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Introduction

Identifying and understanding the sources of risk that generate the market risk premium
is a fundamental challenge in financial economics. Well-known representative agent asset
pricing models are able to generate the market risk premium using vastly different economic
mechanisms including habit formation (e.g., Campbell and Cochrane, 1999; Bekaert and
Engstrom, 2017), long-run risk (e.g., Bansal and Yaron, 2004; Drechsler and Yaron, 2011),
and disaster risk (e.g., Barro, 2006; Gabaix, 2012; Wachter, 2013). Unconditionally, the
market risk premia from such models match average excess market returns in the data, but,
conditionally, each has very different implications for the sources of the risk premia. Extant
literature lacks methodologies to estimate sources of conditional risk premia implied by the
data and implied by models, making it difficult to evaluate the plausibility of disparate
modeling assumptions in a conditional setting.

Our paper makes progress towards addressing these challenges on two fronts. First, we
develop a methodology to decompose the conditional market risk premium and risk premia
on higher-order moments of excess market returns (e.g., the variance risk premium, skew-
ness risk premium, etc.) into sources of risk related to contingent claims on down, up, and
moderate market returns. The decomposition requires the assumption of no-arbitrage, but
it does not rely on assumptions about the particular functional form of investor preferences
nor does it rely on assumptions about the market return distribution. Using this methodol-
ogy, we estimate conditional contingent claims-based sources of risk premia at each date in
our sample. We call these our “data-implied” decompositions. Although an understanding of
these decompositions could be useful in many settings, we focus on using our data-implied
decompositions as a diagnostic tool to evaluate implications from prominent representative
agent models as an application of our methodology. Second, and to this end, we develop a
methodology that allows us to estimate analogous decompositions implied by a wide array

of prominent representative agent asset pricing models. We call these our “model-implied”



decompositions. Comparing the model-implied decompositions to the data-implied decom-
positions identifies significant discrepancies. Our data-implied decompositions supply a host
of new empirical facts that current models fail to explain.

To illustrate our decomposition, we focus on the market risk premium. It is defined as the
difference between the expected market return under the physical and risk-neutral measures,
RP = E[Ry]| — E* [Ru] = E[(Rym — Ry)], where Ry is the risk-free rate. We can use an
identity to decompose the total risk premium into components contingent on realized market

returns in different regions of the market return space as
RP = RP;+ RP.+ RP, (1)

where RP; = E [(Ry — Ry) I1a,] —E* [(Ry — Ry)La,]. E represents the expectation operator
under the physical measure, [E* represents expectation operator under the risk-neutral mea-
sure, I is an indicator function, and A, represents sets describing different regions of the
market return space with s € {d, c,u}. d, ¢, and u represent either down, moderate (“cen-
tral”), or up market returns, respectively.! This decomposition effectively separates the total
market risk premium into contributions from risks associated with market return realizations
in each of these regions. We call these different components of the risk premium the “downside

risk premium”, the “central risk premium”, and the “upside risk premium”, respectively.”

!This decomposition makes use of the identity I4 =14, + 14, + 14, =1 with A= AU A.UA, =R*.
That is, A represents the set of non-negative real numbers, which corresponds to the set of permissible gross
market return realizations (assuming limited liability). These sets effectively divide the gross market return
space into down market return regions, moderate or “central” market return regions, and up market return
regions. To be more concrete, assume A4=0,0.9], 4,=[0.9,1.1], and A,=[1.1, +00). Then A, represents the
set of net market returns less than -10%, A. represents the set of net market returns between -10% and
+10%, and A, represents the set of net market returns above +10%. We can also express these risk premia
in integral form as follows: RP, = fAs [f (Rm) — f* (Rm)] (Rae — Ry) dRag where f(Rar) and f* (Rar) are
the market return distributions under the physical and risk-neutral measures, respectively. This formulation
makes it clear that our risk premium conforms to the standard definition of the market risk premium as the
integrated difference between excess market returns under the physical and risk-neutral measures. When A,
represents the entire market return space, we recover the standard market risk premium. We simply consider
integrating over different regions of the market return space, A, to compute different components of the risk
premium.

2We refer to RP, in Equation 1 as the “level” of the risk premium associated with region A, and RP,/RP
as the “contribution” of the risk premium associated with region A, to the total risk premium.



We estimate the data-implied conditional decomposition and compare it to model-implied
conditional decompositions at each date in our sample for a number of prominent represen-
tative agent models. Some of our main results are highlighted in Figure 1, which plots the
total market risk premium and contributions from each of our three main regions of interest
as a fraction of the total risk premium implied by the data, the long-run risk model in Bansal
and Yaron (2004) (“BY”), the long-run risk model in Drechsler and Yaron (2011) (“DY”),
and the disaster risk model in Wachter (2013) (“Wachter”).

The disparate decomposition behavior across panels in Figure 1 makes it clear why having
an understanding of conditional risk premia from each of these regions is important when
evaluating various models. The total market risk premium levels implied by the data and
models in Figure 1 are similar on average, but the conditional behavior varies drastically. The
data-implied decomposition (Panel (a)) implies that the downside and central risk premia
contribute approximately equal amounts to the total risk premium on average across time,
with the upside risk premium contributing a much lower amount. BY (Panel (b)) implies
that the central risk premium is the main contributor to the total risk premium, which is
inconsistent with the data. DY (Panel (c)) and Wachter (Panel (d)) both imply the downside
and central risk premia are major contributors to the total risk premium with the downside
contributing less on average in both cases, which is inconsistent with the data.

The DY and Wachter model results highlight the importance of characterizing conditional
risk premium behavior when comparing different models. Unconditionally, the average risk
premium contributions implied by the DY and Wachter models are similar. However, con-
ditionally, it is clear the time series behavior of the Wachter model is more similar to that
implied by the data. In general, we find discrepancies between the market risk premium
decompositions implied by the data and all models we investigate. We also perform a de-
composition of the conditional variance risk premium and document similar discrepancies.

We now provide some additional details related to our data- and model-implied decompo-

sitions. We begin with the data-implied decomposition. Given a no-arbitrage representative
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Figure 1
Main Results Comparing Risk Premium Decompositions

These graphs summarize our main market risk premium decomposition results (30-day hori-
zon, annualized) from our data-implied decomposition in Panel (a), the Bansal and Yaron
(2004) long-run risks model in Panel (b), the Drechsler and Yaron (2011) long-run risks
model in Panel (c), and the Wachter (2013) disaster risk model in Panel (d). Panel (a)
uses the data-implied decomposition with estimated preference parameters reported in Ta-
ble 1, but results are similar when using restricted preference parameters from Subsection
2.3. RPW [A] represents the total risk premium and is measured on the right vertical axes.
The dark/medium/light shaded regions represent the downside/central /upside risk premium
contributions to the total risk premium (as a fraction of the total risk premium) at each
date and are measured on the left vertical axes. These decompositions are computed using
A,;=10,0.9], A.,=[0.9,1.1}, and A,=[1.1, +00). All time series are smoothed by averaging over
two months of lagged daily data to reduce the appearance of noise.
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agent economy, we derive analytic expressions for each component of the risk premium on ar-
bitrary moments of the excess market return.® We show how the required physical moments
(i.e., the physical return distribution) can be expressed in terms of risk-neutral moments
constructed from option prices and investor preference parameters associated with a generic
utility function. We do not require any assumptions about the specific functional form of
investor preferences or the market return distribution. Although the decomposition applies
to risk premia on arbitrary moments of the excess market return, we put more emphasis on
the first moment (i.e., the market risk premium) since it has received the most attention
in the literature and is typically the primary object of study in representative agent asset
pricing models. We also provide results related to the second moment (i.e., the variance
risk premium) since some of the models we investigate were constructed to explain the risk
premium associated with this moment. Our data-implied decomposition can be computed
at any date given a cross-section of option prices and an estimate of investor preference
parameters linked to a generic utility function. We provide two versions of our data-implied
decomposition. In the “unrestricted” version, we use data to estimate investor preference
parameters then use these estimated preference parameters to construct the decomposition.
In the “restricted” version, we provide economic restrictions on preference parameters that
allow us to compute the decomposition without the need to estimate preference parameters.

