2
g,t

−


1
2 (Aσκ1 (1− θ))2 + (1− θ)Aq (1− κ1ρq)

+ 1
2 (Aqκ1 (1− θ)φq)2

 qt.

Hence
logRf,t→t+1 = Arf

0 + Arf
1 σ

2
g,t + Arf

2 qt (IA.71)

with

Arf
0 = −


θ log δ − θ

ψµg − (1− θ)κ0 − (1− θ)µg

+ (1− θ)A0 (1− κ1)−Aσκ1 (1− θ) aσ

−Aqκ1 (1− θ) aq


,

Arf
1 = −

{
1

2
γ2 + (1− θ)Aσ (1− κ1ρσ)

}
,

Arf
2 = −


1
2 (Aσκ1 (1− θ))2 + (1− θ)Aq (1− κ1ρq)

+ 1
2 (Aqκ1 (1− θ)φq)2

 .

Next, note that

logRM,t→t+1 = κ0 + κ1zt+1 − zt + gt+1

= κ0 + κ1A0 −A0 + κ1Aσaσ + κ1Aqaq + µg

+ (κ1ρσ − 1)Aσσ
2
g,t + κ1Aσ

√
qtzσ,t+1

+ (κ1ρq − 1)Aqqt + κ1Aqφq
√
qtzq,t+1

+σg,tzg,t+1.

Hence

Et
[
logRM,t→t+1

]
= κ0 + κ1A0 −A0 + κ1Aσaσ + κ1Aqaq + µg

+ (κ1ρσ − 1)Aσσ
2
g,t + (κ1ρq − 1)Aqqt
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and
VARt [logRM,t→t+1] = (κ1Aσ)

2
qt + (κ1Aqφq)

2
qt + σ2

g,t.

We now provide a proof of Result IA.4.

Proof. Proof of Result IA.4. From Equation IA.48, it follows that

log
(
E∗t
(
R2

M ,t→t+1

))
= 2 logRf,t→t+1 + VARt logRM ,t→t+1

Thus,
log
(
E∗t
(
R2

M ,t→t+1

))
= 2Arf

0 + 2Arf
1 σ

2
g,t + 2Arf

2 qt + (κ1Aσ)
2
qt + (κ1Aqφq)

2
qt + σ2

g,t.

Hence,
log
(
E∗t
(
R2

M ,t→t+1

))
= 2Arf

0 +
(

2Arf
2 + (κ1Aσ)

2
+ (κ1Aqφq)

2
)
qt +

(
1 + 2Arf

1

)
σ2
g,t

which simplifies to
log
(
E∗t
[
R2
M,t→t+1

])
= Bsq

0 + Bsq
1 σ

2
g,t + Bsq

2 qt,

where

Bsq
0 = 2Arf

0 ,

Bsq
1 = 1 + 2Arf

1 ,

Bsq
2 = 2Arf

2 + (κ1Aσ)
2

+ (κ1Aqφq)
2
.

The variance of the market return under the risk neutral measure is

VAR∗t [RM,t→t+1] = exp
{
Bsq
0 + Bsq

1 σ
2
g,t + Bsq

2 qt
}
− exp

{
2Arf

0 + 2Arf
1 σ

2
g,t + 2Arf

2 qt
}
. (IA.72)

Recall that the log price consumption ratio follows

log
Pt
Dt

= A0 +Aσσ
2
g,t +Aqqt. (IA.73)

This ends the proof.
�

We now provide a proof of Result IA.5.

Proof. Proof of Result IA.5. Note that the log return, which is given by expression

logRM,t→t+1 = κ0 + κ1A0 −A0 + κ1Aσaσ + κ1Aqaq + µg

+ (κ1ρσ − 1)Aσσ
2
g,t + κ1Aσ

√
qtzσ,t+1

+ (κ1ρq − 1)Aqqt + κ1Aqφq
√
qtzq,t+1

+σg,tzg,t+1,

is normally distributed. Thus,

Et
[
RnM,t→t+1

]
= exp

(
nEt [logRM,t→t+1] +

n2

2
VARt [logRM,t→t+1]

)
(IA.74)
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with

Et [logRM,t→t+1] = κ0 + κ1A0 −A0 + κ1Aσaσ + κ1Aqaq + µg

+ (κ1ρσ − 1)Aσσ
2
g,t + (κ1ρq − 1)Aqqt

and
VARt [logRM,t→t+1] = (κ1Aσ)

2
qt + (κ1Aqφq)

2
qt + σ2

g,t.

Using Lemma IA.1, the conditional truncated physical moment of the market return is

Et
[
RnM,t→t+1I{RM,t→t+1>a}

]
= Et

[
en logRM,t→t+1I{n logRM,t→t+1>n log a}

]
=

(
exp

{
Et [logRM,t→t+1] +

1

2
VARt [logRM,t→t+1]

})
N
[
d1
]

where

d1 =
Et [logRM,t→t+1] + VARt [logRM,t→t+1]− n log a√

VARt [logRM,t→t+1]

with d2 = d1 −
√
VARt [logRM,t→t+1].

�

We now provide a proof of Result IA.6.

Proof. Proof of Result IA.6. Recall that

log
(
E∗t
[
RnM,t→t+1

])
= n logRf,t→T +

n (n− 1)

2
VARt [logRM,t→t+1] .

To derive expressions for the truncated physical and risk-neutral moments, observe that

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= Et

[
e(mt+1+n logRM,t→t+1)I{n logRM,t→t+1>n log a}

]
.

Thus,

mt+1 + n logRM,t→t+1

= θ log δ − θ

ψ
gt+1 − (1− θ) rt+1 + nrt+1

= θ log δ − θ

ψ
gt+1 + (n+ θ − 1) rt+1

=


θ log δ + (n+ θ − 1)κ0 +

(
(n+ θ − 1)− θ

ψ

)
µg + (n+ θ − 1)κ1A0

− (n+ θ − 1)A0 + (n+ θ − 1)κ1Aσaσ + (n+ θ − 1)κ1Aqaq


+

{
(n+ θ − 1)κ1Aqρq − (n+ θ − 1)Aq

}
qt +

{
(n+ θ − 1)κ1Aσρσ − (n+ θ − 1)Aσσ

2
g,t

}
σ2
g,t

+ (n+ θ − 1)κ1Aσ
√
qtzσ,t+1 +

(
(n+ θ − 1)− θ

ψ

)
σg,tzg,t+1 + (n+ θ − 1)κ1Aqφq

√
qtzq,t+1.
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Hence
mt+1 + n logRM,t→t+1 = Amr0 + λm

′

t zmrt ,

where

Amr0 =


θ log δ + (n+ θ − 1)κ0 +

(
(n+ θ − 1)− θ

ψ

)
µg + (n+ θ − 1)κ1A0

− (n+ θ − 1)A0 + (n+ θ − 1)κ1Aσaσ + (n+ θ − 1)κ1Aqaq

{
(n+ θ − 1)κ1Aqρq − (n+ θ − 1)Aq

}
qt +

{
(n+ θ − 1)κ1Aσρσ − (n+ θ − 1)Aσσ

2
g,t

}
σ2
g,t

and

λmt =


(n+ θ − 1)κ1Aσ

√
qt(

(n+ θ − 1)− θ
ψ

)
σg,t

(n+ θ − 1)κ1Aqφq
√
qt

 and zmrt =


zσ,t+1

zg,t+1

zq,t+1

 .

Next,
logRM,t→t+1 = Ar0,t + λr

′

t z
mr
t

where

Ar0,t = κ0 + κ1A0 −A0 + κ1Aσaσ + κ1Aqaq + µg + (κ1ρσ − 1)Aσσ
2
g,t + (κ1ρq − 1)Aqqt

and

λr
′

t =


κ1Aσ

√
qt

σg,t

κ1Aqφq
√
qt

 .

Finally

E∗t
[
RnM,t→t+1I{RM,t→t+1>a}

]
= Et

[
eA

mr
0 +λm′

t zmr
t I{

Ar
0,t+λ

r′
t zmr

t >n log a
}]

= eA
mr
0 Et

[
eλ

m′
t zmr

t I{
λm′
t zmr

t >λ
(
n log a−Ar

0,t

)}]

where
λm
′

t = λλr
′
t .

Hence,

λ =
(
λm
′

t λrt

)(
λr
′

t λ
r
t

)−1
.
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We then exploit Lemma IA.1 to show

Et
[
eλ

m′
t zmr

t I{
λm′
t zmr

t >λ
(
n log a−Ar

0,t

)}] =

(
exp

{
1

2
λm
′

t λmt

})
N
[
d1
]

with

d1 =
λm
′

t λmt − λ
(
n log a− Ar0,t

)√
λm
′

t λmt

and
d2 = d1 −

√
λm
′

t λmt .

�

IA.7.3.3 Drechsler and Yaron (2011)

The key variables that drive the economy in Drechsler and Yaron (2011) are summarized by

Yt+1 = µ+ FYt +Gtzt+1 + Jt+1

where Y
′
t = (∆ct, xt,σ

2
t , σ

2
t ,∆dt), zt+1 is a vector of standard normal shocks, and Jt+1 is a

compound Poisson process.

Main Results

Result IA.7. Given the vector Yt, the Drechsler and Yaron (2011) model-implied log price-
dividend ratio is

log
Pt
Dt

= A0,m + A
′

mYt, (IA.75)

and the non-central risk-neutral market return moments are

E∗t
[
Rn
M,t→t+1

]
= Rf,t→t+1 exp


θ log δ − (1− θ) (κ0 + A0 (κ1 − 1)) + f (Λ∗)

+ (nκ0,m + nκ1,mA0,m − nA0,m)

+ (− (θ − 1)A− nAm + g (Λ∗))Yt


with

Rf,t→t+1 = exp


− (θ log δ + f (−Λ)− (1− θ) (κ0 + A0 (κ1 − 1)))

− ((1− θ)A+ g (−Λ))
′
Yt


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and
Λ = γec + (1− θ)κ1A and Λ∗ + Λ = nκ1,mAm + ned.

The coefficients, A0, A, A0,m and Am are given below. ec and ed are column vectors that
select log consumption growth and log dividend growth in Yt+1. Rf,t→t+1 is the model-implied

risk-free rate. Given E∗t
[
Rk
M,t→t+1

]
, M∗(n)

t→t+1 can be computed using Equation 17 by setting
x = RM,t→t+1 and xs = Rf,t→t+1, then taking expectations under the risk-neutral measure:

M∗(n)
t→t+1 =

n∑
k=0

n! (−1)n−k

(n− k)!k!
(E∗t [RM ,t→t+1 ])n−k

(
E∗t
[
Rk
M,t→t+1

])
. (IA.76)

Proof. See below. �

Result IA.8. The non-central physical moment of the market return is

EtRn
M,t+1 = exp


(nκ0,m + nκ1,mA0,m − nA0,m) + f (nκ1,mAm + ned)

+ {g (nκ1,mAm + ned)− nAm}
′
Yt


and the truncated moment is

Et
[
Rn
M,t+11RM,t+1>a

]
= Et

{(
exp

{
Ay,t + (Λ∗ + Λ)

′
Yt+1

})
I{Ay,t+(Λ∗+Λ)

′
Yt+1>n log a}

}
with

Ay,t = (nκ0,m + nκ1,mA0,m − nA0,m)− nA′mYt
where

Λ = γec + (1− θ)κ1A and Λ∗ + Λ = nκ1,mAm + ned.

All parameters are defined below.

Proof. See below. �

Result IA.9. The non-central risk-neutral moment of the market return is

E∗tRn
M,t→t+1 = Rf,t+1 exp


θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]

+ (nκ0,m + nκ1,mA0,m − nA0,m) + f (Λ∗)

+ {− (θ − 1)A− nAm + g (Λ∗)}Yt


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and the truncated risk-neutral moment is

E∗t
[
Rn
M,t+11RM,t+1>a

]
= Rf,t+1E∗t

[
eA
∗
y,t+Λ∗

′
Yt+11Ay,t+(Λ∗+Λ)

′
Yt+1>n log a

]
with

Ay,t = (nκ0,m + nκ1,mA0,m − nA0,m)− nA′mYt
and

A∗y,t =


θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]

+ (nκ0,m + nκ1,mA0,m − nA0,m)

− (θ − 1)A
′
Yt − nA

′
mYt


where

Λ = γec + (1− θ)κ1A and Λ∗ + Λ = nκ1,mAm + ned.

All parameters are defined below.

Proof. See below. �

Derivations and Proofs The Yt process in Drechsler and Yaron (2011) is

∆ct+1

xt+1

σ2
t+1

σ2
t+1

∆dt+1


= µ+ F



∆ct

xt

σ2
t

σ2
t

∆dt


+Gt



zc,t+1

zx,t+1

zσ,t+1

zσ,t+1

zd,t+1


+



0

Jx,t+1

0

Jσ,t+1

0


,
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where the zi,t+1 shocks are normally distributed, and

F =



0 1 0 0 0

0 ρx 0 0 0

0 0 ρσ 0 0

0 0 (1− ρ̃σ) ρσ 0

0 φ 0 0 0


.

Drechsler and Yaron (2011) define G as

GtG
′

t = h+Hσσ
2
t ,

with

h =



hc 0 0 0 ϕcϕd
√

1− ωc
√

1− ωdΩcd

0 hx 0 0 0

0 0 hσ 0 0

0 0 0 hσ 0

ϕcϕd
√

1− ωc
√

1− ωdΩcd 0 0 0 hd


and

Hσ =



Hc 0 0 0 ϕcϕd
√
ωc
√
ωdΩcd

0 Hx 0 0 0

0 0 Hσ 0 0

0 0 0 Hσ 0

ϕcϕd
√
ωc
√
ωdΩcd 0 0 0 Hd


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with
hi = ϕ2

i (1− ωi)E
[
σ2
t

]
, H i = ϕ2

iωi,

Jx,t and Jσ,t are compound Poisson processes defined as

Jx,t+1 =

Nx
t+1∑
j=1

ξxj,t+1 where Nx
t+1 ∼ Poisson (λxt ) and ξxj,t+1 ∼ −Γ

(
νx,

µx
νx

)
+ µx

and

Jσ,t+1 =

Nσ
t+1∑
j=1

ξσj,t+1 where Nσ
t+1 ∼ Poisson (λσt ) and ξσj,t+1 ∼ Γ

(
νσ,

µσ
νσ

)
where Γ (x, y) represents a gamma distribution with shape parameter x and scale parameter
y.46 The jump intensities are

λxt = lx0 + lx1,σσ
2
t and λσt = lσ0 + lσ1,σσ

2
t

where lσ0 = lx0 = 0. Note that in this model,

ρσ = ρ̃σ − lσ1,σµσ

and:

Ext+1 =
µ̃x

1− ρx

Eσ2
t+1 =

µ̃σ
1− ρσ

Eσ2
t+1 =

µ̃σ
(1− ρ̃σ)

+
µ̃σ

(1− ρσ)

with
µ̃x = 0, µ̃σ = 1− ρσ, µ̃σ = 0.

We now provide a proof of Result IA.7.

Proof. Proof of Result IA.7.Consider a jump in the state variable x :

Jx,t+1 =

Nx
t+1∑
j=1

(
−ξx∗j,t+1 + µx

)
= Nx

t+1µx −
Nx
t+1∑
j=1

ξx∗j,t+1

46Drechsler and Yaron (2011) also explore using ξxj,t+1 ∼ N
(
0, σ2

x

)
and ξσj,t+1 ∼ N

(
0, σ2

σ

)
as alternatives,

which we omit here.
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where

ξx∗j,t+1 ∼ Γ

(
νx,

µx
νx

)
.

Thus

Et [exp {ukJx,t+1}] = Et
{
Et
[
exp {ukJx,t+1} |Nx

t+1

]}
= Et

Et

exp

ukNx
t+1µx − uk

Nx
t+1∑
j=1

ξx∗j,t+1

 |Nx
t+1


= Et

{
exp

(
ukN

x
t+1µx

)
Et [exp {−ukX}]

}
,

where

X =

Nx
t+1∑
j=1

ξx∗j,t+1|Nx
t+1 ∼ Γ

(
Nx
t+1νx,

µx
νx

)
.

Note

Et [exp {−ukX}] = exp

{
−Nx

t+1νx ln

(
1 + uk

µx
νx

)}
.

Hence

Et [exp {ukJx,t+1}] = Et
{

exp

(
ukN

x
t+1µx −Nx

t+1νx ln

(
1 + uk

µx
νx

))}
= Et

{
exp

(
Nx
t+1∆k

)}
with

∆k = ukµx − νx ln

(
1 + uk

µx
νx

)
.

Thus,

Et [exp {ukJx,t+1}] = Et
{

exp
(
Nx
t+1∆k

)}
= exp

(
λxt
(
e∆k − 1

))
= exp (λxt (ψ [uk]− 1))

with

ψ [uk] = exp

{
ukµx − νx ln

(
1 + uk

µx
νx

)}
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Next, consider a jump in σ2:

Et [exp {ukJσ,t+1}] = Et
{
Et
[
exp {ukJσ,t+1} |Nσ

t+1

]}
= Et

Et

exp

uk
Nσ
t+1∑
j=1

ξσj,t+1

 |Nσ
t+1


= Et {Et [exp {ukX}]}

where

X =

Nσ
t+1∑
j=1

ξσj,t+1|Nσ
t+1 ∼ Γ

(
Nσ
t+1νσ,

µσ
νσ

)
Note

Et [exp {ukX}] = exp

{
−Nσ

t+1νσ ln

(
1− uk

µσ
νσ

)}
.

Hence
Et [exp {ukJσ,t+1}] = Et

{
exp

(
Nσ
t+1∆k

)}
with

∆k = −νσ ln

(
1− uk

µσ
νσ

)
.

Thus,
Et [exp {ukJσ,t+1}] = exp (λσt (ψ [uk]− 1))

with

ψ [uk] = exp

{
−νσ ln

(
1− uk

µσ
νσ

)}
.

In this model, the log-SDF is

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1,

where
rc,t+1 = κ0 + κ1υt+1 − υt + ∆ct+1

with
υt = A0 + A

′
Yt,

where A
′
= (Ac, Ax, Aσ, Aσ, Ad) and the market return is

rm,t+1 = κ0,m + κ1,mυm,t+1 − υm,t + ∆dt+1
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with
υm,t = A0,m + A

′

mYt

where Am = (Ac,m, Ax,m, Aσ,m, Aσ,m, Ad,m).

Finding A0, A, κ0, and κ1: In this model, we have

mt+1 + rc,t+1 = θ log δ − θ

ψ
∆ct+1 + θrc,t+1

= θ log δ − θ

ψ
∆ct+1 + θ (κ0 + κ1υt+1 − υt + ∆ct+1) .

Denote ec the vector that selects consumption in Yt+1, we have ∆ct+1 = e
′
cYt+1. Thus,

mt+1 + rc,t+1 = θ log δ + θκ0 + (κ1 − 1) θA0 − θA
′
Yt

+

((
θ − θ

ψ

)
e
′

c + θκ1A
′
)
Yt+1

Denote

u
′
=

(
θ − θ

ψ

)
e
′

c + θκ1A
′
.

Then

Ete(mt+1+rc,t+1) =
{

exp
(
θ log δ + θκ0 + (κ1 − 1) θA0 − θA

′
Yt

)}
×
{
Et exp

(
u
′
Yt+1

)}
From Equation A.1.2 in Drechsler and Yaron (2011), we have

Et
{

exp
(
u
′
Yt+1

)
|Yt
}

= exp
(
f (u) + g (u)

′
Yt

)
with

f (u) = µ
′
u+

1

2
u
′
hu+ l

′

0 (ψ (u)− 1) ,

g (u) = F
′
u+

1

2

[
u
′
Hiu

]
i∈{1,...,n}

+ l
′

1 (ψ (u)− 1) ,
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where
[
u
′
Hiu

]
i∈{1,...,n} is the n× 1 vector with i component equal to u

′
Hiu. Thus,

Ete(mt+1+rc,t+1) = exp

 θ log δ + θκ0 + (κ1 − 1) θA0 + f (u)

+
(
g (u)

′
− θA′

)
Yt

 .

The representative agent’s first-order conditions imply

logEte(mt+1+rc,t+1) = 0

which implies

θ log δ + θκ0 + (κ1 − 1) θA0 + f (u) +
(
g (u)

′
− θA′

)
Yt = 0

This implies that 
g (u)

′
− θA′ = 0

θ log δ + θκ0 + (κ1 − 1) θA0 + f (u) = 0

This system of equations is a function of κ0 and κ1. These two coefficients are solved using

κ0 = −κ1 log κ1 − (1− κ1) log (1− κ1)

κ0 + (κ1 − 1)A0 = − log κ1 + (1− κ1)A
′E [Yt]

Together A0, A, κ0, κ1 can be solved by using the system of equations

g (u)
′
− θA′ = 0,

θ log δ + θκ0 + (κ1 − 1) θA0 + f (u) = 0,

−κ0 − κ1 log κ1 − (1− κ1) log (1− κ1) = 0,

κ0 + (κ1 − 1)A0 + log κ1 − (1− κ1)A
′E [Yt] = 0.
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Finding A0,m, Am, κ0,m, and κ1,m: Recall that

mt+1 + rm,t+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1

+κ0,m + κ1,mυm,t+1 − υm,t + ∆dt+1.

Note that

mt+1 + rm,t+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1 + rm,t+1

= B0 + B′2Yt+1 + B′1Yt

where

B0 = θ log δ + (κ1 − 1) (θ − 1)A0 + (θ − 1)κ0 + κ0,m + (κ1,m − 1)A0,m,

B1 = (1− θ)A− Am,
B2 = −Λ + ed + κ1,mAm,

and
Λ = γec + (1− θ)κ1A.

Thus, logEte(mt+1+rm,t+1) = 0 implies

B0 + B′1Yt + f (B2) + g (B2)
′
Yt = 0,

which implies that 
B0 + f (B2) = 0,

B1 + g (B2) = 0.

These two equations depend on κ0,m and κ1,m, which can be obtained from the two equations
below

−κ0,m − κ1,m log κ1,m − (1− κ1,m) log (1− κ1,m) = 0,

κ0,m + (κ1,m − 1)A0,m + log κ1,m − (1− κ1,m)A
′
mE [Yt] = 0.
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Finally A0,m, Am, κ0,m, κ1,m can be obtained by simultaneously solving the four equations
below: 


θ log δ + (κ1 − 1) (θ − 1)A0 + (θ − 1)κ0 + κ0,m

+ (κ1,m − 1)A0,m + f (−Λ + ed + κ1,mAm)

 = 0,

(1− θ)A− Am + g (−Λ + ed + κ1,mAm) = 0,

−κ0,m − κ1,m log κ1,m − (1− κ1,m) log (1− κ1,m) = 0,

κ0,m + (κ1,m − 1)A0,m + log κ1,m − (1− κ1,m)A
′
mE [Yt] = 0.

Now let us find the risk-free rate

logRf,t→t+1 = − log (Etemt+1) .

Note that

mt+1 = θ log δ − θ

ψ
e
′

cYt+1 + (θ − 1)
(
κ0 + κ1υt+1 − υt + e

′

cYt+1

)
= θ log δ − θ

ψ
e
′

cYt+1 + (θ − 1)κ0 + (θ − 1)κ1

(
A0 + A

′
Yt+1

)
− (θ − 1)

(
A0 + A

′
Yt

)
+ (θ − 1) e

′

cYt+1

which simplifies to

mt+1 = {θ log δ + (θ − 1)κ0 + (θ − 1)κ1A0 − (θ − 1)A0}

+

{(
− θ
ψ

+ (θ − 1)

)
e
′

c + (θ − 1)κ1A
′
}
Yt+1

− (θ − 1)A
′
Yt

and
mt+1 =

{
θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]− (θ − 1)A

′
Yt

}
− Λ

′
Yt+1.

Thus,

− logRf,t→t+1 = θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]− (θ − 1)A
′
Yt

+f (−Λ) + g (−Λ)
′
Yt

IA.64



which simplifies to:

logRf,t→t+1 = −


θ log δ + f (−Λ)

− (1− θ) [κ0 + A0 (κ1 − 1)]

− ((1− θ)A+ g (−Λ))
′
Yt.

�

We now provide a proof of Result IA.8.

Proof. Proof of Result IA.8.

Expression for Et

[
Rn

M,t→t+1

]
:

EtRn
M,t→t+1 = Etenrm,t+1

Observe that

nrm,t+1 = nκ0,m + nκ1,mυm,t+1 − nυm,t + ne
′

dYt+1

= (nκ0,m + nκ1,mA0,m − nA0,m)− nA′mYt
+ (nκ1,mAm + ned)

′
Yt+1.

Thus

EtRn
M,t→t+1 = exp

{
(nκ0,m + nκ1,mA0,m − nA0,m)− nA′mYt

}
×Et exp

{
(nκ1,mAm + ned)

′
Yt+1

}
and

EtRn
M,t→t+1 = exp


(nκ0,m + nκ1,mA0,m − nA0,m) + f (nκ1,mAm + ned)

+ {g (nκ1,mAm + ned)− nAm}
′
Yt

 .

The truncated physical moment is

Et
[
Rn
M,t+11RM,t+1>a

]
= Et

{(
exp

{
Ay,t + (Λ∗ + Λ)

′
Yt+1

})
I{Ay,t+(Λ∗+Λ)

′
Yt+1>n log a}

}
where

Ay,t = (nκ0,m + nκ1,mA0,m − nA0,m)− nA′mYt.

�
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We now provide a proof of Result IA.9.

Proof. Proof of Result IA.9.

Expression for E∗t
[
Rn

M,t→t+1

]
:

E∗tRn
M,t→t+1 = Rf,t+1Etemt+1+nrm,t+1 .

Observe that

mt+1 + nrm,t+1 =
{
θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]− (θ − 1)A

′
Yt

}
− Λ

′
Yt+1

+ (nκ0,m + nκ1,mA0,m − nA0,m)− nA′mYt + (nκ1,mAm + ned)
′
Yt+1

which simplifies to

mt+1 + nrm,t+1 =


θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]

+ (nκ0,m + nκ1,mA0,m − nA0,m)

− (θ − 1)A
′
Yt − nA

′
mYt


+ {nκ1,mAm + ned − Λ}

′
Yt+1.

Denote
Λ∗ = nκ1,mAm + ned − Λ.

Thus

mt+1 + nrm,t+1 =


θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]

+ (nκ0,m + nκ1,mA0,m − nA0,m)

− (θ − 1)A
′
Yt − nA

′
mYt


+ Λ∗

′
Yt+1.

Therefore,

E∗tRn
M,t→t+1 = Rf,t+1 exp


θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]

+ (nκ0,m + nκ1,mA0,m − nA0,m) + f (Λ∗)

{− (θ − 1)A− nAm + g (Λ∗)}Yt


.
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The truncated risk neutral moment is

E∗t
[
Rn
M,t+11RM,t+1>a

]
= Rf,t+1E∗t

[
emt+1+nrm,t+11RM,t+1>a

]
Note that

mt+1 + nrm,t+1 = A∗y,t + Λ∗
′
Yt+1

where

A∗y,t =


θ log δ − (1− θ) [κ0 + A0 (κ1 − 1)]

+ (nκ0,m + nκ1,mA0,m − nA0,m)

− (θ − 1)A
′
Yt − nA

′
mYt


.

Therefore,

E∗t
[
Rn
M,t+11RM,t+1>a

]
= Rf,t+1E∗t

[
eA
∗
y,t+Λ∗

′
Yt+11Ay,t+(Λ∗+Λ)

′
Yt+1>n log a

]
.

�

IA.7.4 Habit Formation Models: Bekaert, Engstrom, and Ermolov (2020)

Bekaert, Engstrom, and Ermolov (2020) consider an expected utility function of the form

Et

[
∞∑
j=t

βj−t
(Cj −Hj)

1−γ − 1

1− γ

]
,

where β is the time discount rate, Cj is consumption and Hj is the habit stock with the
restriction Cj > Hj. In this framework, the log-SDF is given by

mt→t+1 = log β − γgt+1 + γ∆qt+1,

where gt+1 ≡ log (Ct+1/Ct) is the log of consumption growth, and qt = logQt with
Qt ≡ Ct/ (Ct −Ht). We consider the two models studied in Bekaert, Engstrom, and Er-
molov (2020): (i) their model without preference shocks,47 and (ii) their model with prefer-
ence shocks. While the model without preference shocks is able to explain many standard
stylized facts in the data, it falls short of explaining the low variance risk premium per-
sistence. The model with preference shocks is designed to simultaneously explain the low
variance risk premium persistence and the average variance risk premium itself. We present

47We use their “Full” model specification in this case, as opposed to their “Baseline” specification.
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here a general specification that allows for preference shocks then later specialize it by setting
some coefficients to zero to obtain the model without preference shocks.