One feature of our data-implied decomposition that is not apparent in Figure 1 is that we
can construct the decomposition over different forecasting horizons, which exploits the fact
that options have different maturities. For example, the decomposition can be constructed
using option prices available at date ¢ with maturity date ¢ + 77, and again using options

with maturities at a second date, t + Ty with T5 > T;. The first decomposition applies to

3In the parlance of Equation 1, we derive expressions for risk premium decompositions of the form
RP = RP; + RP. + RP, where RPy; = E[(Ry — Ry)1a,] —“E*[(Rym — Ry)1a,] (ie., the market risk
premium), and RP™ = RP(Y + RP( + RP(™ where RP™ = By [(Rarsosr — Bt [Raresr])" 1a,] —
E; [((Ry i1 — Ef [Rart—7))" 1a,] for n > 1 (i.e., higher-order risk premia such as the variance risk pre-
mium, skewness risk premium, etc.).



expected returns over the period from ¢ to t + T}, whereas the second decomposition applies
to expected returns over the period from ¢ to t 4+ 75. We perform decompositions for horizons
ranging from 30 to 360 days. In addition to the conditional behavior of the each component
of the data-implied market risk premium in Panel (a) of Figure 1, we also find that the level
of the total market risk premium (when annualized), RP, and each of its components, RP;,
decrease as the horizon increases. As horizon increases, the contribution of RP, to the total
risk premium decreases, whereas the contributions of RP; and RP, increase.

Our framework also allows us to estimate preference parameters (e.g., relative risk aver-
sion, skewness tolerance, and kurtosis tolerance) implied by the data at different horizons
and in different regions of the return space (i.e., A4, 4., and A,). Our estimate of relative
risk aversion is 1.85 when averaged across all regions and horizons. At each horizon, relative
risk aversion is a decreasing function in the return space moving from Ay to A,. This is
consistent with the intuition that investors are more risk averse to bad states of the world
and less risk averse to good states of the world. Relative risk aversion is also decreasing in
horizon, indicating that investors are more risk averse to short-term risks (e.g., over the next
month) than long-term risks (e.g., over the next year year).

Next, we turn to additional details related to our model-implied decomposition. The
methodology follows two steps. In the first step, we extract conditional model-implied state
variables at each date by requiring each model to match salient asset pricing data (e.g.,
the log price-dividend ratio and risk-neutral market excess return variance). In the second
step, we derive expressions for all model-implied moments needed for our decomposition in
terms of the state variables. Given the state variables extracted in the first step, we can
compute conditional risk premium decompositions implied by each model at each date and
compare them to the data-implied decompositions. As highlighted in Figure 1, we find that
model-implied decompositions do not conform well to the data-implied decompositions.

We evaluate prominent examples from three classes of representative agent models that

have emerged in the literature to explain the market risk premium: 1. Long-run risk models



(Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012; Drechsler and Yaron, 2011), 2.
Habit formation models (Bekaert, Engstrom, and Ermolov, 2020, both with and without
preference shocks), and 3. Disaster risk models (Gabaix, 2012; Wachter, 2013). We focus
on models that feature time-varying risk premia since we would like to compare conditional
implications from these models with those from the data. We do not evaluate representative
agent models such as those in Barro (2006), Barro (2009), or Backus, Chernov, and Martin
(2011) because these models do not feature time-varying state variables and, hence, imply
time-invariant risk premia.

Our paper is related to but distinct from Beason and Schreindorfer (2020). In that paper,
the authors use a different methodology to estimate a data-implied unconditional market
risk premium decomposition as a function of the market return space. They compare this
with unconditional market risk premium decompositions implied by a number of represen-
tative agent models and, similar to us, find large discrepancies between the decompositions.
Our work is complimentary to theirs in that we develop a new methodology to estimate a
conditional market risk premium decomposition. Our methodology also allows us to gener-
ate conditional decompositions for risk premia on higher order moments of excess market
returns such as the variance risk premium. One major difference between our results and
those in Beason and Schreindorfer (2020) is that their results imply the downside risk pre-
mium constitutes approximately 80% of the market risk premium (unconditionally), whereas
ours imply that it constitutes only about 46% of the risk premium. This difference could be
attributed to the different methodologies employed in each paper, which we discuss further
in Internet Appendix [A.8.

Our paper is also related to Bollerslev and Todorov (2011), who estimate conditional
downside/upside market and variance risk premia similar to our measures. Their method-
ology relies on extreme value theory to estimate physical moments using high-frequency
market return data. Using extreme value theory limits them to estimating risk premia asso-

ciated with large positive or negative jumps in the market return space. For instance, their



methodology cannot be used to estimate the conditional total risk premium. Contrarily, our
methodology does not rely on extreme value theory to estimate physical moments, and can
be used to estimate risk premia associated with any region of the market return distribution
including the total risk premium. They also rely on approximations that limit their analysis
to short horizons, whereas our theory can be used to estimate risk premia at any horizon
(given a sufficient cross-section of options).

The remainder of our paper is organized as follows. Section 1 provides the theoretical
foundations for our data-implied risk premium decomposition and Section 2 estimates the
decomposition empirically. Section 3 develops the methodology that allows us to estimate
the decomposition for various representative agent models and presents related empirical

results. Section 4 concludes.

1 A Decomposition of Conditional Risk Premia

We derive our main theoretical conditional risk premium decomposition results in this sec-
tion by expanding on the methodology developed in Chabi-Yo and Loudis (2020). Our theory
involves a fair amount of notation, which we define as it is introduced. However, for ease of
interpretation a summary can also be found in Internet Appendix [A.1. We begin by deriving
an expression for the stochastic discount factor (SDF) in terms of a Taylor expansion of a rep-
resentative agent’s generic utility function. We then show how this can be used to construct

the risk premia on arbitrary moments of excess market returns in our decomposition.

1.1 An Expression for the SDF Under Generic Utility

Consider a representative agent with initial wealth W; and a well-behaved utility function
U (-) over terminal wealth Wr = Wuw,R; 1, where Ry_,r is a vector of risky asset gross
returns, R, ,—,p, with s = 1,..., n and w; is a vector of portfolio weights. We assume the utility

function U (-) is concave and admits finite higher-order derivatives. The representative agent



maximizes expected utility over terminal wealth, E,[U (Wr)], with first-order conditions
given by
E, U (Wr) (Rigor = Rygor)| = 0. 2)

We assume a risk-free asset exists with gross return denoted by R; .. Note that these
first-order conditions apply to any asset ¢, including the market return, Rys;—,p. Assuming
the market value is a proxy for the agent’s wealth® and no-arbitrage conditions hold, the

first-order condition in Equation 2 implies the inverse SDF has the form

1
Et [Mt—>T] — U/ (Wt{L'T) (3)
M, * 1 ’
t—=T ]Et |:_U/ (Wth)]

where we define 1 = Ry, ;7 for simplicity of notation. Our main goal is to decompose risk
premia into contributions associated with the downside region of the market return space
(left tail), the center region, and upside region (right tail). To achieve this, we start by
partitioning the gross market return space into three subsets defined by A4, A., and A, such
that A;NA.NA,=0and AyjUA.UA, =R". Note that RT is the set of non-negative real
numbers and represents the feasible set for the gross market return space (assuming limited
liability). Colloquially, A, represents the set of down market returns; A. represents the set
of moderate or “central” market returns; and A, represents the set of up market returns. To
be more concrete about the definitions of A4, A., and A,, consider two constants x and T

satisfying the restriction z < I < Z. We can then define the following sets:

Ay = {2:0<z <z},

A, = {z:z<2 <7},

~—~ o~ o~
S Ot
_ = D ~—

A, = {x:2>7}, and

A = AjUAUA,.