Bekaert, Engstrom, and Ermolov (2020) consider an economy having the following
time-series dynamics:

gt+1 = g + φg (nt − n) + σcpωp,t+1 − σcnωn,t+1,

dt+1 = g + φd (nt − n) + γg (σcpωp,t+1 − σcnωn,t+1) + γn (−σcnωn,t+1) ,

qt+1 = q + ρq (qt − q) + σqpωp,t+1 + σqnωn,t+1 + σqqωq,t+1.

where

pt+1 = p+ ρp (pt − p) + σppωp,t+1,

nt+1 = n+ ρn (nt − n) + σnnωn,t+1,

st+1 = s+ ρs (st − s) + σsqωq,t+1,

and where ωp,t+1, ωn,t+1, ωq,t+1 follow demeaned gamma distributions defined by

ωp,t+1 ∼ Γ (pt, 1)− pt,
ωn,t+1 ∼ Γ (nt, 1)− nt,
ωq,t+1 ∼ Γ (st, 1)− st.

Here, Γ (x, y) is a gamma distribution with shape parameter x and scale parameter y.
ωp,t+1, ωn,t+1, and ωq,t+1 are independent and have zero mean. The log-SDF has the form

mt→t+1 = m0 +mqqt +mnnt +mω,pωp,t+1 +mω,nωn,t+1 +mω,qωq,t+1,

See below for more details on parameters in the log-SDF. There are, in general, three state
variables in this framework: qt, nt, and st. The model without preference shocks obtains
when the state variable st is set to zero and certain parameter restrictions are imposed (see
below for more details). Given this setup, we show the following results.

Main Results

Result IA.10. Given pt = p and the state variables qt, nt, and st, the Bekaert, Engstrom,
and Ermolov (2020) model-implied log price-dividend ratio is given by

log
Pt
Dt

= K1
0 +K1

ppt +K1
nnt +K1

q qt +K1
s st (IA.77)
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and the non-central risk-neutral market return moments are given by

E∗t
[
Rn
M,t→t+1

]
= Rf,t→t+1 exp


nr0 +m0 + {nrp − g (nrωp +mω,p)} pt

+ {nrn +mn − g (mω,n + nrωn)}nt

+ (nrq +mq) qt + (nrs − g (nrωq +mω,q)) st

 (IA.78)

with
Rf,t→t+1 = exp (f0 + fqqt + fnnt + fppt + fsst) .

All parameters are described in more detail below. The function g (·) is defined as g (x) =

x+log (1− x). Rf,t→t+1 is the model-implied risk-free rate. Given E∗t
[
Rk
M,t→t+1

]
, M∗(n)

t→t+1 can
be computed using Equation 17 by setting x = RM,t→t+1 and xs = Rf,t→t+1, then taking ex-
pectations under the risk-neutral measure. The resulting expression can be found in Equation
IA.76.

Proof. See below. �

Result IA.11. The conditional non-central physical moment of the market return is

Et
[
RkM,t→t+1

]
= exp


kr0 + krppt + krnnt + krqqt + krsst

−ptg (krωp)− ntg (krωn)− stg (krωq)

 .

The truncated non-central physical moment is

Et
[
RkM,t→t+1I{RM,t→t+1>a}

]
= eξr,tEt

[
eZt+1,r I{Zt+1,r>k ln a−ξr,t}

]
with

ξr,t = kr0 + (krp − krωp) pt + (krn − krωn)nt + krqqt + (krs − krωq) st
Zt+1,r = krωp (ωp,t+1 + pt) + krωn (ωn,t+1 + nt) + krωq (ωq,t+1 + st) .

with pt = p and

ωp,t+1 + pt ∼ Γ (pt, 1) ,

ωn,t+1 + nt ∼ Γ (nt, 1) ,

ωq,t+1 + st ∼ Γ (st, 1) ,

Given the state variables, the truncated moment Et
[
RkM,t→t+1I{RM,t→t+1>a}

]
can be computed by

simulation at each time t. All parameters are defined below.

Proof. See below. �
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Result IA.12. The conditional non-central risk neutral moment of the market return is

E∗t
[
RkM,t→t+1

]
= Rf,t→t+1 exp


kr0 +m0 + {krp − g (krωp +mω,p)} pt

+ {krn +mn − g (mω,n + krωn)}nt

+ (krq +mq) qt + (krs − g (krωq +mω,q)) st

 .

The truncated non-central risk neutral moment is

E∗t
[
RkM,t→t+1I{RM,t→t+1>a}

]
= Rf,t+1Et

[
eζr+Zt+1,m1Zt+1,r>k log a−ξr,t

]
.

where

ζr = m0 + kr0 + (krp − krωp −mω,p) pt + (krn − krωn +mn −mω,n)nt

+ (krs − krωq −mω,q) st + (krq +mq) qt,

Zt+1,m = (mω,p + krωp) (ωp,t+1 + pt) + (mω,n + krωn) (ωn,t+1 + nt)

+ (krωq +mω,q) (ωq,t+1 + st) ,

ξr,t = kr0 + (krp − krωp) pt + (krn − krωn)nt + krqqt + (krs − krωq) st
Zt+1,r = krωp (ωp,t+1 + pt) + krωn (ωn,t+1 + nt) + krωq (ωq,t+1 + st) ,

ωp,t+1 + pt ∼ Γ (pt, 1) , ωn,t+1 + nt ∼ Γ (nt, 1) , and ωq,t+1 + st ∼ Γ (st, 1) .

Given the state variables, Et
[
eζr+Zt+1,m1Zt+1,r>k log a−ξr,t

]
can be computed by simulation at each

time t. All parameters are defined below.

Proof. See below. �

Derivations and Proofs We provide proofs of Results IA.10, IA.11, and IA.12 below.

Proof. Proofs of Results IA.10, IA.11, and IA.12.
Let us denote rt+1 = log RM ,t→t+1 . The log-SDF with preference shocks

mt+1 = log β − γgt+1 + γ∆qt+1

can be written as

mt+1 = log β − γqt − γgt+1 + γqt+1

= {log β − γg + γφgn+ γq (1− ρq)}+ (ρq − 1) γqt − γφgnt
+ (γσqp − γσcp)ωp,t+1 + (γσcn + γσqn)ωn,t+1 + γσqqωq,t+1

This log-SDF simplifies to

mt+1 = log β − γqt − γgt+1 + γqt+1

= m0 +mqqt +mnnt +mω,pωp,t+1 +mω,nωn,t+1 +mω,qωq,t+1
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with

m0 = log β + γ (φgn− g)− qmq, mn = −γφg,

mq = − (1− ρq) γ, mω,q = γσqq,

mω,p = γ (σqp − σcp) , mω,n = γ (σcn + σqn) .

The log risk-free rate is

logRf,t→t+1 = f0 + fqqt + fnnt + fppt + fsst (IA.79)

with
f0 = −m0, fq = −mq, fn = − (mn − g (mω,n)) , fp = g (mω,p) , fs = g (mω,q) .

Now the price-dividend ratio is

Pt
Dt

= Et
[
emt+1+dt+1

]
+ Et

e 2∑
j=1

(mt+j+dt+j)

+ Et

e 3∑
j=1

(mt+j+dt+j)

+ ....

= Et
[
emt+1+dt+1

]
+ Et

[
emt+1+dt+1e(mt+2+dt+2)

]
+ Et

e 3∑
j=1

(mt+j+dt+j)

+ ....

Observe that

mt+1 + dt+1

= {m0 + g − φdn}+mqqt + {mn + φd}nt
+ {mω,p + γgσcp}ωp,t+1 + {mω,n − (γn + γg)σcn}ωn,t+1 +mω,qωq,t+1.

Thus

Et
[
emt+1+dt+1

]
= e{{m0+g−φdn}+mqqt+{mn+φd}nt}

×Et
[
e(mω,p+γgσcp)ωp,t+1

]
Et
[
e(mω,n−(γn+γg)σcn)ωn,t+1

]
Et [emω,qωq,t+1 ]

Notice that

Et
[
e(mω,p+γgσcp)ωp,t+1

]
= exp {−ptg (mω,p + γgσcp)} ,

Et
[
e(mω,n−γgσcn−γnσcn)ωn,t+1

]
= exp {−ntg (mω,n − (γg + γn)σcn)} ,

Et [emω,qωq,t+1 ] = exp {−stg (mω,q)} .
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Finally,

Et
[
emt+1+dt+1

]
= exp


{m0 + g − φdn}+mqqt + {mn + φd}nt − ptg (mω,p + γgσcp)

−ntg (mω,n − (γg + γn)σcn)− stg (mω,q)


= exp {A1 +B1pt + C1nt +D1qt +G1st}

where

A1 = g +m0 − φdn,
B1 = −g (mω,p + γgσcp) ,

C1 = mn + φd − g (mω,n − (γg + γn)σcn) ,

D1 = mq,

G1 = −g (mω,q) .

Now, observe that

Et+1

[
emt+2+dt+2

]
= exp {A1 +B1pt+1 + C1nt+1 +D1qt+1 +G1st+1} ,

and
Et
[
emt+2+dt+2

]
= Et [exp {A1 +B1pt+1 + C1nt+1 +D1qt+1 +G1st+1}] .

Recall that

qt+1 = q + ρq (qt − q) + σqpωp,t+1 + σqnωn,t+1 + σqqωq,t+1,

pt+1 = p+ ρp (pt − p) + σppωp,t+1,

nt+1 = n+ ρn (nt − n) + σnnωn,t+1.

Thus:

Et
[
emt+1+dt+1

]
Et+1

[
emt+2+dt+2

]
= Et

[
emt+1+dt+1

]
exp {A1 +B1pt+1 + C1nt+1 +D1qt+1 +G1st+1} .

However, observe that

emt+1+dt+1 = e{{m0+g−φdn}+mqqt+{mn+φd}nt} × e(mω,p+γgσcp)ωp,t+1e(mω,n−(γn+γg)σcn)ωn,t+1emω,qωq,t+1 .

Thus:

Et
[
emt+1+dt+1

]
Et+1

[
emt+2+dt+2

]
= Et

exp


(m0 + g − φdn) +mqqt + (mn + φd)nt

A1 +B1pt+1 + C1nt+1 +D1qt+1 +G1st+1

+ (mω,p + γgσcp)ωp,t+1 + (mω,n − (γn + γg)σcn)ωn,t+1 +mω,qωq,t+1




which simplifies to
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Et
[
emt+1+dt+1

]
Et+1

[
emt+2+dt+2

]

= Et


exp



A2

+ (D1ρq +mq) qt + (mn + φd + C1ρn)nt

+

{
B1σpp +D1σqp + (mω,p + γgσcp)

}
ωp,t+1 +B1ρppt

+

{
C1σnn +D1σqn + (mω,n − (γn + γg)σcn)

}
ωn,t+1

+ {D1σqq +G1σsq +mω,q}ωq,t+1 +G1ρsst





A2 = m0 + g − φdn+A1 +B1p (1− ρp) + C1n (1− ρn)

+D1q (1− ρq) +G1s (1− ρs) ,
B2 = B1ρp − g (B1σpp +D1σqp + (mω,p + γgσcp)) ,

C2 = mn + φd + C1ρn − g [C1σnn +D1σqn + (mω,n − (γn + γg)σcn)] ,

D2 = D1ρq +mq,

G2 = G1ρs − g (D1σqq +G1σsq +mω,q) .

More generally,

An = An−1 +m0 + g − φdn+Bn−1p (1− ρp) + Cn−1n (1− ρn)

+Dn−1q (1− ρq) +Gn−1s (1− ρs) ,
Bn = Bn−1ρp − g (Dn−1σqp +Bn−1σpp + (mω,p + γgσcp)) ,

Cn = Cn−1ρn +mn + φd − g (Cn−1σnn +Dn−1σqn + (mω,n − (γg + γn)σcn)) ,

Dn = Dn−1ρq +mq,

Gn = Gn−1ρs − g (Dn−1σqq +Gn−1σsq +mω,q) .

The price-dividend ratio can be expressed as

Pt
Dt

=

∞∑
i=1

eAi+Bipt+Cint+Diqt+Gist .

The first-order approximation of the log price-dividend ratio is

pdt = K1
0 +K1

ppt +K1
nnt +K1

q qt +K1
s st
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where

K1
p =

∞∑
i=1

Bi exp (Ai +Bip+ Cin+Diq +Gis)

∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

K1
n =

∞∑
i=1

Ci exp (Ai +Bip+ Cin+Diq +Gis)

∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

K1
q =

∞∑
i=1

Di exp (Ai +Bip+ Cin+Diq +Gis)

∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

K1
s =

∞∑
i=1

Gi exp (Ai +Bip+ Cin+Diq +Gis)

∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

and

K1
0 = ln

( ∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)

)
−K1

pp−K1
nn−K1

q q −K1
s s.

The first-order approximation of ln
(

1 + Pt+1

Dt+1

)
is

ln

(
1 +

Pt+1

Dt+1

)
= K2

0 +K2
ppt+1 +K2

nnt+1 +K2
q qt+1 +K2

s st+1,

where

K2
p =

∞∑
i=1

Bi exp (Ai +Bip+ Cin+Diq +Gis)

1 +
∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

K2
n =

∞∑
i=1

Ci exp (Ai +Bip+ Cin+Diq +Gis)

1 +
∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

K2
q =

∞∑
i=1

Di exp (Ai +Bip+ Cin+Diq +Gis)

1 +
∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,

K2
s =

∞∑
i=1

Gi exp (Ai +Bip+ Cin+Diq +Gis)

1 +
∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)
,
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and

K2
0 = ln

(
1 +

∞∑
i=1

exp (Ai +Bip+ Cin+Diq +Gis)

)
−K2

pp−K2
nn−K2

q q −K2
s s.

The expression for the log market return is therefore

rt+1 = dt+1 + ln

(
1 +

Pt+1

Dt+1

)
− pdt

= g + φd (nt − n) + γg (σcpωp,t+1 − σcnωn,t+1) + γn (−σcnωn,t+1)

+K2
0 +K2

ppt+1 +K2
nnt+1 +K2

q qt+1 +K2
s st+1

−K1
0 −K1

ppt −K1
nnt −K1

q qt −K1
s st.

which simplifies to

rt+1

=


g − φdn+K2

0 −K1
0 +K2

pp−K2
pρpp+K2

nn

−K2
nρnn+K2

q q −K2
qρqq +K2

s s−K2
sρss


+
{
γgσcp +K2

pσpp +K2
qσqp

}
ωp,t+1

+
{
K2
qσqn − (γg + γn)σcn +K2

nσnn
}
ωn,t+1

+
{
K2
pρp −K1

p

}
pt +

{
K2
nρn −K1

n + φd
}
nt +

{
K2
sρs −K1

s

}
st

+
{
K2
qρq −K1

q

}
qt +

{
K2
qσqq +K2

sσsq
}
ωq,t+1.

This can be further simplified as

rt+1 = r0 + rppt + rnnt + rqqt + rsst + rωpωp,t+1 + rωnωn,t+1 + rωqωq,t+1,

where

r0 = g −K1
0 − φdn+K2

0 +K2
pp (1− ρp) +K2

nn (1− ρn)

+K2
q q (1− ρq) +K2

s s (1− ρs) ,
rp = K2

pρp −K1
p ,

rn = K2
nρn −K1

n + φd,

rq = K2
qρq −K1

q ,

rs = K2
sρs −K1

s ,

rωp = γgσcp +K2
pσpp +K2

qσqp,

rωn = K2
qσqn − (γg + γn)σcn +K2

nσnn,

rωq = K2
qσqq +K2

sσsq.
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Our goal now is to derive

Et
[
(RM,t→t+1 −Rf,t→t+1)

j
]

=

j∑
k=0

j! (−1)
j−k

(j − k)!k!
Rj−kf,t→t+1Et

[
RkM,t→t+1

]
,

Et
[
(RM,t→t+1 −Rf,t→t+1)

j I{RM,t→t+1>a}

]
=

j∑
k=0

j! (−1)
j−k

(j − k)!k!
Rj−kf,t→t+1Et

[
RkM,t→t+1I{RM,t→t+1>a}

]
,

E∗t
[
(RM,t→t+1 −Rf,t→t+1)

j
]

=

j∑
k=0

j! (−1)
j−k

(j − k)!k!
Rj−kf,t→t+1E

∗
t

[
RkM,t→t+1

]
,

E∗t
[
(RM,t→t+1 −Rf,t→t+1)

j I{RM,t→t+1>a}

]
=

j∑
k=0

j! (−1)
j−k

(j − k)!k!
Rj−kf,t→t+1E

∗
t

[
RkM,t→t+1I{RM,t→t+1>a}

]
.

We need to find

Et
[
RkM,t→t+1

]
, Et

[
RkM,t→t+1I{RM,t→t+1>a}

]
, E∗t

[
RkM,t→t+1

]
, and E∗t

[
RkM,t→t+1I{RM,t→t+1>a}

]
.

Note that

Et
[
RkM,t→t+1

]
= Et

[
ekrt+1

]
= Et

[
ekr0+krppt+krnnt+krqqt+krsst+krωpωp,t+1+krωnωn,t+1+krωqωq,t+1

]
= ekr0+krppt+krnnt+krqqt+krsstEt

[
ekrωpωp,t+1+krωnωn,t+1+krωqωq,t+1

]
= exp


kr0 + krppt + krnnt + krqqt + krsst

−ptg (krωp)− ntg (krωn)− stg (krωq)

 .

Next,
E∗t
[
RkM,t→t+1

]
= Rf,t+1Et

[
Mt→t+1R

k
M,t→t+1

]
= Rf,t+1Et

[
ekrt+1+mt+1

]
.

Observe that

krt+1 +mt+1

=


kr0 + krppt + krnnt + krqqt + krsst

+krωpωp,t+1 + krωnωn,t+1 + krωqωq,t+1

+m0 +mqqt +mnnt +mω,pωp,t+1 +mω,nωn,t+1 +mω,qωq,t+1



=


kr0 +m0 + krppt + (krn +mn)nt

+ (krq +mq) qt + krsst + (krωp +mω,p)ωp,t+1

+ (mω,n + krωn)ωn,t+1 + (krωq +mω,q)ωq,t+1

 .
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Thus

Rf,t→t+1Et
[
ekrt+1+mt+1

]

= Rf,t→t+1Et

exp


kr0 +m0 + krppt + (krn +mn)nt

+ (krq +mqqt) qt + krsst + (krωp +mω,p)ωp,t+1

+ (mω,n + krωn)ωn,t+1 + (krωq +mω,q)ωq,t+1



 .

Hence

E∗t
[
RkM,t→t+1

]
= Rf,t→t+1 exp


kr0 +m0 + {krp − g (krωp +mω,p)} pt

+ {krn +mn − g (mω,n + krωn)}nt

+ (krq +mq) qt + (krs − g (krωq +mω,q)) st

 . (IA.80)

Now, let us find the truncated moments. Observe that

krt+1 = kr0 + krppt + krnnt + krqqt + krsst

+krωpωp,t+1 + krωnωn,t+1 + krωqωq,t+1

= kr0 + (krp − krωp) pt + (krn − krωn)nt

+krqqt + (krs − krωq) st
+krωp (ωp,t+1 + pt) + krωn (ωn,t+1 + nt)

+krωq (ωq,t+1 + st)

= ξr,t + Zt+1,r

where

ξr,t = kr0 + (krp − krωp) pt + (krn − krωn)nt + krqqt + (krs − krωq) st
Zt+1,r = krωp (ωp,t+1 + pt) + krωn (ωn,t+1 + nt) + krωq (ωq,t+1 + st) .

Hence
Et
[
RkM,t→t+1I{RM,t→t+1>a}

]
= eξr,tEt

[
eZt+1,r I{Zt+1,r>k ln a−ξr,t}

]
Next, let us find E∗t

[
RkM,t→t+1I{RM,t→t+1>a}

]
. Observe that

E∗t
[
RkM,t→t+1I{RM,t→t+1>a}

]
= Rf,t→t+1Et

[
emt+1+ξr,t+Zt+1,r I{Zt+1,r>k log a−ξr,t}

]
.
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Now, observe that

mt+1 + ξr,t + Zt+1,r

= m0 +mqqt +mnnt +mω,pωp,t+1 +mω,nωn,t+1 +mω,qωq,t+1

+kr0 + (krp − krωp) pt + (krn − krωn)nt + krqqt + (krs − krωq) st
+krωp (ωp,t+1 + pt) + krωn (ωn,t+1 + nt) + krωq (ωq,t+1 + st)

which simplifies to

mt+1 + ξr,t + Zt+1,r

= m0 + kr0

+ (krp − krωp −mω,p) pt + (krn − krωn +mn −mω,n)nt

+ (krs − krωq −mω,q) st + (krq +mq) qt

+ (mω,p + krωp) (ωp,t+1 + pt) + (mω,n + krωn) (ωn,t+1 + nt)

+ (krωq +mω,q) (ωq,t+1 + st)

= ζr + Zt+1,m

with

ζr = m0 + kr0 + (krp − krωp −mω,p) pt + (krn − krωn +mn −mω,n)nt

+ (krs − krωq −mω,q) st + (krq +mq) qt

and

Zt+1,m = (mω,p + krωp) (ωp,t+1 + pt) + (mω,n + krωn) (ωn,t+1 + nt)

+ (krωq +mω,q) (ωq,t+1 + st)

The model without preference shocks obtains when the state variable st is set to zero and
the following parameter restrictions are imposed:48

s = ρs = σqq = φd = φg = γn = mn = mωq = 0. (IA.81)

�

48Note that ρp = σpp = 0 in both the model with and that without preference shocks.
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IA.7.5 Disaster Risk Models

IA.7.5.1 Gabaix (2012)

We follow the Dew-Becker et al. (2017) implementation of Gabaix (2012) (including their
parameter choices). The key processes that drive the economy are

∆ct+1 = µc + σcεc,t+1 + Jc,t+1,

Lt+1 = (1− ρL)L+ ρLLt + σLεL,t+1,

∆dt+1 = ησcεc,t+1 − LtIJct+1 6=0,

where Lt represents the recovery rate of stocks in a disaster. Jc,t+1 is a disaster shock that
affects the consumption and dividend processes, and follows a compound Poisson process
given by

Jc,t =
Nt∑
i=1

ξi,t where Nt ∼ Poisson (λ) and ξi,t ∼ N (µd, σd) .

The number of disasters, Nt, that occur each period follow a Poisson process with intensity
λ. I is an indicator function. Jc,t+1, εL,t+1 and εc,t+1 are independent. In Gabaix (2012), the
representative agent has a power utility utility preferences with risk aversion parameter γ.
In this setting the SDF takes the form:

Mt→t+1 = δ

(
Ct+1

Ct

)−γ
where δ is the time discount rate. The log-SDF is

mt+1 = log δ − γ∆ct+1.

Thus, the log of the return on the risk-free asset is

logRf,t+1 = − log (Etemt+1)

= − log
(
Ete(log δ−γ∆ct+1)

)
= − log (Et exp {log δ − γµc − γσcεc,t+1 − γJc,t+1})
= − log δ + γµc − logEt exp {−γσcεc,t+1 − γJc,t+1} .

Note that

Et exp {−γσcεc,t+1 − γJc,t+1} = (Et exp {−γσcεc,t+1}) (Et exp {−γJc,t+1}) .
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Since
Et exp {−γJc,t+1} = exp (λ (eϕG − 1))

with

ϕG = −γµd +
1

2
γ2σ2

d.

Hence

Et exp {−γσcεc,t+1 − γJc,t+1} = exp

{
1

2
γ2σ2

c + λ (eϕG − 1)

}
.

Thus

logRf,t+1 = − log δ + γµc −
1

2
γ2σ2

c − λ (eϕG − 1) .

Now, let us compute the physical and risk neutral moments. We use the Campbell and Shiller
(1988) to approximate multiples of the log market return as

nrm,t+1 ≈ nκ0 + nκ1pdt+1 − npdt + n∆dt+1

Next, we project the log price-dividend ratio (pdt) on the stock recovery rate, Lt, at each
date. In this model, the log price-dividend ratio is not linear in the state variable, Lt. To
approximate pdt as a function of Lt, we project it onto basis functions and impose that
the Euler equation holds (approximately) at each point in Lt. Denote the projected price-
dividend ratio using

pdt = f [Lt] .

The physical non-central moment of the market return is

Et
[
Rn
M,t→t+1

]
= Et [enrm,t+1 ]

Similarly, the non-central truncated moment

Et
[
Rn
M,t→t+1IRM,t→t+1>a

]
= Et

[
enrm,t+1IRM,t→t+1>a

]
Expressions for the non-central risk neutral and truncated non-central risk neutral moments
are

E∗t
[
Rn
M,t→t+1

]
= Rf,t→t+1Et

[
enrm,t+1+mt+1

]
,

and
E∗t
[
Rn
M,t→t+1IRM,t→t+1>a

]
= Rf,t→t+1Et

[
enrm,t+1+mt+1IRM,t→t+1>a

]
.

Multiples of the log market return are given by

nrm,t+1 ≈ nκ0 + nκ1f [Lt+1]− nf [Lt] + n∆dt+1.
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Given the state variable, Lt, we can use this expression to compute the physical and risk-
neutral moments above.

IA.7.5.2 Wachter (2013)

We follow the Dew-Becker et al. (2017) discretization of Wachter (2013) (including their
parameter choices) so that we can evaluate a monthly-frequency version of this model. The
key processes that drive the economy are given by

∆ct+1 = µc + σczc,t+1 + Jt+1,

λt+1 = (1− ρλ)µλ + ρλλt + σλ
√
λtzλ,t+1,

∆dt+1 = φµc + φσczc,t+1 + φJt+1,

where the shocks zc,t+1 and zλ,t+1 are uncorrelated and follow standard normal distributions.
Jt+1 follows a compound Poisson process given by

Jt+1 =

Nt+1∑
i=1

ξi,t+1 where Nt+1 ∼ Poisson (λt) and ξi,t+1 ∼ N (µd, σd) .

The number of disasters, Nt, that occur each period follow a Poisson process with intensity λt.
The variables zc,t+1, zλ,t+1, and Jt+1 are assumed to be independent. Following Dew-Becker
et al. (2017), the household utility is

υt = (1− β) logCt +
β

1− α
logEt

(
e((1−α)υt+1)

)
, (IA.82)

and the log-SDF takes the form

mt+1 = log β −∆ct+1 + (1− α) υt+1 − log (Et exp {(1− α) υt+1}) .

Main Results

Result IA.13. Given the state variable, λt, the model-implied log price-dividend ratio is given
by

log
Pt
Dt

= A0,m + A1,mλt,

where A0,m and A1,m are given below.

Proof. See below. �
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Result IA.14. For any n > 0, the non-central physical moment of the market return is

Et
(
Rn
M,t+1

)
= exp


nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ

+nφµc + 1
2

(nφσc)
2

+
{
n (κ1ρλ − 1)A1,m + 1

2
(nκ1A1,mσλ)

2 + (eϕφ − 1)
}
λt


with

ϕφ = (nφ)µd +
1

2
(nφ)2 σ2

d.

The truncated non-central physical moment is

Et
(
Rn
M,t→t+11RM,t→t+1>a

)
= Et

(
eAt+Zt+11At+Zt+1>n log a

)
,

where

At = nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ
+n (κ1ρλ − 1)A1,mλt + nφµc

Zt+1 = nκ1A1,mσλ
√
λtzλ,t+1 + nφσczc,t+1 + nφJt+1.

All parameters are defined below.

Proof. See below. �

Result IA.15. The non-central risk neutral-moments of the market return are

E∗t
[
Rn
M,t→t+1

]
= Rf,t→t+1 exp (A∗0 + A∗1λt)

where

A∗0 =


nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ

+As
0 + As

2 (1− ρλ)µλ + nφµc + As
3µc

+1
2

(nφ+ As
3)2 σ2

c


and

A∗1 =


n (κ1ρλ − 1)A1,m + As

1 + As
2ρλ

+1
2

(nκ1A1,m + As
2)2 σ2

λ +
(
eϕ
∗
φ,s − 1

)

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with

ϕ∗φ,s = (nφ+ As
3)µd +

1

2
(nφ+ As

3)2 σ2
d.

The truncated non-central risk-neutral moments of the market return are

E∗t
(
Rn
M,t+11RM,t+1>a

)
= Rf,t+1Et

{
N
[
d∗1,t+1

]
(exp {A∗t}) exp

{
µ∗z,t+1 +

1

2
σ∗2z,t+1

}}
where

E∗t
(
Rn
M,t+11RM,t+1>a

)
= Rf,t+1Et

(
emt+1+nrm,t+11RM,t+1>a

)
Note that

mt+1 + nrm,t+1 = Z∗t+1 +A∗t
where

Z∗t+1 = {nκ1A1,m + As
2}σλ

√
λtzλ,t+1 + (nφ+ As

3)σczc,t+1 + (nφ+ As
3) Jt+1

and

A∗t =


nκ0 + n (κ1 − 1)A0,m + n.κ1A1,m (1− ρλ)µλ

+As
0 + As

2 (1− ρλ)µλ + nφµc + As
3µc


+ {n (κ1ρλ − 1)A1,m + As

1 + As
2ρλ}λt.