4This is a common assumption in the related literature (see, e.g., Chabi-Yo and Loudis, 2020 and Martin,
2017)



We define A above as the entire gross return space for notation purposes. Next, we decompose

the inverse SDF in Equation 3 into three components:

1 1 1
By [Misr] U W) I, ¢+ UGWen y o UWer) g )
M, T * 1 d * [ 1 :| ¢ * [ 1 i| w’
= 1 [U’(thT)] K U' (W) Ly U (Wyar)

where I is an indicator function such that I, = 1 if xr € A, and [4, = 0 otherwise, for
s € {d,c,u}. Consider three different points in the return space, x4, z., and z,, such that
rq € Ay, . € A, and z, € A,. We can multiply each component in the right-hand side of
Equation 8 by U’ (W) /U (W,x,) (using each component’s respective x, values) to obtain
the equivalent decomposition

U (Wixs)

E, [MHT] U' (Wyar)
M7 Z E* [U/(Wtws) As )
se{d,c,u} =t Ul(WthT)
Next, denote
fa, (@) U' (W)
Gz, (¥) = =", where f,, () = ———, 10
R ATA) D= T W "o
We can use a Taylor series expansion to express f,. () as
fxs (:L‘) =1+ Zek ([BS) (‘7: - xS)k ) (11)
k=1
where
1 (0" f., (x)
QWMZH(T%T>$% 12)

Equation 11 allows us to express the inverse SDF in Equation 9 as a piecewise function
of f,. () in the three different regions of interest. Furthermore, we show that 6y (z4) (for

k € {1,2,3}) can be expressed as

e — gy ARl e Q) ta@)

xsT () N 2272 () N 373 ()

10



in the Appendix A (“Proof for Equation 13”), where we use the following standard preference

parameter definitions:

U (We,)

T(zs) = Wl ”(st)’ (14)
_1u” (ths) U (W)
) S ST O (W) 1o

As with the 6 (z,), the preference parameters are functions of the return space with
s € {xg,Tc,xy}. T(x5) is a measure of risk tolerance (1/7 (x;) is a measure of relative
risk aversion), p (z,) is a measure of skewness tolerance, and « (z;) is a measure of kurtosis
tolerance. Note that all parameters in Equations 14-16 are positive if the agent’s utility func-
tion conforms to standard preference theory.” To the extent these preference parameters are
functions of W;, they are time-varying. For tractability, we assume they are constant over
time in our empirical estimation. Note that fixing 7 (x) to be constant does not imply our
representative investor has CRRA utility."

Next, we provide an alternative expansion of the inverse of the SDF centered around

Ry, rather than three different values of x,." The binomial theorem implies the following

5That is, the preference parameters are positive if Sign [U(k) ()] = (—1)k+1 where U®) () represents the
k-th derivative of the utility function (see Eeckhoudt and Schlesinger, 2006; Deck and Schlesinger, 2014; and
Noussair, Trautmann, and VanDeKuilen, 2014). See Chabi-Yo, Leisen, and Renault (2014) for additional
details related to the interpretation of these preference parameters.

6CRRA utility implies —U’ (WiRp t—T) /[WtRM,tHTU” (WiRpr1—1)] is constant for all potential real-
izations of future wealth, W = W, R 7. CRRA utility also imposes restrictions on higher order preference
parameters such as p and k given a particular choice for relative risk aversion to achieve constant relative risk
aversion regardless of future wealth. For instance, if the representative investor were to have CRRA utility
with risk aversion v = 1/7, this implies the skewness tolerance must be given by p = (1 + )/ (27), which
we do not impose. Furthermore, we assume —U (W) /[Wias U (Wix,)] is constant in each region given
current wealth. By not imposing CRRA parameter restrictions on p (z,) and & (z5) given 7 (x5), we do not
have a relative risk aversion that is constant for all potential realizations of future wealth, Wr = W R 7
as is the case for CRRA utility. We present results in which we assume the representative investor has
CRRA utility (along with other common utility specifications) in Internet Appendix IA.3 and show that the
empirical decompositions are drastically different than those in our main results.

"This will allow us to construct risk premium expressions in terms of risk-neutral moments of excess
market returns only (as opposed to moments of returns less each of the three z; values) while also allowing

11



exact identity:

(@ =) =3 s Ry = ) (0 = Ryuon)™. (17)

We replace (z — xs)k in Equation 11 with the equivalent expression in Equation 17 to obtain

) k
k! . i
fo (@) =14 O ()Y =) (Rpimr — ) (& = Rpgmr)*™.
k=1 j=0 J: J):
We can then express the inverse SDF as
E; [M,
Bt o S g @l (18)
Mir se{d,c,u}
where
1+ Z O ("ES) Z j!(kkij)[ (_1)j (xs - Rf7t—>T)] ($ - Rf,t—>T>k !
(v7) = ———— (19)
Gz T) — o A N ‘ ' - .
1+ kzl Ok (2s) ZO ey (U (s = Rpeor) Bi (v — Rpgr)™ ™
—_= J:

The inverse SDF in Equation 18 is a composite of Taylor expansions from the three regions
of interest in the market return space.

Working with the inverse SDF expression in Equation 18 can be motivated in two ways.
First, we would like to decompose conditional risk premia into components associated with
different regions of interest in the return space. As we will see below, the decompositions
in each region depend on the SDF in that region. Second, Taylor series expansions around
a given point are only accurate for observations that lie in the neighborhood of that point.
This is a potentially important consideration when modeling the SDF as a function of market
returns, where having different Taylor expansions for different regions of the return space can
improve the accuracy of the approximated SDF. Equivalently, this is an important consid-
eration with regards to investor preferences if investors have different attitudes towards the

risks associated with these different regions. This setup allows us to estimate different pref-

us to use region-specific preference parameters as defined in Equations 14-16.

12



erence parameters associated with different regions of the market return space and estimate

a region-specific SDF.

1.2 Conditional Physical Moments of the Excess Market Return

We define conditional truncated risk-neutral and physical moments of the excess market

return as

M, (A = B [(Rugor — Rpeor)" L] and (20)
M{"p (A = Ei[(Rareor — Rpeor)"1a)] (21)

for Ay € {A Ay, A, Ay}, When Ay = A, these are simply regular (untruncated) mo-
ments (i.e., I4 = 1 since A represents the set of all feasible gross market returns). When
As € {Ay, A, Ay}, these are truncated moments. In the case of untruncated moments, we
occasionally denote M{™ . [A] = M'™) . and M), [A] = M), for brevity.

We now show how the inverse SDF expression in Equation 18 can be used to construct
physical moments of excess market returns from risk-neutral moments. For any n > 0, the

conditional physical moments of excess returns on any asset ¢ can be expressed using the

identity
Mior By [Mi 7]
M(n) As = E t—T t t— Rz - R ny
i, t—T [ ] 13 |:]Eft [Mt_>T] Mt_)T ( =T f,t—}T) As
E; [ M,
= E {—t[ 1] (Rissr — Rpaor)” HAS] : (22)
M

MEZ)_)T [A4] describes untruncated moments when Ay = A and truncated moments when A, €
{A4, Ac, Ay} We can view My _,r/E; [M;_, 7| as the Radon-Nikodym derivative for a change
of measure between the physical and risk-neutral distributions. Assuming no-arbitrage, we
use the Radon-Nikodym theorem to move from the first to second equality in Equation 22.

This equation can be written equivalently as

IEt [Mt—>T]

MY r (A = MG [A] = COVY | =2
t—T

i, t—T

) (R’i,tﬁT - Rf,tﬁT)n ]IAS : (23)

13



We can think of MEZLT [A] — MZSQT [A,] as the moment risk premium on an asset that
pays returns equal to (R;;—7 — Rpir)" 14,." Equation 23 is very intuitive. It says that
the risk premium is equal to the risk-neutral covariance between the inverse SDF and an
asset’s return. This is a risk-neutral counterpart to the fundamental asset pricing equation’s
implication that the risk premium on any asset’s return is the negative physical covariance
between the SDF' and the asset’s return.

Next, we specialize ¢ in Equation Equation 22 to be the market return, and replace
E, [M;_, 7| /M1 with the expression in Equation 18. This allows us to derive an analytic ex-

pression for physical moments on the excess market returns in terms of risk-neutral moments

in the following proposition.

Proposition 1. Assuming no arbitrage, conditional physical moments on excess market re-

turns obey the exact decomposition

> 0 (2) COV; [ (Rager — 2" (Raraor = Rpgor)" L, |
k=1

MEH—BT [AS] = M:SL% [AS] + S . (24)
L 3 Oy (2) B [(Rageor — )"
k=1
for Ag € {A, Ay, A, Ay} defined in Equations J-7.
Proof. See Appendix A. [ |

While Proposition 1 allows us to express conditional truncated moments in terms of
truncated risk neutral covariances, Corollary 1 shows how the conditional physical truncated

moments can be expressed in terms of conditional truncated risk neutral moments.