All parameters are defined below.

Proof. See below. �

Derivations and Proofs We start with a conjecture that the log utility-consumption ratio
is a linear function of the intensity λt

υt − logCt = A0 + A1λt. (IA.83)

This allows us to express (1− α) υt+1 as

(1− α) υt+1 = (1− α) logCt + (1− α) (logCt+1 − logCt)

+ (1− α)A0 + A1 (1− α)λt+1.
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Hence

Et exp {(1− α) υt+1} = (exp {(1− α) logCt})Et

exp


(1− α) ∆ct+1 + (1− α)A0

+A1 (1− α)λt+1




=

exp


(1− α) logCt + A1 (1− α) ρλλt

(1− α)µc + (1− α)A0

+A1 (1− α) (1− ρλ)µλ





×Et

exp


(1− α)σczc,t+1 + (1− α) Jt+1

+A1 (1− α)σλ
√
λtzλ,t+1




which simplifies to

Et exp {(1− α) υt+1} =


exp



(1− α) logCt + A1 (1− α) ρλλt

(1− α)µc + (1− α)A0

+A1 (1− α) (1− ρλ)µλ

+1
2

(1− α)2 σ2
c + 1

2
A2

1 (1− α)2 σ2
λλt




×Et (exp {(1− α) Jt+1}) .

Note that
Et (exp {(1− α) Jt+1}) = Et (Et (exp {(1− α) Jt+1} |Nt+1)) .

Thus

Et (exp {(1− α) Jt+1} |Nt+1) = exp

{
(1− α)µdNt+1 +

Nt+1

2
(1− α)2 σ2

d

}
= exp {ϕαNt+1} ,

where

ϕα = (1− α)µd +
1

2
(1− α)2 σ2

d.
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Therefore,

Et (exp {(1− α) Jt+1}) = Et (exp {ϕαNt+1}) = exp (λt (eϕα − 1)) .

Consequently,

Et exp {(1− α) υt+1} = exp



(1− α) logCt + A1 (1− α) ρλλt

(1− α)µc + (1− α)A0

+A1 (1− α) (1− ρλ)µλ

+1
2

(1− α)2 σ2
c + 1

2
A2

1 (1− α)2 σ2
λλt

+λt (eϕα − 1)



.

Note that:

υt = (1− β) logCt +
β

1− α
logEt

(
e((1−α)υt+1)

)
.

We then replace this expression in Equation IA.82 and show:

υt = (1− β) logCt +

(
β

1− α

)



(1− α) logCt + A1 (1− α) ρλλt

(1− α)µc + (1− α)A0

+A1 (1− α) (1− ρλ)µλ

+1
2

(1− α)2 σ2
c + 1

2
A2

1 (1− α)2 σ2
λλt

+λt (eϕα − 1)


which simplifies to

υt − logCt =

{
βµc + βA0 + A1β (1− ρλ)µλ +

1

2
β (1− α)σ2

c

}
+

{
A1βρλ +

1

2
A2

1β (1− α)σ2
λ +

(
β

1− α

)
(eϕα − 1)

}
λt.
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By identification with Equation IA.83, we deduce

A0 = βµc + βA0 + A1β (1− ρλ)µλ +
1

2
β (1− α)σ2

c

A1 = A1βρλ +
1

2
A2

1β (1− α)σ2
λ +

(
β

1− α

)
(eϕα − 1) .

Thus,

A0 =
1

1− β

{
βµc + A1β (1− ρλ)µλ +

1

2
β (1− α)σ2

c

}
and

0 = 2A1 (βρλ − 1) + A2
1β (1− α)σ2

λ + 2

(
β

1− α

)
(eϕα − 1)

which implies

A1 =
(1− βρλ)±

√
(βρλ − 1)2 −

{
2
(

β
1−α

)
(eϕα − 1)

}
{β (1− α)σ2

λ}
β (1− α)σ2

λ

.

We choose the negative A1. Note that

υt − logCt = A0 + A1λt.

The log-SDF takes the form

mt+1 = log β −∆ct+1 + (1− α) υt+1 − log (Et exp {(1− α) υt+1})

which simplifies to

mt+1 = log β −∆ct+1 + (1− α)A0 + (1− α)A1λt+1

+ (1− α) logCt+1 − log (Et exp {(1− α) υt+1})

and hence

mt+1 =


log β − (1− α)µc

−A1 (1− α) (1− ρλ)µλ − 1
2

(1− α)2 σ2
c


−α∆ct+1 + (1− α)A1λt+1

+

{
−A1 (1− α) ρλ −

1

2
A2

1 (1− α)2 σ2
λ − (eϕα − 1)

}
λt.
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Thus,
mt+1 = As

0 + As
1λt + As

2λt+1 + As
3∆ct+1,

where

As
0 = log β − (1− α)µc − A1 (1− α) (1− ρλ)µλ −

1

2
(1− α)2 σ2

c ,

As
1 = −A1 (1− α) ρλ −

1

2
A2

1 (1− α)2 σ2
λ − (eϕα − 1) ,

As
2 = A1 (1− α) ,

As
3 = −α.

The return on the risk-free asset is given by

logRf,t→t+1 = − logEt (Mt→t+1) .

Note that

Et (Mt→t+1)

= Et exp {As
0 + As

1λt + As
2λt+1 + As

3∆ct+1}
= (exp {As

0 + As
1λt})Et exp {As

2λt+1 + As
3∆ct+1}

=

exp


As

0 + As
3µc + As

2 (1− ρλ)µλ + 1
2

(As
3)2 σ2

c

+As
1λt + As

2ρλλt + 1
2

(As
2)2 σ2

λλt


Et exp {As

3Jt+1} .

Now, note that

Et (exp {As
3Jt+1}) = Et exp

{
As

3µdNt+1 +
Nt+1

2
(As

3)2 σ2
d

}
= Et exp {ϕsNt+1} ,

where

ϕs = As
3µd +

1

2
(As

3)2 σ2
d.

Hence,
Et (exp {As

3Jt+1}) = Et {exp (λt (eϕs − 1))} .

Finally,
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Et (Mt→t+1) = exp


As

0 + As
3µc + As

2 (1− ρλ)µλ + 1
2

(As
3)2 σ2

c

+As
1λt + As

2ρλλt + 1
2

(As
2)2 σ2

λλt

+λt (eϕs − 1)


.

and
logRf,t→t+1 = Arf

0 + Arf
1 λt,

where

Arf
0 = −

{
As

0 + As
3µc + As

2 (1− ρλ)µλ + 1
2

(As
3)2 σ2

c

}
,

Arf
1 = −

{
As

1 + As
2ρλ +

1

2
(As

2)2 σ2
λ + (eϕs − 1)

}
.

Following Dew-Becker et al. (2017), we use the Campbell and Shiller (1988) approximation
to express the log market return as

rm,t+1 ≈ κ0 + κ1pdt+1 − pdt + ∆dt+1

where pdt is the log price-dividend ratio.
We provide a proof of Result IA.13 below.

Proof. Proof of Result IA.13. We conjecture that pdt is linear in the state variables

pdt = A0,m + A1,mλt. (IA.84)

Thus,

rm,t+1 ≈ κ0 + κ1 (A0,m + A1,mλt+1)− (A0,m + A1,mλt)

+ (φµc + φσczc,t+1 + φJt+1)

= κ0 + κ1A0,m + κ1A1,mλt+1 − A0,m − A1,mλt

+φµc + φσczc,t+1 + φJt+1.

This expands to

rm,t+1 = κ0 + (κ1 − 1)A0,m + κ1A1,m (1− ρλ)µλ + (κ1ρλ − 1)A1,mλt

+κ1A1,mσλ
√
λtzλ,t+1 + φµc + φσczc,t+1 + φJt+1.
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To identify A0,m and A1,m, we use the Euler equation

log
(
Ete(mt+1+rm,t+1)

)
= 0.

Note that

mt+1 + rm,t+1 = {κ0 + (κ1 − 1)A0,m + κ1A1,m (1− ρλ)µλ}+ φµc + As
0

+ {(κ1ρλ − 1)A1,m + As
1}λt + κ1A1,mσλ

√
λtzλ,t+1

+φσczc,t+1 + φJt+1 + As
2λt+1 + As

3∆ct+1

which simplifies to

mt+1 + rm,t+1 =


κ0 + (κ1 − 1)A0,m + κ1A1,m (1− ρλ)µλ

+As
3µc + φµc + As

0 + As
2 (1− ρλ)µλ


+ {(κ1ρλ − 1)A1,m + As

1 + As
2ρλ}λt

+ (κ1A1,m + As
2)σλ

√
λtzλ,t+1

+ (φσc + As
3σc) zc,t+1 + (φ+ As

3) Jt+1

Thus

logEte(mt+1+rm,t+1)

=


κ0 + (κ1 − 1)A0,m + κ1A1,m (1− ρλ)µλ

+ (As
3 + φ)µc + As

0 + As
2 (1− ρλ)µλ + 1

2
(φσc + As

3σc)
2


+


(κ1ρλ − 1)A1,m + As

1 + As
2ρλ

+1
2

(κ1A1,m + As
2)2 σ2

λ

λt + logEt (exp ((φ+ As
3) Jt+1)) .

Note that

Et (exp ((φ+ As
3) Jt+1)) = Et exp (ϕφ,sNt+1) = exp (λt (eϕφ,s − 1)) ,

where

ϕφ,s = (φ+ As
3)µd +

1

2
(φ+ As

3)2 σ2
d.
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Therefore,

logEte(mt+1+rm,t+1)

=


κ0 + (κ1 − 1)A0,m + κ1A1,m (1− ρλ)µλ

+ (As
3 + φ)µc + As

0 + As
2 (1− ρλ)µλ + 1

2
(φσc + As

3σc)
2


+


(κ1ρλ − 1)A1,m + As

1 + As
2ρλ

+1
2

(κ1A1,m + As
2)2 σ2

λ + (eϕφ,s − 1)

λt. (IA.85)

Since, logEte(mt+1+rm,t+1) = 0, this implies that each term of Equation IA.85 is zero. As a
result, the coefficients from the conjecture in Equation IA.84 are

A0,m =
1

1− κ1


κ0 + κ1A1,m (1− ρλ)µλ + (As

3 + φ)µc

+As
0 + As

2 (1− ρλ)µλ + 1
2

(φσc + As
3σc)

2


and

2
{

(κ1ρλ − 1) + κ1A
s
2σ

2
λ

}
A1,m + κ2

1σ
2
λA

2
1,m + 2

{
1

2
(As

2)2 σ2
λ + As

1 + As
2ρλ + (eϕφ,s − 1)

}
which simplifies to

C + 2B.A1,m +A.A2
1,m = 0

where

C = 2

{
As

1 + As
2ρλ + (eϕφ,s − 1) +

1

2
(As

2)2 σ2
λ

}
B =

{
(κ1ρλ − 1) + κ1A

s
2σ

2
λ

}
A = κ2

1σ
2
λ.

Hence

A1,m =
−B±

√
B2 −A.C
A

.

We choose the negative value A1,m as in Dew-Becker et al. (2017). We provide a proof of
Result IA.14 below. �
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Proof. Proof of Result IA.14. Let us find the physical moments and truncated moments:

Et
(
Rn
M,t+1

)
= Et (enrm,t+1) .

Note that

nrm,t+1 = nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ
+n (κ1ρλ − 1)A1,mλt + nκ1A1,mσλ

√
λtzλ,t+1

+nφµc + nφσczc,t+1 + nφJt+1.

Hence

Et
(
Rn
M,t+1

)
= exp


nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ

+nφµc + 1
2

(nφσc)
2

+
{
n (κ1ρλ − 1)A1,m + 1

2
(nκ1A1,mσλ)

2}λt


×Et (exp {nφJt+1}) .

Note that
Et (exp ((nφ) Jt+1)) = Et exp (ϕφNt+1) = exp (λt (eϕφ − 1)) ,

where

ϕφ = (nφ)µd +
1

2
(nφ)2 σ2

d.

Thus,

Et
(
Rn
M,t+1

)
= exp


nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ

+nφµc + 1
2

(nφσc)
2

+
{
n (κ1ρλ − 1)A1,m + 1

2
(nκ1A1,mσλ)

2 + (eϕφ − 1)
}
λt


.

Now, let us find the truncated moments

Et
(
Rn
M,t+11RM,t+1>a

)
= Et

(
enrm,t+11nrm,t+1>n log a

)
= Et

(
enrm,t+11nrm,t+1>n log a

)
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Note that
nrm,t+1 = At + Zt+1

where

At = nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ
+n (κ1ρλ − 1)A1,mλt + nφµc

Zt+1 = nκ1A1,mσλ
√
λtzλ,t+1 + nφσczc,t+1 + nφJt+1

�

Proof. Let us compute the risk neutral moments

logE∗t
(
Rn
M,t+1

)
= log

{
Et
(

Mt+1

EtMt+1

Rn
M,t+1

)}
= logRf,t+1 + log

{
Et
(
emt+1+nrm,t+1

)}
.

Observe that

mt+1 + nrm,t+1 = nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ
+n (κ1ρλ − 1)A1,mλt + nκ1A1,mσλ

√
λtzλ,t+1

+nφµc + nφσczc,t+1 + nφJt+1

+As
0 + As

1λt + As
2λt+1 + As

3ct+1,

which simplifies to

mt+1 + nrm,t+1 =


nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ

+As
0 + As

2 (1− ρλ)µλ + nφµc + As
3µc


+ {n (κ1ρλ − 1)A1,m + As

1 + As
2ρλ}λt

+ {nκ1A1,m + As
2}σλ

√
λtzλ,t+1

+ (nφ+ As
3)σczc,t+1 + (nφ+ As

3) Jt+1.
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Thus,

E∗t
[
Rn
M,t→t+1

]
= Rf,t+1 exp




nκ0 + n (κ1 − 1)A0,m + nκ1A1,m (1− ρλ)µλ

+As
0 + As

2 (1− ρλ)µλ + nφµc + As
3µc


+ {n (κ1ρλ − 1)A1,m + As

1 + As
2ρλ}λt

+1
2

(nκ1A1,m + As
2)2 σ2

λλt

+1
2

(nφ+ As
3)2 σ2

c + λt
(
eϕ
∗
φ,s − 1

)


.