Corollary 1. Assuming no arbitrage, conditional physical moments on excess market returns

8When n = 1 this risk premium just becomes the standard expression for the risk premium on the return
of any asset, 4, when A; = A (or the risk premium on truncated moments of the excess return when A; # A).
If we further specialize ¢ to be the market, then this becomes the market risk premium (or truncated versions
of the market risk premium when A, # A).
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obey the exact decomposition:

SRR N (V) #(k—3) «(n)
300 (s k) (MG 1A = MGG (A M (4]
—_= j:

ME‘Z)T [AS] :MIZL:)F [AS]+ o k o ) (25)
L4 50 3 A (b ) M7 (4]
k=1 ;=0
for A € {A, Ay, A, Ay} where
K10k (x5) (—1) (25 — Ryyr)’
M (24, k. j) = k() (1) (@ 1)’ (26)

! (k= j)!
The parameters O (xs) are defined in Equation 12 and the sets A, Aq, Ay, and A, are defined

i BEquations 4-7.
Proof. See Appendix A. [ |

Corollary 1 relates physical truncated moments of excess market returns to their risk-
neutral counterparts and investor preferences without making any assumptions about the
precise form of investor utility. If the risk-neutral quantities and preference parameters are
known, Corollary 1 can be used to compute physical truncated moments of excess market
returns without relying on any assumptions about the market return distribution, investor
utility, or economic fundamentals. Truncated conditional moments can be computed for each
region of interest by setting s = d, ¢, or u. We can also derive the following corollary as a

special case when x3 = Ry 7.

Corollary 2. Assuming no arbitrage and setting xs = Ryy—p, conditional physical moments

on excess market returns obey the exact decomposition:

o0

00 (Ryr) (MESF (A4 = M0 (A1 (4,)

M{") [Ay] = MO [A] + &= .27

o~ k
1+ 3 3 O (Rpeor) MIU [A]

k=1 j=0
for A; € {A, Ag, A, Au}. The parameters 6y, (Ryir) are defined in Equation 12 and the sets
A, Ay, Ay, and A. are defined in Equations 4-7.
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Proof. This follows directly from Corollary 1 by setting x5 = Ry ;7. |

Corollary 2 will be useful when we restrict preference parameters to be the same across
all regions in our restricted risk premium decomposition. Next, we show how untruncated
conditional expected excess market return moments can be expressed in terms of truncated

conditional expected excess return moments.

Proposition 2. Assuming no arbitrage, conditional total excess market return moments obey
the exact relationship

MIp A= > MU A, (28)

se{d,c,u}
where ME”_ET [Ag] is defined in Equation 21 and the sets A, Ag, Ay, and A. are defined in

Equations 4-7.

The proof of Proposition 2 follows by taking the expected value of the exact decomposition

(Rmp—t — Rppsr)" = > (Rmpst — Rppsr)" La,.
se{d,c,u}

1.3 Conditional Risk Premium Decomposition

We now have the necessary machinery to construct our conditional risk premium decompo-

sition for moments of excess market returns.

Definition 1. We define the conditional risk premium on the n-th order truncated excess

market return moment as

B, [A,] = E¢ [(Raresr — Rysor) Ia] — Ef [(Ryesr — Ryeor) La,] forn=1
t—T [“1s] —
Ei [(Rarior — B [Rarist]) 1) — Ef [(Rareor — Bf [Rarussr]) 1a]  forn > 1.
(29)

The expressions in Definition 1 hold for A; € {A, A4, Ac, Au}. When Ay = A, these

represent untruncated risk premia; when Ay € {Ag, A, Ay}, these represent truncated risk
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premia. When n = 1 and A, = A, the standard market risk premium expression obtains.
When n > 1 , this relationship describes standard definitions for the variance risk premium
(n = 2), the skewness risk premium (n = 3), the kurtosis risk premium (n = 4), and so
on.”'Y These truncated risk premia represent compensation for exposure to risk associated
with contingent claims in each of these regions of the market return space. We refer to the
risk premia associated with A, Ay, A., and A, in Equation 30 as the total risk premium,
the downside risk premium, the central risk premium, and the upside risk premium, respec-
tively.!’ Finally, we express these risk premia in terms of physical and risk-neutral moments

in the following proposition.

Proposition 3. The total risk premium RPEZ)T [A] can be decomposed into terms related to

truncated risk premia as

RPM-[Al= Y RPM,[A,] (30)

se{d,c,u}

for any n. When n =1, R]P’EI_ZT [Ag] can be computed directly using physical moments from

Corollary 1 as

RPY (4] = MU (4] - MU [A] (31)

t—

for As € {A, Ay, A, Ay} When n > 1, the risk premium on moments of the excess market

return can be written as

n

. ! (—1)"* ek
REC, (4] = 30 T (4] (M0, 1) M) e

9For example, when n = 2 we can show that RP&QT [A] = VAR (Rps 1) — VAR™ (Rpr 1) (ice., the
physical minus risk-neutral market return variance), consistent with standard definitions of the variance risk
premium.

10With a slight abuse of nomenclature, we refer to the third and fourth excess market returns as “skewness”
and “kurtosis”, respectively.

'The downside, central, and upside risk premia are always with respect to a particular choice of n in
Equation 30. For instance, the downside risk premium component of the market risk premium (n = 1) is
not the same as the downside risk premium component of the variance risk premium (n = 2). We do not
explicitly designate this in the nomenclature of the different components. However, it should be clear in
context when these components are related to the market or variance risk premium.
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for Ay € {A, Ay, A, Ay}. The sets A, Ag, Ay, and A, are defined in Equations /-7.
Proof. See Appendix A. [ |

Note that risk premia and moments expressed as functions of A represent untruncated
risk premia and moments, whereas those expressed as functions of A, represent truncated
risk premia and moments. This proposition shows how the risk premia on arbitrary moments
of the excess market return can be can be expressed in terms of physical and risk-neutral
truncated moments. Corollaries 1 and 2 allow us to express these risk premia entirely in terms
of risk-neutral moments on excess market returns, which can be estimated using option price

data.

2 Data-Implied Risk Premium Decompositions

In this section, we estimate the market (variance) risk premium decomposition described in
Proposition 3, which obtains when n = 1 (n = 2). We estimate this decomposition at five
horizons: 30, 60, 90, 180, and 360 calendar days.

The decomposition depends on having an estimate of the preference parameters 7 (z;),
p(zs), and k (z5). We approach this task in two ways in the main text. First, we use data
to estimate preference parameters described in Equations 14, 15, and 16 in sample to gen-
erate an “unrestricted” market risk premium decomposition. To do this, we exploit the link
between physical and risk-neutral market excess return moments provided by Corollary 1.
In particular, we use market return data to proxy for the physical moments and S&P 500
options data to construct proxies for the risk-neutral moments to estimate the preference
parameters. Given estimates of the the preference parameters, we can use risk-neutral mo-
ments to compute implied physical moments according to Corollary 1. We then construct
conditional truncated risk premia according to Proposition 3. Second, we simply choose pref-

erence parameters ex ante based on preference parameter restrictions used in the restricted
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lower bound of Chabi-Yo and Loudis (2020) to generate a “restricted” version of the market
risk premium decomposition. As a third alternative, we also derive closed-form expressions
for the decomposition and estimate it assuming the representative agent has standard prefer-
ences (e.g., log, CRRA, CARA, and HARA). We relegate this analysis to Internet Appendix
IA.3 for brevity.'?

2.1 Data

In order to use Corollary 1 to estimate preference parameters 7 (xs), p(xs), and « (z4), we
need estimates of risk-neutral moments of the excess market return. We use S&P 500 index
option data to compute all risk-neutral moments (truncated and untruncated). Given a set
of option prices on a cross-section of strikes, we use the the Carr and Madan (2001) spanning
formula to construct the risk-neutral moments described in Equation 20. In theory, we need
to integrate functions of options prices over a continuous set of strikes to compute these
measures. In practice, we accomplish this by curve fitting implied volatility curves at each

maturity and performing numerical integration using the corresponding implied option prices

12\We find that the implied risk premium levels under these utility specifications can be quite different
than those from our main data-implied decompositions. However, contributions to the total risk premium
are actually more similar to those from the data-implied decomposition compared to those from the repre-
sentative agent model-implied decompositions we study in Section 3. The additional structure imposed by
the representative agent models can lead to model misspecification that has counterfactual implications for
the relative contributions to the total risk premium to which the utility-based decompositions are immune.
Note that assuming a specific functional form for utility places restrictions on the SDF, but does not place
restrictions on the market return distribution or state variables that describe the economy as is the case with
the representative agent models.
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using the trapezoidal rule.!®>'* To mitigate estimation noise but balance this with timeliness
of information in the risk-neutral moments, we use a lagged five-trading day moving average
of the raw moments when estimating preference parameters and to construct our risk pre-
mium decomposition. More details on risk-neutral moment construction can be found in the
Internet Appendix A 4.