Since
Et (exp ((nφ+ As

3) Jt+1)) = exp
(
λt
(
eϕ
∗
φ,s − 1

))
,

where

ϕ∗φ,s = (nφ+ As
3)µd +

1

2
(nφ+ As

3)2 σ2
d.

Now, let us compute the truncated risk neutral moment

E∗t
(
Rn
M,t+11RM,t+1>a

)
= Rf,t+1Et

(
emt+1+nrm,t+11RM,t+1>a

)
.

Note that
mt+1 + nrm,t+1 = Z∗t+1 +A∗t

where

Z∗t+1 = {nκ1A1,m + As
2}σλ

√
λtzλ,t+1 + (nφ+ As

3)σczc,t+1 + (nφ+ As
3) Jt+1

and

A∗t =


nκ0 + n (κ1 − 1)A0,m + n.κ1A1,m (1− ρλ)µλ

+As
0 + As

2 (1− ρλ)µλ + nφµc + As
3µc


+ {n (κ1ρλ − 1)A1,m + As

1 + As
2ρλ}λt.

Given the state variable λt, the truncated risk-neutral moment can be computed at each
date. �
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IA.8 Discussion of Differences with Respect to the Decomposition
in Beason and Schreindorfer (2020)

Beason and Schreindorfer (2020) present a related decomposition of the unconditional equity
risk premium that generates different implications for the relative contributions for downside,
central, and upside risk premia to the total risk premium compared to our results. Namely,
results in Beason and Schreindorfer (2020) imply that their equivalent of the downside, cen-
tral, and upside risk premia constitute (approximately) 80%, 30%, and -10% of the total
equity risk premium, respectively. This empirical result is very different than our baseline
results (Table 2, Panel B), which imply the downside and central risk premia contribute sim-
ilar amounts to the total risk premium (unconditionally) at about 45% each, and the upside
risk premium contributes about 10% of the total risk premium unconditionally. To under-
stand these different empirical results, we discuss three differences between our methodology
and that in Beason and Schreindorfer (2020). First, Beason and Schreindorfer (2020) use a
slightly different definition of the risk premium decomposition than we use herein. Second,
their unconditional decomposition makes use of different empirical techniques to estimate
the physical and risk-neutral market return densities than we use herein. Third, Jensen’s in-
equality effects could explain some of the discrepancy between our respective decomposition
results. We discuss each of these issues in more detail below.

We begin by discussing the relationship between our definition of the equity risk premium
decomposition relative to that in Beason and Schreindorfer (2020). Starting with their Equa-
tion 4 and redefining their net market returns, R, in that equation to be gross returns (to be
consistent with our consistent use of gross market returns), their truncated of risk premium
associated with market returns between x1 and x2 is given by:

R̃P
(1)

[Ax12 ] ≡
x2w

x1

RM (f (RM)− f ∗ (RM)) dRM . (IA.86)

We use R̃P
(1)

[Ax12 ] to designate this risk premium to highlight that this definition is anal-
ogous to (but not exactly the same as) our definition of the risk premium, RP(1) [As], in
Equation 29.49 f and f ∗ represent the unconditional physical and risk-neutral return den-
sities, respectively. To highlight the differences between the two risk premium definitions,
we focus on the downside region for clarity. This corresponds to our case where As = Ad.
The same case is obtained from Equation IA.86 by setting x1 = 0 and x2 = x, which is the
cutoff for our downside region (0.9). In this case, the Beason and Schreindorfer (2020) risk

49We remove the “t → T” subscripts for simplicity since Beason and Schreindorfer (2020) consider only
the one-month horizon.
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premium definition becomes:

R̃P
(1)

[Ad] ≡
xw

0

RM (f (RM)− f ∗ (RM)) dRM . (IA.87)

Equivalently, we can express this integral in terms of expectation operators:

R̃P
(1)

[Ad] ≡ E [RMIAd ]− E∗ [RMIAd ]

where IAd is an indicator function for realizations of market returns in region Ad (that is,
RM ∈ [0, x]). Using the identity RM ≡ RM − Rf + Rf , we can express the Beason and
Schreindorfer (2020) downside risk premium in terms of a component that is equivalent to
the unconditional version of our downside risk premium, RP(1) [Ad], plus a component that
is equivalent to a contingent claim that pays off one dollar in the event that RM ∈ Ad:

R̃P
(1)

[Ad] ≡ E [(RM −Rf +Rf ) IAd ]− E∗ [(RM −Rf +Rf ) IAd ]
= E [(RM −Rf ) IAd ]− E∗ [(RM −Rf ) IAd ]

+E [RfIAd ]− E∗ [RfIAd ]
≡ RP(1) [Ad] +Rf (E [IAd ]− E∗ [IAd ]) . (IA.88)

Intuitively, this discrepancy exists because Beason and Schreindorfer (2020) define the trun-
cated equity risk premium in terms of market returns in Equation IA.86, whereas we define
our truncated risk premia in terms of excess market returns throughout. Note that when in-
tegrating Equation IA.86 over the entire return space (x1 = 0, x2 →∞), the two definitions
are consistent since

r∞
0
RMf

∗ (RM) dRM = Rf . However, the two definitions are distinct
when the region of interest is a subset of the return space. For completeness, the truncated
market risk premia in the central and upside regions in Beason and Schreindorfer (2020) are
related to ours as follows:

R̃P
(1)

[Ac] ≡ RP(1) [Ac] +Rf (E [IAc ]− E∗ [IAc ]) and (IA.89)

R̃P
(1)

[Au] ≡ RP(1) [Au] +Rf (E [IAu ]− E∗ [IAu ]) (IA.90)

Therefore, the unconditional truncated market risk premia under our definition will be dif-
ferent than those implied by the Beason and Schreindorfer (2020) by terms related to the
risk premia on contingent claims of the form E [IAs ]−E∗ [IAs ] that pay off one dollar in each
respective region of market returns, s ∈ {d, c, u}. We call these “Arrow-Debreu risk premia”
and define

RP(0)
t [As] ≡ Et [IAs ]− E∗t [IAs ] .
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How do we expect these differences highlighted in Equations IA.88-IA.90 to manifest in
terms of the measured truncated risk premia? Using our methodology, we can compute the
conditional Arrow-Debreu risk premia, RP(0)

t [As], by setting n = 0 in Corollary 1 to estimate
E [IA] and using standard techniques described in Internet Appendix IA.4 to estimate the risk-

neutral counterpart. We plot estimated RP(0)
t [As] in Figure IA.7. The unconditional (over

time) average values of RP(0)
t [As] for s ∈ {d, c, u} are -1.88%, 1.35%, and 0.58% (annualized

and in percent), respectively. Our unconditional average values of RP(1)
t [As] for s ∈ {d, c, u}

(reported in Table 2 and Figure 2) are 4.45%, 3.33%, and 0.97%, respectively (annualized
and in percent). Therefore, the discrepancy in the risk premium decomposition definitions

could cause large differences in our measured RP(1) [As] compared to R̃P
(1)

[As] implied by
Beason and Schreindorfer (2020).

Our unconditional values of RP(0)
t [As] imply the following relationships (all else equal)

between our unconditional RP(1) [As] and the R̃P
(1)

[As] values implied in Beason and Schrein-
dorfer (2020):

R̃P
(1)

[Ad] < RP(1) [Ad] ,

R̃P
(1)

[Ac] > RP(1) [Ac] , and

R̃P
(1)

[Au] > RP(1) [Au] .

Figure 1 in Beason and Schreindorfer (2020) actually imply the opposite relationships be-
tween our respective truncated risk premia. Namely, their Figure 1 implies

R̃P
(1)

[Ad] > RP(1) [Ad] ,

R̃P
(1)

[Ac] < RP(1) [Ac] , and

R̃P
(1)

[Au] < RP(1) [Au] .

Why is this the case? This brings us to the second major difference between our decom-
position and that in Beason and Schreindorfer (2020), which is related to how they estimate
the physical and risk-neutral densities. In their case, they estimate f using realized historical
returns and estimate f ∗ using an optimization approach over conditional f ∗ implied by op-
tion prices. Their this procedure yields an estimate for E [f ∗] /E [f ] that is not monotonically
decreasing in market returns (see Beason and Schreindorfer (2020), Figure 2).50 The fact
that their E [f ∗] /E [f ] is only slightly decreasing in the central region yields an implied cen-
tral risk premium contribution (approximately 30%) that is lower than that implied by our

50Note that the ratio E [f∗] /E [f ] is not exactly the same as the unconditional SDF, which is given by
E [f∗/f ] .
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methodology (approximately 45%). The fact that their E [f ∗] /E [f ] is slightly increasing in
the upside region yields an implied upside risk premium that is negative with a contribution
to the total risk premium of approximately -10% (compared to our estimate of approximately
10%).

We sidestep the issue of estimating the physical and risk-neutral densities by using our
transformation between risk-neutral and physical moments implied by Corollary 1. As can
be see in Figure IA.3, our methodology implies conditional SDFs that are (approximately)
monotonically decreasing in market returns. The result is that our downside, central, and
upside risk premia are all positive so that each has a positive contribution to the overall
risk premium. Finally, the implied magnitude of the downside risk premium in Beason and
Schreindorfer (2020) is larger than our unconditional value because their E [f ∗] /E [f ] (their
Figure 2) is higher than our conditional SDFs in the downside region (see Figure IA.3). This
implies that their E [f ] − E [f ∗] is higher than our implied value in this region, yielding a
larger downside risk premium.

The third potential contributor to differences between our risk premium contribution
measures and those in Beason and Schreindorfer (2020) is related to Jensen’s inequality.
Beason and Schreindorfer (2020) compute their contributions effectively by integrating over
E [f ] − E [f ∗], whereas we first compute conditional contributions and average over these.
One way to make our measures more comparable to theirs would be to compute contribu-
tions directly from the unconditional average risk premium levels. For instance, using results

reported in Table 2, we could compute: E
[
RP(1)

t→T [Ad]
]
/E
[
RP(1)

t→T [A]
]

= 4.45/8.72 ≈ 51%.

Since our estimate of the downside risk premium contribution reported in Table 2 is ap-
proximately 46%, this implies that even ignoring the Jensen’s inequality terms would not
reconcile the large differences between our risk premium contribution estimates and those in
Beason and Schreindorfer (2020).
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Figure IA.1
Relative Risk Aversion (1/τ (xs))

This graph plots estimates of relative risk aversion based on reported values of τ (xs) in Table 1. Relative risk
aversion is simply 1/τ (xs) (see Equation 14). Values are plotted for three points in the return space (xd, xc, and
xu) corresponding to the regions Ad, Ac, and Au, respectively, and across five horizons (30, 60, 90, 180, and 360
days).

IA.100



(a
)
τ
(x

s
)

(b
)
ρ
(x

s
)

(c
)
κ
(x

s
)

30
60

90
12

0
15

0
18

0
21

0
24

0
27

0
30

0
33

0
36

0

H
or

iz
on

 (
da

ys
)

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

30
60

90
12

0
15

0
18

0
21

0
24

0
27

0
30

0
33

0
36

0

H
or

iz
on

 (
da

ys
)

012345678

30
60

90
12

0
15

0
18

0
21

0
24

0
27

0
30

0
33

0
36

0

H
or

iz
on

 (
da

ys
)

0.
51

1.
52

2.
53

3.
54

4.
55

5.
5

F
ig

u
re

IA
.2

E
st

im
at

ed
P

re
fe

re
n
ce

P
ar

am
et

er
s

T
h
es

e
gr

ap
h
s

p
lo

t
es

ti
m

at
es

of
τ

(x
s
)

(P
an

el
(a

))
,
ρ

(x
s
)

(P
an

el
(b

))
,

an
d
κ

(x
s
)

(P
an

el
(c

))
b
as

ed
on

re
p

or
te

d
va

lu
es

in
T

ab
le

1.
V

al
u
es

ar
e

p
lo

tt
ed

fo
r

th
re

e
p

oi
n
ts

in
th

e
re

tu
rn

sp
ac

e
(x

d
,
x
c
,

an
d
x
u
)

co
rr

es
p

on
d
in

g
to

th
e

re
gi

on
s
A
d
,
A
c
,

an
d
A
u
,

re
sp

ec
ti

ve
ly

,
an

d
ac

ro
ss

fi
ve

h
or

iz
on

s
(3

0,
60

,
90

,
18

0,
an

d
36

0
d
ay

s)
.

IA.101



(a
)

(b
)

(c
)

0.
7

0.
8

0.
9

1
1.

1
1.

2
1.

3
0.

51

1.
52

2.
53

3.
54

S
D

F
 o

n
 0

3-
Ja

n
-2

00
6,

 3
0-

d
ay

 h
o

ri
zo

n

0.
7

0.
8

0.
9

1
1.

1
1.

2
1.

3
0.

51

1.
52

2.
53

3.
54

S
D

F
 o

n
 1

5-
S

ep
-2

00
8,

 3
0-

d
ay

 h
o

ri
zo

n

0.
7

0.
8

0.
9

1
1.

1
1.

2
1.

3
0.

51

1.
52

2.
53

3.
54

S
D

F
 o

n
 0

2-
Ja

n
-2

01
4,

 3
0-

d
ay

 h
o

ri
zo

n

(d
)

(e
)

(f
)

0.
5

0.
6

0.
7

0.
8

0.
9

1
1.

1
1.

2
1.

3
1.

4
1.

5
0.

51

1.
52

2.
53

S
D

F
 o

n
 0

3-
Ja

n
-2

00
6,

 3
60

-d
ay

 h
o

ri
zo

n

0.
5

0.
6

0.
7

0.
8

0.
9

1
1.

1
1.

2
1.

3
1.

4
1.

5
0.

51

1.
52

2.
53

S
D

F
 o

n
 1

5-
S

ep
-2

00
8,

 3
60

-d
ay

 h
o

ri
zo

n

0.
5

0.
6

0.
7

0.
8

0.
9

1
1.

1
1.

2
1.

3
1.

4
1.

5
0.

51

1.
52

2.
53

S
D

F
 o

n
 0

2-
Ja

n
-2

01
4,

 3
60

-d
ay

 h
o

ri
zo

n

F
ig

u
re

IA
.3

Im
p
li
ed

S
D

F
at

S
el

ec
te

d
D

at
es

T
h
es

e
gr

ap
h
s

p
lo

t
es

ti
m

at
ed

va
lu

es
of

th
e

S
D

F
ac

ro
ss

th
re

e
re

gi
on

s
of

in
te

re
st

(A
d
,
A
c
,

an
d
A
u
)

w
it

h
re

gi
on

b
ou

n
d
ar

ie
s

at
x

=
0.