Data is from Option Metrics, is daily, and spans January, 1996 to June, 2019. We apply
standard filters on the options data before constructing risk-neutral moments.'® When con-
structing risk-neutral excess return moments, we use risk-free rates implied by the Option
Metrics Zero Curve data and obtain the S&P 500 Index price from Option Metrics. We con-
struct risk-neutral moments at fixed horizons (30, 60, 90, 180, and 360 days) by computing
risk-neutral moments using options at observed horizons and extrapolating (or interpolating)
to the desired horizon. We cannot construct reliable measures of the necessary risk-neutral
moments at longer horizons due to limitations on options availability.

S&P 500 return data are from CRSP. We use ex-dividend returns since the risk-neutral

13Fitting implied volatility curves for the purposes of computing risk-neutral moments implied by options
prices has become standard in the literature (see Jackwerth and Cuesdeanu, 2018). For other examples of
this approach in practice, see Chang, Christoffersen, and Jacobs (2013), Carr and Wu (2009), Jiang and
Tian (2005), and Ait-Sahalia and Lo (1998). We use piecewise cubic Hermite interpolating polynomials over
observed strikes and assume that implied volatilities above (below) the highest (lowest) observed strikes
are constant and take on the values corresponding to the highest (lowest) observed strikes. We perform
the numerical integration over a strike price-to-index price range of 0.01 to 2 with 1,000 grid points over
this range. We also construct risk-neutral moments by integrating over observed prices directly in Internet
Appendix [A.2.3 and find that this does not alter our results qualitatively, nor does it alter them much
quantitatively.

40One might be concerned that our measures and conclusions are distorted due to potential options
mispricing that induces excessive skewness in the implied volatility smirk (for instance, due to demand-
driven price pressure as described in Garleanu, Pedersen, and Poteshman, 2009). We explore a method to
correct the effect of such mispricing in Internet Appendix [A.2.4 and find that this does not materially alter
our main results or conclusions.

15Tn particular, we: 1. Delete all options that are not monthlies (i.e., weeklies, quarterlies, and EOM
options); 2. Delete all duplicate records based on same date, expiration date, strike, and option type (we
keep the duplicate with either the most recent trade date, or, if the duplicate has the same most recent trade
date, the record with the highest volume); 3. Delete all options with a closing bid of $0; 4. Delete options
with maturities less than seven days; 5. Delete call options with recorded prices higher than the index price
and put options with prices less than the strike price times the risk-free bond price; 6. Delete all options
with bid prices higher than ask prices; and 7. Remove options that violate convexity restrictions.
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moments are constructed from European options. Therefore, the risk-neutral moment ex-
pressions derived in the Internet Appendix describe risk-neutral moments on ex-dividend
returns. Returns are daily and range from January, 1926 through December, 2019.'° Excess
returns at each horizon are computed by compounding daily returns to the horizon of interest

and subtracting the compounded risk-free rate obtained from Kenneth French’s website.

2.2 Unrestricted Risk Premium Decomposition

We need to estimate the preference parameters 7 (z5), p(zs), and k (x;) at three points in
the market return space corresponding to s € {d, ¢, u}. These preference parameters are
required to compute the physical moments (via Corollary 1) needed to implement the risk
premium decomposition in Proposition 3.

Given realized excess market returns as proxies for physical moments and risk-neutral
moments estimated from options data, we estimate the preference parameters 7 (), p (xs),
and k (z4) using non-linear weighted least squares to minimize the squared error implied by
Corollary 1 when n = 1, 2, and 3. We use daily data and estimate parameters separately for
the horizons, T, of interest: 30, 60, 90, 180, and 360 calendar days.'” We set z = 0.9 and
T =1.1withazy = 0.85, ., = 1, and x4 = 1.15 in all reported results. That is, we are interested
in studying risk premia associated with down market returns less than -10%, central market
returns between -10% and +10%, and up market returns greater than +10%. Note that
we must estimate a total of nine preference parameters for each horizon of interest: three
parameters (7 (xs), p (zs), and & (z4)) for each of the three regions of interest (s € {d, c,u})
in the return space. See Internet Appendix [A.5 for more details related to this estimation.

Table 1 provides preference parameter estimates in each region and at each horizon of

16We use returns before 1996 in forecasting regressions to construct out-of-sample R-squared values ac-
cording to Goyal and Welch (2008).

I7In our estimation, these preference parameters will be a function of horizon, T, but we suppress this
dependence in their notation for simplicity.

21



interest.'® Values in brackets represent 95% confidence intervals based on block-bootstrapped
estimates and indicate all parameter estimates are statistically significant at the 95% level.
We also provide estimates of the relative risk aversion, which is given by 1/7 (z,) according to
Equation 14. Relative risk aversion is generally decreasing with horizon and in region order
(from the downside region to the upside region). Averaging across all horizons, the average
relative risk aversion is 2.87 in the down region, 1.74 in the central region, and 0.94 in the up
region. These results imply investors are more averse to downside risk than to upside risk.
Averaging across regions, relative risk aversion is nearly monotonically decreasing in horizon.
It starts at a value of 2.21 at the 30-day horizon and rises to a value of 2.39 at the 60-day
horizon before monotonically decreasing to 0.86 at the 1-year horizon. These results imply
investors are more averse to short-term risks than to long-term risks.

Similar patterns hold when considering risk tolerance, 7 (), skewness tolerance, p (z5),
and kurtosis tolerance, x (). Since risk tolerance is the inverse of relative risk aversion, its
patterns are reversed relative to those discussed above but the interpretation is the same.
p (x) is increasing in region s. Investors are more tolerant to positive skewness than nega-
tive skewness. It converges to values of around two with increasing horizon, which implies
investors are more tolerant to skewness at longer horizons. k (z;) is also increasing in region,
implying investors are more tolerant to fat tails in the the upper part of the return distribu-
tion and less tolerant to those in the lower part. k (z) converges to approximately four with
increasing horizon, implying that, like with p (z,), investors have approximately the same
tolerance for higher moment risk at longer horizons whether it comes from the down or up

. C
region, %2

18We provide corresponding preference parameter plots in the Internet Appendix IA.2.1 (Figures IA.1
and TA.2) for visualization.

YNote that our estimated preference parameters conform to sign restrictions on investor utility from
standard economic theory (e.g., Sign [U(k) ()] = (—1)k+1; see Eeckhoudt and Schlesinger, 2006; Deck and
Schlesinger, 2014; and Noussair, Trautmann, and VanDeKuilen, 2014).

200ur estimated preference parameters also pin down the conditional SDF in different regions of the
market return space according to Equation 18. We provide results related to the implied conditional SDF in
Internet Appendix TA.2.1.
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Figure 2 provides plots of the data-implied market risk premia (i.e., when n = 1 in Equa-
tion 29) when preference parameters from Table 1 are used to construct physical moments
according to Corollary 1.*! Panels (a), (b), and (c) plot the risk premium decomposition in
levels, and Panels (d), (e), and (f) plot their contributions to the total risk premium as a
fraction of the total risk premium for horizons of 30, 90, and 360 days, respectively. It is
interesting to note that upside and downside risk premia typically increase conditionally at
the same times, but this is not always the case.

Focusing on the 30-day horizon, the downside risk premium contributes at least 20% of
the total market risk premium regardless of the calendar date. This highlights the fact that
investor concerns about crashes or disasters do not vanish during periods of low market
volatility. The downside risk premium contribution varies over time and increases drastically
during crisis periods. For instance, it increases to over 60% during major crisis periods such
as the collapse of Long Term Capital Management in 1998, the March 2000 Dot-com bubble,
the September 11 terrorist attacks in 2001, the 2002 stock market downturn, the bankruptcy
of Lehman Brothers in 2008, and the 2010 flash crash.

Table 2 provides summary statistics for the data-implied market risk premium decomposi-
tion constructed using preference parameters from Table 1. All risk premia are annualized for
comparability across different horizons. Panels A and B provide summary statistics for the
decomposition in levels and as fractions of the total market risk premium, respectively. We
begin by focusing on the “Unconditional Statistics” in Panel A, which are averaged over our
full sample. The average annualized 30-day (360-day) risk premium during our sample period

is 8.72% (4.44%), which is higher (lower) than the average annualized 30-day (360-day) S&P

21n principle, we could construct total risk premia implied by the unrestricted decomposition using a set
of preference parameters from any of the three regions of interest. In practice, we compute all three sets of
total risk premia and report results for total risk premia using the average of these three time series. The
time series are very similar, and using any one (as opposed to the average) does not change our main results
and conclusions. We apply this procedure when reporting both the total market and variance risk premium
results.
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500 ex-dividend excess returns over the same period, which is 5.99% (5.92%).%? The average
risk premium is monotonically decreasing in horizon (excluding the 30-day horizon) and its
standard deviation is decreasing in horizon.

On average, the downside risk premium is the largest risk premium across all horizons. It
is approximately decreasing in horizon, ranging from 5.71% at the 60-day horizon to 3.03%
at the 360-day horizon. The average upside risk premium is the lowest of all risk premia at
the 30-day horizon (0.97%). It is concave in horizon, rising to a value of 1.64% at the 180-day
horizon before falling to 1.16% at the 360-day horizon. The central risk premium decreases
with horizon from a value of 3.33% at the 30-day horizon to a value of 0.19% at the 360-day
horizon. These results imply investors demand a large premium for exposure to downside
risk compared to that associated with central or upside risk.

We also provide average risk premia conditional on risk-neutral variance of the excess
return at the 30-day horizon, M:E)T [A], in the columns labeled “Conditional Means” in Table
2. The “Lo” column corresponds to average risk premia conditional on M:(j)T [A] being below
its first quartile; the “Mid” column corresponds to Mrfgp [A] falling between its first and
third quartiles; and the “Hi” column corresponds to M:(_%)T [A] falling above its third quartile.
These ranges correspond to periods of low, moderate, and high market volatility. The total

average risk premium level is increasing in M,

)T[A] across all time horizons. That is, the
total risk premium is higher during periods of high market volatility. This pattern also holds
for the upside risk premia, but these do not increase as much as the downside risk premia
when volatility increases. The average central risk premium is increasing in market volatility
at short horizons and decreasing at longer horizons.

Next, we turn to Panel B in Table 2, which provides summary statistics on the time

series of each risk premium as a fraction of the total risk premium. We refer to these as

22Gince we include a constant term in the preference parameter estimation (see Equation IA.44) but not
when computing the physical moments used in our risk premium measures (Corollary 1), our average risk
premium need not match the ex post observed average excess market return.
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risk premium contributions. The results are largely in line with those presented for the risk
premium levels in Panel A.?® The downside risk premium constitutes the largest fraction
of the total risk premium unconditionally (across time). Its contribution is increasing in
both horizon and with market volatility. The upside risk premium constitutes the smallest
fraction of the total risk premium. Its contribution also increases with horizon and market
volatility. The central risk premium constitutes a large fraction of the total risk premium at
short horizons, but this decreases and contributes almost nothing to the total risk premium
at the 360-day horizon. The central risk premium constitutes a large fraction of the total
risk premium during low-volatility periods, but this contribution decreases substantially with
increasing horizon and volatility.

Table 3 provides results from forecasting regressions of the form
Ryrysr — Rppsr = ar+ bTR]P’S_))T [As] + esr (33)

for horizons of 30, 90, and 360 days. The left portion of the table provides results including all
data and the right portion of the table removes data from the 2008 Financial Crisis (August,
2008 through January, 2009) since this period represents a significant outlier for realized
market returns in our relatively short sample period. If we have reasonable measures for the
total market risk premium, ]RIP’EI_)}T [A], it should forecast realized excess market returns. In
particular, we expect ar = 0 and by = 1 when Ay, = A. We also explore the ability of the
truncated risk premia to forecast market returns, although in these cases there are no clear
implications for the values of either ar or br.

We cannot reject the individual null hypotheses that az = 0 or b7 = 1 in the full sample
using the total risk premium. However, it is slightly disconcerting that the by coefficients are

not statistically significant at short horizons. This is likely a symptom of sample selection

23Note that the mean contributions in Panel B of Table 2 do not necessarily equal the fraction of mean
level risk premia to the total risk premium in Panel A due to Jensen’s inequality effects. That is, Panel B
reports summary statistics for the time-varying fractions, not fractions based on the unconditional summary
statistics reported in Panel A.
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related to including the financial crisis period, which ex post was a period over which real-
ized returns were low for an extended period of time. The fact that the 360-day forecasting
regression yields a statistically significant by estimate gives some support for this interpre-
tation. Additionally, when we remove six months of crisis period data from the regression,
coefficients become statistically significant at all horizons. We cannot reject either of the
individual null hypothesis in these cases. We also provide pseudo-out-of-sample R-squared
statistics computed according to the methodology in Goyal and Welch (2008). In particu-
lar, these statistics are computed using our raw total market risk premium as a forecasting
variable compared to the alternate model that uses historical average S&P 500 return as a
forecasting variable. We call these “pseudo-out-of-sample” R-squared values since they use
preference parameters estimated from our full sample to construct our risk premium mea-
sures. The main message is similar to that from the regression results. The R-squared values
indicate the risk premium does a relatively poor job forecasting excess returns at short hori-
zons in the Full Sample relative to the historical average excess return (i.e., the R-squared
values are negative at the 30- and 90-day horizons). However, the R-squared values are posi-
tive in the Full Sample at the 360-day horizon (0.02) and even larger in the Ex Crisis sample
(increasing up to 0.09). Results using the truncated risk premia are similar.

Figure 3 provides plots of the data-implied variance risk premium decomposition (i.e.,
when n = 2 in Equation 29) when preference parameters from Table 1 are used to construct
physical moments according to Corollary 1. Panels (a), (b), and (c¢) plot the risk premium
decomposition in levels, and Panels (d), (e), and (f) plot them in terms of the fraction of the
overall risk premium for horizons of 30, 90, and 360 days, respectively. The downside risk
premium is the main contributor to the total variance risk premium over all horizons and
the upside risk premium becomes a larger contributor as the horizon increases.

Table 2 provides summary statistics for the data-implied variance risk premium decompo-
sition using preference parameters from Table 1. Panels A and B provide summary statistics

for the decomposition in levels and as fractions of the total variance risk premium, respec-
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tively. We begin by focusing on the “Unconditional Statistics” in Panel A, which are averaged
over our full sample. The average annualized 30-day (360-day) variance risk premium during
our sample period is -1.03% (-1.54%). These are similar in magnitude to variance risk pre-
mium estimates reported in Dew-Becker et al. (2017) and Bekaert, Engstrom, and Ermolov
(2020), which were approximately -1.5%%* and -1.9%% at the monthly horizon, respectively.
Conditionally, the variance risk premium increases during periods of high volatility, which
implies investors are willing to pay relatively more for insurance against volatility during
turbulent times. This finding is consistent with those in Dew-Becker et al. (2017), who use

different data (variance swap contracts) to characterize the variance risk premium.

2.3 Restricted Risk Premium Decomposition

One might be concerned that our measures in the previous sub-section are overly-reliant on
in-sample estimates of the preference parameters. To mitigate this concern, in this sub-section
we impose the same restrictions on our preference parameters as those used by Chabi-Yo and
Loudis (2020) to construct a restricted lower bound on the market risk premium. Namely,
we set 7 = 1, p = 2, and k = 4 across all regions and horizons.? We use Corollary 2 to
compute the physical moments using risk-neutral moments since we only have one set of

preference parameters for the whole return space in this case.?” The restricted preference

24This is based on Figure 2 in Dew-Becker et al. (2017). Specifically, one can approximate the implied vari-
ance risk premium (annualized and in percent) by taking 100 x 12 (E [Fto} —E [FH ) using their nomenclature
with 100 x /12 x E [F?] &~ 17.4 and 100 x /12 x E [F}}] &~ 21.2 according to the figure.