9
an

d
x

=
1.

1
ac

co
rd

in
g

to
th

e
in

ve
rs

e
of

th
e

te
rm

s
in

E
q
u
at

io
n

18
u
si

n
g

es
ti

m
at

ed
p
re

fe
re

n
ce

p
ar

am
et

er
s

fr
om

T
ab

le
1.

T
h
e

S
D

F
is

es
ti

m
at

ed
at

tw
o

h
or

iz
on

s
(3

0
d
ay

s
-

P
an

el
s

(a
),

(b
),

an
d

(c
);

an
d

36
0

d
ay

s
-

P
an

el
s

(d
),

(e
),

an
d

(f
))

,
an

d
on

th
re

e
d
at

es
(3

J
an

u
ar

y,
20

06
-

P
an

el
s

(a
)

an
d

(d
);

15
S
ep

te
m

b
er

,
20

08
-

P
an

el
s

(b
)

an
d

(e
);

an
d

2
J
an

u
ar

y,
20

14
-

P
an

el
s

(c
)

an
d

(f
))

.

T
h
e

p
lo

ts
al

so
m

ak
e

u
se

of
M
∗(
n

)
t→

T
[A

s
]

es
ti

m
at

es
fr

om
op

ti
on

s
p
ri

ce
s

on
th

es
e

d
at

es
.

IA.102



(a
)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(3
0-

D
ay

H
or

iz
on

)
(b

)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(9
0-

D
ay

H
or

iz
o
n

)
(c

)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(3
6
0
-D

ay
H

o
ri

zo
n

)

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

051015202530354045

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

051015202530354045

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

051015202530354045

(d
)
R
P(

1
)

t→
T
[A

s
]

C
on

tr
ib

s.
(3

0-
D

ay
H

or
iz

on
)

(e
)
R
P(

1
)

t→
T
[A

s
]

C
on

tr
ib

s.
(9

0-
D

ay
H

o
ri

zo
n

)
(f

)
R
P(

1
)

t→
T
[A

s
]

C
o
n
tr

ib
s.

(3
6
0
-D

ay
H

o
ri

zo
n

)

051015202530354045

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

051015202530354045

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

051015202530354045

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

F
ig

u
re

IA
.4

D
at

a-
Im

p
li
ed

M
ar

ke
t

R
is

k
P

re
m

iu
m

D
ec

om
p

os
it

io
n

(R
es

tr
ic

te
d

P
re

fe
re

n
ce

P
ar

am
et

er
s)

T
h
es

e
gr

ap
h
s

p
lo

t
th

e
d
at

a-
im

p
li
ed

re
st

ri
ct

ed
ri

sk
p
re

m
iu

m
d
ec

om
p

os
it

io
n
s

fr
om

S
ec

ti
on

2.
3

b
as

ed
on

P
ro

p
os

it
io

n
3

w
it

h
n

=
1

(i
.e

.,
th

e
m

ar
ke

t
ri

sk
p
re

m
iu

m
).

T
h
e

d
ec

om
p

os
it

io
n
s

se
t

p
re

fe
re

n
ce

p
ar

am
et

er
s

to
b

e
τ

=
1,
ρ

=
2,

an
d
κ

=
4

ac
ro

ss
al

l
re

gi
on

s
an

d
h
or

iz
on

s.
P

an
el

s
(a

)-
(c

)
p
lo

t
th

e
an

n
u
al

iz
ed

ri
sk

p
re

m
iu

m
le

ve
ls

at
ea

ch
d
at

e
in

p
er

ce
n
t.

P
an

el
s

(d
)-

(e
)

p
lo

t
ea

ch
co

m
p

on
en

t’
s

co
n
tr

ib
u
ti

on
to

th
e

to
ta

l
ri

sk
p
re

m
iu

m
at

ea
ch

d
at

e
as

a
fr

ac
ti

on
of

th
e

to
ta

l
ri

sk
p
re

m
iu

m
.

T
h
e

d
ar

k
/m

ed
iu

m
/l

ig
h
t

sh
ad

ed
re

gi
on

s
re

p
re

se
n
t

th
e

d
ow

n
si

d
e/

ce
n
tr

al
/u

p
si

d
e

ri
sk

p
re

m
iu

m
co

n
tr

ib
u
ti

on
s,

re
sp

ec
ti

ve
ly

.
T

h
e

d
ec

om
p

os
it

io
n
s

ar
e

co
m

p
u
te

d
at

th
re

e
h
or

iz
on

s
(3

0
d
ay

s
-

P
an

el
s

(a
)

an
d

(d
);

90
d
ay

s
-

P
an

el
s

(b
)

an
d

(e
);

an
d

36
0

d
ay

s
-

P
an

el
s

(c
)

an
d

(f
))

an
d

u
se

A
d
=

[0
,0
.9

],
A

c
=

[0
.9
,1
.1

],
an

d
A

u
=

[1
.1
,+
∞

).
A

ll
ti

m
e

se
ri

es
ar

e
sm

o
ot

h
ed

b
y

av
er

ag
in

g
ov

er
tw

o
m

on
th

s
of

la
gg

ed
d
ai

ly
d
at

a
to

re
d
u
ce

th
e

ap
p

ea
ra

n
ce

of
n
oi

se
.

IA.103



( a
)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(3
0-

D
ay

H
or

iz
on

)
(b

)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(9
0-

D
ay

H
or

iz
o
n

)
(c

)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(3
6
0
-D

ay
H

o
ri

zo
n

)

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

0102030405060

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

0102030405060

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

0102030405060

(d
)
R
P(

1
)

t→
T
[A

s
]

C
on

tr
ib

s.
(3

0-
D

ay
H

or
iz

on
)

(e
)
R
P(

1
)

t→
T
[A

s
]

C
on

tr
ib

s.
(9

0-
D

ay
H

o
ri

zo
n

)
(f

)
R
P(

1
)

t→
T
[A

s
]

C
o
n
tr

ib
s.

(3
6
0
-D

ay
H

o
ri

zo
n

)

0102030405060

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

0102030405060

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

0102030405060

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

F
ig

u
re

IA
.5

D
at

a-
Im

p
li
ed

M
ar

k
et

R
is

k
P

re
m

iu
m

D
ec

om
p

os
it

io
n

(U
n
re

st
ri

ct
ed

P
re

fe
re

n
ce

P
ar

am
et

er
s;

O
b
se

rv
ed

P
ri

ce
s)

T
h
es

e
gr

ap
h
s

p
lo

t
th

e
d
at

a-
im

p
li
ed

u
n
re

st
ri

ct
ed

ri
sk

p
re

m
iu

m
d
ec

om
p

os
it

io
n
s

fr
om

S
ec

ti
on

2.
2

b
as

ed
on

P
ro

p
os

it
io

n
3

w
it

h
n

=
1

(i
.e

.,
th

e
m

ar
ke

t
ri

sk
p
re

m
iu

m
).

T
h
e

d
ec

om
p

os
it

io
n
s

u
se

ri
sk

-n
eu

tr
al

m
om

en
ts

co
m

p
u
te

d
b
y

n
u
m

er
ic

al
ly

in
te

gr
at

io
n

ov
er

ob
se

rv
ed

op
ti

on
p
ri

ce
s

d
ir

ec
tl

y
ra

th
er

th
an

u
si

n
g

th
e

im
p
li
ed

vo
la

ti
li
ty

fi
tt

in
g

m
et

h
o
d
.

P
re

fe
re

n
ce

p
ar

am
et

er
s

ar
e

al
so

re
-e

st
im

at
ed

u
si

n
g

th
es

e
m

om
en

ts
.

P
an

el
s

(a
)-

(c
)

p
lo

t
th

e
an

n
u
al

iz
ed

ri
sk

p
re

m
iu

m
le

ve
ls

at
ea

ch
d
at

e.
P

an
el

s
(d

)-
(e

)
p
lo

t
ea

ch
co

m
p

on
en

t’
s

co
n
tr

ib
u
ti

on
to

th
e

to
ta

l
ri

sk
p
re

m
iu

m
at

ea
ch

d
at

e
as

a
fr

ac
ti

on
of

th
e

to
ta

l
ri

sk
p
re

m
iu

m
.
T

h
e

d
ar

k
/m

ed
iu

m
/l

ig
h
t

sh
ad

ed
re

gi
on

s
re

p
re

se
n
t

th
e

d
ow

n
si

d
e/

ce
n
tr

al
/u

p
si

d
e

ri
sk

p
re

m
iu

m
co

n
tr

ib
u
ti

on
s,

re
sp

ec
ti

ve
ly

,
an

d
ar

e
m

ea
su

re
d

on
th

e
le

ft
ve

rt
ic

al
ax

es
.
T

h
e

d
ec

om
p

os
it

io
n
s

ar
e

co
m

p
u
te

d
at

th
re

e
h
or

iz
on

s
(3

0
d
ay

s
-

P
an

el
s

(a
)

an
d

(d
);

90
d
ay

s
-

P
an

el
s

(b
)

an
d

(e
);

an
d

36
0

d
ay

s
-

P
an

el
s

(c
)

an
d

(f
))

an
d

u
se

A
d
=

[0
,0
.9

],
A

c
=

[0
.9
,1
.1

],
an

d
A

u
=

[1
.1
,+
∞

).
A

ll
ti

m
e

se
ri

es
ar

e
sm

o
ot

h
ed

b
y

av
er

ag
in

g
ov

er
tw

o
m

on
th

s
of

la
gg

ed
d
ai

ly
d
at

a
to

re
d
u
ce

th
e

ap
p

ea
ra

n
ce

of
n
oi

se
.

IA.104



( a
)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(3
0-

D
ay

H
or

iz
on

)
(b

)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(9
0-

D
ay

H
or

iz
o
n

)
(c

)
R
P(

1
)

t→
T
[A

s
]

L
ev

el
s

(3
6
0
-D

ay
H

o
ri

zo
n

)

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

051015202530

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

051015202530

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

051015202530

(d
)
R
P(

1
)

t→
T
[A

s
]

C
on

tr
ib

s.
(3

0-
D

ay
H

or
iz

on
)

(e
)
R
P(

1
)

t→
T
[A

s
]

C
on

tr
ib

s.
(9

0-
D

ay
H

o
ri

zo
n

)
(f

)
R
P(

1
)

t→
T
[A

s
]

C
o
n
tr

ib
s.

(3
6
0
-D

ay
H

o
ri

zo
n

)

051015202530

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

051015202530

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

051015202530

19
95

20
00

20
05

20
10

20
15

20
20

Y
ea

r

020406080

10
0

F
ig

u
re

IA
.6

D
at

a-
Im

p
li
ed

M
ar

ke
t

R
is

k
P

re
m

iu
m

D
ec

om
p

os
it

io
n

(U
n
re

st
ri

ct
ed

P
re

fe
re

n
ce

P
ar

am
et

er
s;

O
ve

rp
ri

ce
d

O
p
ti

on
A

d
ju

st
m

en
t)

T
h
es

e
gr

ap
h
s

p
lo

t
th

e
d
at

a-
im

p
li
ed

u
n
re

st
ri

ct
ed

ri
sk

p
re

m
iu

m
d
ec

om
p

os
it

io
n
s

fr
om

S
ec

ti
on

2.
2

b
as

ed
on

P
ro

p
os

it
io

n
3

w
it

h
n

=
1

(i
.e

.,
th

e
m

ar
ke

t
ri

sk
p
re

m
iu

m
).

T
h
e

d
ec

om
p

os
it

io
n
s

u
se

ri
sk

-n
eu

tr
al

m
om

en
ts

co
m

p
u
te

d
u
si

n
g

th
e

m
is

p
ri

ci
n
g

ad
ju

st
-

m
en

t
d
es

cr
ib

ed
in

S
u
b
se

ct
io

n
IA

.2
.4

.
P

re
fe

re
n
ce

p
ar

am
et

er
s

ar
e

al
so

re
-e

st
im

at
ed

u
si

n
g

th
es

e
m

om
en

ts
.

P
an

el
s

(a
)-

(c
)

p
lo

t
th

e
an

n
u
al

iz
ed

ri
sk

p
re

m
iu

m
le

ve
ls

at
ea

ch
d
at

e.
P

an
el

s
(d

)-
(e

)
p
lo

t
ea

ch
co

m
p

on
en

t’
s

co
n
tr

ib
u
ti

on
to

th
e

to
ta

l
ri

sk
p
re

m
iu

m
at

ea
ch

d
at

e
as

a
fr

ac
ti

on
of

th
e

to
ta

l
ri

sk
p
re

m
iu

m
.

T
h
e

d
ar

k
/m

ed
iu

m
/l

ig
h
t

sh
ad

ed
re

gi
on

s
re

p
re

se
n
t

th
e

d
ow

n
si

d
e/

ce
n
tr

al
/u

p
si

d
e

ri
sk

p
re

m
iu

m
co

n
tr

ib
u
ti

on
s,

re
sp

ec
ti

ve
ly

,
an

d
ar

e
m

ea
su

re
d

on
th

e
le

ft
ve

rt
ic

al
ax

es
.

T
h
e

d
ec

om
p

os
it

io
n
s

ar
e

co
m

p
u
te

d
at

th
re

e
h
or

iz
on

s
(3

0
d
ay

s
-

P
an

el
s

(a
)

an
d

(d
);

90
d
ay

s
-

P
an

el
s

(b
)

an
d

(e
);

an
d

36
0

d
ay

s
-

P
an

el
s

(c
)

an
d

(f
))

an
d

u
se

A
d
=

[0
,0
.9

],
A

c
=

[0
.9
,1
.1

],
an

d
A

u
=

[1
.1
,+
∞

).
A

ll
ti

m
e

se
ri

es
ar

e
sm

o
ot

h
ed

b
y

av
er

ag
in

g
ov

er
tw

o
m

on
th

s
of

la
gg

ed
d
ai

ly
d
at

a
to

re
d
u
ce

th
e

ap
p

ea
ra

n
ce

of
n
oi

se
.