25This is based on Table 8 in Bekaert, Engstrom, and Ermolov (2020). The annualized value reported
herein takes their reported monthly value (0.0016) and multiplies it by -1, 12, and 100. The -1 is to account
for the fact that they define the variance risk premium to be the risk-neutral minus physical variance, the
12 is to annualize it, and the 100 is to give it the interpretation of being in percent. Note that they define
the variance risk premium using log market returns whereas we use simple market returns, which could lead
to some discrepancies between the measures.

26See Chabi-Yo and Loudis (2020) for more details on these restrictions. We also note here that Noussair,
Trautmann, and VanDeKuilen (2014) provide evidence that 7 < 1, p > 1, and k > 1 in a different empirical
setting, which imply that our choices for the restricted 7, p, and x yield a lower bound on the market risk
premium.

2TTechnically, with respect to the nomenclature in Corollary 2, we set 7 (Rfi—7) = 1, p(Rftr) = 2,
and k (Ryi—7) = 4.
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parameter values are similar to the values of 7 (z;), p(xs), and k (xs) reported in Table 1
averaged over all horizons and regions, which are 0.73, 2.88, and 2.84, respectively. Under
standard preference assumptions, the market risk premium is decreasing in 7, increasing in p,
and decreasing in k, so we expect the average market risk premium constructed using these
restricted parameters to be lower than that constructed using the estimated parameters and
reported in Table 2.

Table 5 reports summary statistics when the risk premium decomposition is constructed
using the restricted preference parameters. Results are generally in line with those reported
using estimated preference parameters in Table 2 except for one notable exception: average
total risk premia are lower (higher) at short (long) horizons than the related values in Table
2.28 We provide the associated risk premium decomposition plots in Internet Appendix [A.2.2
(Figure TA.4) for brevity since they are visually similar to the unrestricted decomposition
plots in Figure 2. Forecasting regression results using the risk premia from the restricted de-
composition are similar to those from our main unrestricted decomposition and are reported

in Internet Appendix [A.2.2 for brevity.

3 Model-Implied Risk Premium Decompositions

In this section, we consider one application of our data-implied decomposition: using it
as a diagnostic tool to assess whether various prominent representative agent asset pricing
models generate decompositions that are consistent with our data-implied decomposition. To
this end, we develop a methodology for computing the risk premium decomposition implied
by representative agent models in the asset pricing literature. We focus on three long-run
risk models (Bansal and Yaron, 2004, Bansal, Kiku, and Yaron, 2012, and Drechsler and

Yaron, 2011), two habit formation models (Bekaert, Engstrom, and Ermolov, 2020 with and

28This is because: 1. The restricted 7 is typically higher (lower) than the estimated value at short (long)
horizons, 2. The restricted p is typically lower (higher) than the estimated value at short (long) horizons,
and 3. The restricted & is typically higher (lower) than the estimated value at short (long) horizons.
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without preference shocks), and two disaster risk models (Gabaix, 2012 and Wachter, 2013).
We show that a projection of the SDF implied by a representative agent model can be recast
as a function of aggregate wealth in Internet Appendix [A.6. Although our model-implied
decompositions do not rely on this result, it does justify using our data-implied decomposition
(which projects the SDF onto aggregate wealth) to evaluate representative agent models. In
all cases, we evaluate models using the original parameterizations reported in each respective
reference. We report market risk premium decomposition results for all models and variance
risk premium decomposition results for all models except the first two long-run-risk models
(Bansal and Yaron, 2004 and Bansal, Kiku, and Yaron, 2012), which feature normal shocks
and were not intended to target the variance risk premium.

Our model-implied decomposition methodology is straightforward and involves two steps.
First, we extract model-implied state variables by matching model-implied asset pricing
moments to those observed in the data at each date. Under each model we can express asset
pricing moments as linear functions of state variables.”” Conversely, given N observed asset
pricing moments at any date, we can exactly identify implied state variables in a model
having N state variables. The maximum number of state variables among all models we
consider is three. We therefore identify a consistent set of three salient asset pricing moments
from the data to use for extracting state variables implied by each model: (1) the log-price-
dividend ratio, (2) risk-neutral excess market return variance, and (3) risk-neutral excess
market return skewness. We proxy for the last two moments using our MI(j)T and M:(j)T
measures, respectively, with 30-day horizons since all models were originally calibrated at

the monthly frequency. We proxy for the log-price-dividend ratio using Shiller’s CAPE index,

290mne exception is for the Gabaix (2012) model. We describe the state variable extraction process for this
model in more detail in its respective section.
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which we refer to as log (P;/E;).*""?! Given these asset pricing moments from the data, we
transform each to have the same sample mean as the unconditional model-implied values
when extracting state variables implied by each model. This transformation ensures that
the extracted state variables have (approximately) the same average values in our sample
as their unconditional values implied by the original model calibrations. It also ensures that
models imply approximately the same average risk premia in our sample as implied by the
original model calibrations.

For the interested reader, summary statistics for the extracted state variables from all
models can be found in Internet Appendix Table TA.5. We also provide summary statistics for
the model-implied values based on original model calibrations with 95% confidence intervals
that we would expect to observe given our sample length under each model’s null. Average
extracted state variable values are similar in magnitude to and fall within the confidence
intervals implied by the calibrated models. This is expected given our state variable extraction
methodology. Although the state variable extraction methodology imposes that we match
model-implied state variable first moments, it does not impose restrictions related to other
moments. For instance, our extracted state variables are typically more volatile than those
implied by the calibrated state variable dynamics from each model, which implies our model-
implied risk premium decompositions will be more volatile than those implied by the original

model calibrations.

30Note that all models we consider are consumption-based models without production. In such models,
dividend cash flows are more analogous to earnings in the data rather than dividends, which is why we choose
log (P;/E}:) in the data as a proxy for log (P;/D;) in the models. This approach was also used in Wachter
(2013) to extract the implied conditional state variable in that model.

31For consistency, when evaluating models with one, two, or three state variables we always use [M:(jgp} ,

[MIE)T, log (Pt/Et)} , or [M;‘(j}, log (P:/E}) , M:(_?)T}, respectively, as the asset pricing moments to match
in the state variable extraction procedure. Clearly, we could have chosen to use any observable asset pricing
moments but chose these due to their theoretical connections to risk premia and salience in the asset pricing
literature. The only models with a one state variable are those from Gabaix, 2012 and Wachter, 2013. We
use M:(jgp as the single asset pricing moment for state variable extraction since these models have difficulty

matching the high price-dividend ratios observed in the late 1990s and early 2000s. Results from using
log (P;/E}) are available upon request.
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Second, noting that risk premia in each model are just functions of the model’s state vari-
ables, we can compute the model-implied risk premium decomposition given the extracted
state variables. All derivations and technical results related to the state variable extrac-
tion procedure and risk premium decomposition calculations for each model are provided in

Internet Appendix [A.7. We provide only the final decomposition results here for brevity.

3.1 Long Run Risk Models

In this subsection, we consider the class of models in which the representative agent has re-
cursive preferences as in Epstein and Zin (1989). Specifically, we estimate our decomposition
for models in Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012), and Drechsler and
Yaron (2011).%

3.1.1 Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

Bansal and Yaron (2004) propose an economic mechanism that relies on long-run risk to
explain key stylized empirical asset pricing facts. Bansal, Kiku, and Yaron (2012) extend
the Bansal and Yaron (2004) model by allowing consumption shocks to affect the dividend
process.* Both models include two state variables (z; and ¢?), so we use log (P;/E;) and
M:(_?)T to extract implied state variables at each date for both models (independently) using
Result TA.1. We use Results [A.2 and [A.3 to compute the implied physical and risk-neutral
moments, respectively. See Internet Appendix [A.7.3.1 for additional details.

Panels (a) and (d) ((b) and (e)) in Figure 4 plot the risk premium decompositions for the
Bansal and Yaron (2004) (Bansal, Kiku, and Yaron, 2012) model. Compared to the data-

implied 30-day horizon decompositions (Figure 2, Panels (a) and (d)), both the Bansal and

32We also report results for Bollerslev, Tauchen, and Zhou (2009) in Internet Appendix 1A.7.3.2, but leave
them out of the main text due to the fact that this model is known to generate implausible risk premia (see,
for instance, Bekaert, Engstrom, and Ermolov (2020) for further documentation of this fact).