IA.105



1995 2000 2005 2010 2015 2020

Year

-15

-10

-5

0

5

10

Figure IA.7
Arrow-Debreu Risk Premia

This graph plots the data-implied Arrow-Debreu risk premia of the form RP(0)
t [As] ≡ Et [IAs ]−E∗t [IAs ] estimated

using unrestricted preference parameters reported in Table 1 to estimate Et [IAs ] according to Corollary 1 with
n = 0 and E∗t [IAs ] according to standard techniques described in Internet Appendix IA.4. These are computed
at the 30-day horizon and annualized to be consistent with plots of our market risk premium in Figure 2. The
decompositions use Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞). All time series are smoothed by averaging over
two months of lagged daily data to reduce the appearance of noise.
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Table IA.2
Unrestricted Data-Implied Market Risk Premium Decomposition Summary Statistics

(Observed Prices)

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according
to Proposition 3 with n = 1 (i.e., the market risk premium). The decompositions use risk-neutral moments
computed by numerically integration over observed option prices directly rather than using the implied volatility
fitting method. Preference parameters are also re-estimated using these moments. Panel A reports statistics for
the risk premium levels (annualized, in percent) and Panel B reports statistics for the contributions of risk premia
from each region to the total risk premium (as fractions of the total risk premium, in percent). Ad=[0, 0.9],
Ac=[0.9, 1.1], and Au=[1.1,+∞) and these labels correspond to the downside, central, and upside risk premia,
respectively. A = Ad ∪ Ac ∪ Au and this label corresponds to the total risk premium. Statistics reported under
“Unconditional” use the full estimated time series for each risk premium measure. Statistics reported under “Cond.
Means” report the means for each time series conditional on 30-day risk-neutral variance (M∗(2)

t→T [A]) falling below
it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These
correspond to periods of low, moderate, or high market volatility, respectively. Statistics are reported for risk
premium decompositions at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January, 1996
through June, 2019.

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Horizon
(days)

Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

30

A 3.28 7.10 18.22 8.93 7.59

Ad 1.22 3.17 10.36 4.48 4.93 37.53 44.53 55.80 45.60 9.76

Ac 1.88 3.21 4.42 3.18 1.14 58.26 47.47 29.09 45.57 13.89

Au 0.13 0.60 3.22 1.14 2.22 4.21 8.00 15.11 8.83 8.22

60

A 4.07 8.18 18.57 9.75 6.96

Ad 2.03 4.52 11.43 5.63 4.69 50.96 57.04 63.24 57.07 7.59

Ac 1.67 2.20 2.05 2.03 0.59 43.13 29.59 13.59 28.97 13.00

Au 0.23 1.12 4.34 1.70 2.19 5.91 13.37 23.17 13.96 10.09

90

A 4.25 7.94 16.45 9.14 5.73

Ad 2.41 4.75 10.30 5.55 3.81 58.64 62.78 66.00 62.55 6.02

Ac 1.34 1.38 0.92 1.25 0.49 33.43 19.57 7.10 19.92 11.74

Au 0.31 1.39 4.20 1.83 1.84 7.93 17.65 26.90 17.53 10.29

180

A 4.10 6.99 13.15 7.81 4.41

Ad 2.67 4.52 8.58 5.07 3.04 68.96 69.54 69.44 69.37 4.27

Ac 0.62 0.41 0.19 0.40 0.26 16.46 7.07 1.56 8.04 6.72

Au 0.55 1.55 3.46 1.78 1.30 14.58 23.39 29.00 22.59 7.68

360

A 2.34 3.69 6.63 4.09 2.44

Ad 1.60 2.41 4.04 2.62 1.52 73.77 71.37 65.35 70.47 5.76

Ac 0.11 0.06 0.06 0.07 0.07 5.13 1.97 0.72 2.44 2.43

Au 0.45 0.91 2.07 1.08 0.88 21.10 26.66 33.93 27.09 7.22
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Table IA.3
Unrestricted Data-Implied Market Risk Premium Decomposition Summary Statistics

(Mispricing Adjustment)

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according to
Proposition 3 with n = 1 (i.e., the market risk premium). The decompositions use risk-neutral moments computed
using the mispricing adjustment described in Subsection IA.2.4. Preference parameters are also re-estimated using
these moments. Panel A reports statistics for the risk premium levels (annualized, in percent) and Panel B reports
statistics for the contributions of risk premia from each region to the total risk premium (as fractions of the
total risk premium, in percent). Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞) and these labels correspond to the
downside, central, and upside risk premia, respectively. A = Ad ∪ Ac ∪ Au and this label corresponds to the
total risk premium. Statistics reported under “Unconditional” use the full estimated time series for each risk
premium measure. Statistics reported under “Cond. Means” report the means for each time series conditional on
30-day risk-neutral variance (M∗(2)

t→T [A]) falling below it’s first quartile (“Lo”), between its first and third quartiles
(“Mid”), or above its third quartile (“Hi”). These correspond to periods of low, moderate, or high market volatility,
respectively. Statistics are reported for risk premium decompositions at 30, 60, 90, 180, and 360-day horizons, and
are based on daily data from January, 1996 through June, 2019.

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Horizon
(days)

Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

30

A 1.43 3.37 8.80 4.24 3.77

Ad 0.17 0.87 4.05 1.49 2.28 10.79 23.13 40.19 24.31 12.31

Ac 1.32 2.44 3.39 2.40 0.84 88.82 72.08 43.38 69.09 19.00

Au 0.01 0.20 1.82 0.56 1.25 0.39 4.79 16.43 6.60 7.35

60

A 2.80 6.03 13.77 7.16 5.20

Ad 0.71 2.35 7.28 3.17 3.38 25.91 38.28 49.58 38.01 10.11

Ac 1.87 2.64 2.85 2.50 0.45 70.90 47.73 23.52 47.47 19.00

Au 0.09 0.94 3.94 1.48 1.91 3.19 13.99 26.91 14.52 10.10

90

A 3.19 6.38 13.20 7.29 4.59

Ad 1.16 2.97 7.39 3.63 3.03 36.34 45.87 53.82 45.48 8.09

Ac 1.72 2.04 1.94 1.93 0.19 56.13 34.78 16.36 35.51 16.07

Au 0.24 1.34 4.02 1.73 1.71 7.53 19.35 29.83 19.01 9.72

180

A 3.27 5.92 11.38 6.62 3.88

Ad 1.73 3.37 6.94 3.85 2.60 52.86 56.70 59.83 56.52 5.22

Ac 0.92 0.88 0.77 0.87 0.08 29.33 16.49 7.57 17.47 9.05

Au 0.58 1.64 3.68 1.88 1.40 17.81 26.82 32.59 26.01 7.01

360

A 2.25 3.75 6.84 4.15 2.33

Ad 1.39 2.32 4.25 2.57 1.51 61.94 61.98 61.49 61.85 4.10

Ac 0.27 0.26 0.25 0.26 0.04 12.67 7.71 3.99 8.02 3.97

Au 0.56 1.15 2.35 1.30 0.87 25.39 30.31 34.51 30.13 4.85
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Table IA.5
Data- versus Model-Implied State Variable Processes

This table reports summary statistics for state variable processes extracted from the data (according to the
methodology in Section 3) and based on model simulations. Panels A and B reports results for the Bansal and
Yaron (2004) and Bansal, Kiku, and Yaron (2012) models, respectively. Panel C reports results for the Bollerslev,
Tauchen, and Zhou (2009) model. Panel D reports results for the Drechsler and Yaron (2011) model. Panels
E and F report results for the Bekaert, Engstrom, and Ermolov (2020) models with and without preference
shocks, respectively. Panel G reports results for the Gabaix (2012) model. Panel H reports results for the Wachter
(2013) model. Models are simulated at the monthly frequency for 100 million periods and used to compute the
“Simulation-implied” statistics. State variables extracted from the data are available at the daily frequency. To
be consistent with model simulations, we compute 21 sets of each data-implied statistic from non-overlapping
daily data sampled every 21 days (since there approximately 21 trading days in each calendar month). The
“Data-implied” statistics are averages across each statistic from these 21 sets. 95% confidence intervals on the
simulated statistics are computed to correspond to confidence intervals we expect to see under the model null
given a random sample of 282 months (which corresponds to the number of months we observe in our data from
January, 1996 through June, 2019). They are based on randomly sampling 10,000 sets of 282 months of data from
the full 100 million simulated months for each model. The confidence intervals answer the question: “With 95%
confidence, would we expect to observe our data-implied statistics under the model null?”“SV1” and “SV2” under
the Correlation heading correspond with the first and second state variables from each model ordered according
to their appearance in the first column.

Variable Source Mean St. Dev. Autocorr. Corr.

SV1 SV2

Panel A: Bansal and Yaron (2004)

xt Data-implied -2.1E-6 2.6E-3 0.91

Simulation-implied 9.7E-6 1.4E-3 0.96

[95% CI] [-1.7E-3, 1.8E-3] [8.2E-4, 2.2E-3] [0.92, 0.99]

σ2
t Data-implied 6.1E-5 8.4E-5 0.80 0.56

Simulation-implied 6.1E-5 1.1E-5 0.97 0.00

[95% CI] [4.3E-5, 7.8E-5] [6.0E-6, 1.8E-5] [0.93, 0.99] [-0.64, 0.65]

Panel B: Bansal, Kiku, and Yaron (2012)

xt Data-implied -3.3E-5 5.5E-3 0.85

Simulation-implied 8.3E-6 1.2E-3 0.96

[95% CI] [-1.4E-3, 1.5E-3] [4.3E-4, 2.3E-3] [0.91, 0.99]

σ2
t Data-implied 7.3E-5 6.5E-5 0.80 0.81

Simulation-implied 7.3E-5 1.6E-5 0.98 0.00

[95% CI] [1.2E-5, 1.7E-4] [7.5E-6, 3.2E-5] [0.93, 1.00] [-0.67, 0.68]

Panel C: Bollerslev, Tauchen, and Zhou (2009)

σ2
g,t Data-implied -4.6E-5 8.3E-3 0.78

Simulation-implied 4.6E-6 4.4E-3 0.96

[95% CI] [-5.4E-3, 5.4E-3] [2.5E-3, 7.6E-3] [0.91, 0.99]

qt Data-implied 1.4E-6 2.8E-5 0.97 -0.73

Simulation-implied 1.3E-6 1.7E-6 0.76 0.00

[95% CI] [7.9E-7, 2.0E-6] [9.8E-7, 2.8E-6] [0.60, 0.88] [-0.34, 0.34]
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Table IA.5
Data- versus Model-Implied State Variable Processes (continued)

Variable Source Mean St. Dev. Autocorr. Corr.

SV1 SV2

Panel D: Drechsler and Yaron (2011)

xt Data-implied 5.6E-6 2.7E-3 0.80

Simulation-implied -2.3E-6 1.1E-3 0.96

[95% CI] [-1.4E-3, 1.3E-3] [4.8E-4, 2.2E-3] [0.90, 0.99]

σ2
t Data-implied 1.20 1.50 0.90 0.79

Simulation-implied 1.05 0.42 0.97 0.00

[95% CI] [0.51, 1.69] [0.26, 0.68] [0.92, 0.99] [-0.61, 0.63]

σ2
t Data-implied 1.11 1.80 0.79 1.00 0.79

Simulation-implied 1.07 1.77 0.81 0.00 0.21

[95% CI] [0.35, 2.45] [0.42, 4.55] [0.67, 0.93] [-0.46, 0.45] [-0.18, 0.54]

Panel E: Bekaert, Engstrom, and Ermolov (2020) (with Preference Shocks)

nt Data-implied 2.12 1.62 0.81

Simulation-implied 2.14 1.19 0.97

[95% CI] [0.38, 6.77] [0.26, 3.19] [0.93, 0.99]

qt Data-implied 1.00 0.15 0.92 0.54

Simulation-implied 1.00 0.15 0.97 0.88

[95% CI] [0.77, 1.51] [0.04, 0.38] [0.93, 0.99] [0.23, 1.00]

st Data-implied 5.4E-3 1.4E-2 0.75 0.83 0.70

Simulation-implied 3.7E-3 2.8E-3 0.55 0.00 0.08

[95% CI] [3.3E-3, 5.1E-3] [4.3E-5, 1.1E-2] [0.51, 0.73] [-0.17, 0.24] [-0.13, 0.33]

Panel F: Bekaert, Engstrom, and Ermolov (2020) (without Preference Shocks)

nt Data-implied 0.08 0.11 0.79

Simulation-implied 0.08 0.05 0.97

[95% CI] [0.02, 0.25] [0.01, 0.14] [0.93, 0.99]

qt Data-implied 1.00 0.18 0.90 0.77

Simulation-implied 1.00 0.13 0.97 0.98

[95% CI] [0.87, 1.38] [0.02, 0.39] [0.92, 0.99] [0.85, 1.00]

Panel G: Gabaix (2012)

Lt Data-implied 0.70 0.59 0.80

Simulation-implied 0.69 0.16 0.97

[95% CI] [0.45, 1.01] [0.08, 0.29] [0.93, 0.99]

Panel H: Wachter (2013)

λt Data-implied 3.0E-3 2.8E-3 0.80

Simulation-implied 2.9E-3 1.5E-3 0.97

[95% CI] [6.5E-4, 8.1E-3] [4.6E-4, 3.6E-3] [0.93, 0.99]
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Table IA.6
Bollerslev, Tauchen, and Zhou (2009)-Implied Market Risk Premium Decomposition Summary

Statistics

This table reports summary statistics for the model-implied risk premium decompositions based on Bollerslev,
Tauchen, and Zhou (2009) (“BTZ”) described in Section IA.7.3.2 with n = 1 (i.e., the market risk premium).
This table is analogous to Table 6 in the main draft, but just focused on the BTZ model. Panel A reports
statistics for the risk premium levels (annualized, in percent) and Panel B reports statistics for the contributions
of risk premia from each region to the total risk premium (as fractions of the total risk premium, in percent).
Ad=[0, 0.9], Ac=[0.9, 1.1], and Au=[1.1,+∞) and these labels correspond to the downside, central, and upside risk
premia, respectively. A = Ad ∪ Ac ∪ Au and this label corresponds to the total risk premium. Statistics reported
under “Unconditional” use the full estimated time series for each risk premium measure. Statistics reported under
“Cond. Means” report the means for each time series conditional on 30-day risk-neutral variance (M∗(2)

t→T [A]) falling
below it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These
correspond to periods of low, moderate, or high market volatility, respectively. Results are based on state variables
extracted from the data under each model using their original calibrations, which are monthly in all cases, and
use daily data from January, 1996 through June, 2019.

Panel A: RP(1)
t→T [As] (%) Panel B: RP(1)

t→T [As]/RP
(1)
t→T [A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

LRR BTZ

A -8.52 -4.50 60.38 10.71 144.62

Ad -0.02 -26.63 -38.18 -22.87 69.72 0.02 10.28 20.17 10.19 26.50

Ac -9.46 11.56 24.22 9.47 68.05 99.14 83.05 53.16 79.60 31.33

Au 0.96 10.58 74.34 24.11 65.91 0.84 6.67 26.67 10.21 21.55
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