33The model in Bansal, Kiku, and Yaron (2012) was designed to highlight important differences in the
asset pricing implications of the long run risk model relative to the habit formation model in Campbell and
Cochrane (1999).
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Yaron (2004) and Bansal, Kiku, and Yaron (2012) decompositions imply that the central risk
premium comprises a larger fraction of the overall risk premium than in the data-implied
decomposition. Consequently, the upside and downside risk premia implied by these models
comprise a smaller fraction of the overall risk premium than in the data-implied decompo-
sition. The discrepancies are a consequence of the fact that these models are conditionally
log-normal and therefore do not often generate realized returns in regions of the return space
for which we define downside and upside risk. Interestingly, the unconditional contribution
of downside and upside risk is not (effectively) zero, as implied by the unconditional models
and documented by Beason and Schreindorfer (2020). This is related to the fact that our
state variables are more volatile than those implied by the calibrated state variable processes
in each of these models, which occasionally widens the return distribution enough so that the
downside and upside risk premia contribute to the overall risk premium in a non-negligible
manner.**

Table 6 provides summary statistics for these market risk premium decompositions. The
average total risk premia implied by the data for Bansal and Yaron (2004) and Bansal, Kiku,
and Yaron (2012) are 5.66% and 6.75%, respectively, which are similar to model-implied
values based on simulation (5.55% and 6.67%, respectively).?> The conditional means of the
risk premium decomposition measures imply that all components of the risk premium are
increasing with market volatility, which is what we observe in the data. However, as implied
by the risk premium plots, the central risk premium comprises the majority of the total

risk premium in both models, which is inconsistent with observations from the data-implied

341t is also interesting to note that the upside risk premium is larger in magnitude than the downside
risk premium. If we were concerned with the risk premium on log-returns, we would expect the downside
and upside risk premia to be symmetric. However, since we use simple returns this induces positive skewness
in the simple return distribution relative to the log return distribution, causing the upside risk premium to
be larger in magnitude than the downside risk premium in these models. This is counterfactual to what we
observe in the data.

35This is true for all models we investigate since we transform the log P, /E: and risk-neutral moments
from the data to have the same unconditional means as the log P,/ D, and risk-neutral moments implied by
each model for the purposes of state variable extraction.
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decomposition.

Table 8 provides the average differences between the data-implied market risk premia and
those implied by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012). The data-
implied total, downside, and upside risk premia are significantly larger than those implied by
the models. The data-implied central risk premium is significantly lower than that implied

by the models.

3.1.2 Drechsler and Yaron (2011)

Drechsler and Yaron (2011) extend the Bansal and Yaron (2004) model by allowing for
jumps in both consumption growth and its volatility. Doing so allows them to better match
the mean, volatility, skewness, and kurtosis of consumption growth and stock market returns
observed in the data. Their model also generates a variance risk premium that forecasts
market excess returns, which is a key stylized fact in the data. The model includes three
state variables (z;, 52 and 02), so we use log (P,/E,), M), and MI®). to extract implied
state variables at each date using Result IA.7. We use Results [A.8 and IA.9 to compute the
implied physical and risk-neutral moments, respectively. See Internet Appendix [A.7.3.3 for
additional details.

Panels (¢), and (f) in Figure 4 plot the market risk premium decompositions. The downside
risk premium is typically a large contributor to the total risk premium. However, during
periods of low volatility the central risk premium becomes the dominant contributor to
the total risk premium. Panels (a) and (d) in Figure 7 plot the variance risk premium
decomposition, which shows that the downside risk premium effectively constitutes the entire
variance risk premium except during periods when the total risk premium is small.

Table 6 (Table 7) provides summary statistics for the market (variance) risk premium
decomposition. Conditionally, the average the downside market and variance risk premia
increase in magnitude as risk-neutral volatility increases, similar to the data-implied results.

Table 8 provides the average difference between the data-implied risk premia and those
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implied by the Drechsler and Yaron (2011) model, and shows that the contributions of the
downside/central /upside market (variance) risk premia are significantly lower/higher /higher

(lower /lower /higher) than those implied by the data.

3.2 Habit Formation Models: Bekaert, Engstrom, and Ermolov (2020)

Bekaert, Engstrom, and Ermolov (2020) and Bekaert and Engstrom (2017) develop a new
class of habit formation models that aim to better capture features of macroeconomic vari-
ables.?® The Bekaert and Engstrom (2017) model requires a computationally intensive nu-
merical solution procedure, but Bekaert, Engstrom, and Ermolov (2020) propose a more
tractable version of the model that is able to explain key stylized asset pricing facts while re-
taining the desirable features of the consumption growth distribution featured in Bekaert and
Engstrom (2017). We therefore focus on the habit formation model from Bekaert, Engstrom,
and Ermolov (2020) in our analysis.

The Bekaert, Engstrom, and Ermolov (2020) model has two variants: one with preference
shocks and one without preference shocks. The model without preference shocks has two
state variables (¢; and n;), so we use log (P,/FE;) and M:@T to extract implied state variables
for this model at each date. The model with preference shocks has three state variables (g,
nt, and s;), so we use log (P;/Ey), M:f%ﬂ, and M:S’%ﬂ to extract implied state variables at each
date. We can use Result [A.10 for the state variable extraction in both cases. We use Results
[A.11 and TA.12 to compute the implied physical and risk-neutral moments, respectively. See
Internet Appendix [A.7.4 for additional details.

Panels (a) and (d) ((b) and (e)) in Figure 5 plot the market risk premium decompositions
under the model with (without) preference shocks. The models with and without preference
shocks yield decompositions with quite different implications regarding which regions of the

return space contribute most to the total risk premium. In the case of the model without pref-

36Their models represent an improvement on the habit formation model in Campbell and Cochrane (1999).
In particular, their setup allows them to better match observed consumption growth skewness in the data.
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erence shocks (Panel (d)) it is clear that the downside risk premium is the largest contributor
to the the total risk premium, consistently contributing approximately 80%. The central risk
premium typically contributes between approximately 15%-20% to the total risk premium.
In the case of the model with preference shocks (Panel (c)), the central risk premium is
typically the largest contributor ranging between approximately 60-80%. The downside risk
premium contribution ranges between approximately 20-60% and occasionally contributes
more than the central risk premium. In both cases, the upside risk premium provides only a
minor contribution to the total risk premium.

Comparing these results to those implied by the data at the 30-day horizon (Figure 2,
Panels (a) and (d)), the model without preference shocks matches many key features of
the data. The contribution of the central risk premium is relatively large during low market
volatility periods, but is outweighed by the contribution of the downside risk premium during
high market volatility periods. The downside and upside risk premia also typically increase
in tandem in both the data- and the model-implied decompositions.

Table 6 provides summary statistics for implied market risk premium decomposition. The
average total risk premia implied by the data for the models with and without preference
shocks are 4.84% and 5.92%, respectively, which are similar to model-implied values based on
simulation (4.26% and 5.56%, respectively). The conditional means of the market risk pre-
mium decomposition measures imply that all components of the risk premium are increasing
with market volatility, which is what we observe in the data. The downside risk premium
comprises the majority of the total risk premium in the model without preference shocks,
which is inconsistent with observations from the data-implied decomposition. However, the
contributions and time series behavior of the downside, upside, and central risk premia in
the model with preference shocks are qualitatively more similar to the data-implied decom-
position than for other models we study.

Table 8 provides the average difference between the data-implied risk premia and those

implied by the models with and without preference shocks. The data-implied total, downside,
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central, and upside risk premia are significantly larger than those implied by the models in
level (Panel A). This holds in all cases except for the downside risk premium in the model
without preference shocks, which is significantly lower than what the data implies. In terms
of the contribution to total risk premium (Panel B), the data implies a central risk premium
contribution that is significantly lower than that implied by model with preference shocks.
The data also implies downside risk premium contribution that is significantly lower than that
implied by the model with preference shocks. In all other cases, the data implies contributions
that are higher than those implied by the models.

Figure 7 provides plots for the variance risk premium decomposition for the model with
preference shocks. It shows that the primary contributor is the downside risk premium, al-
though there are periods where the central risk premium becomes a sizable contributor. Plots
for the variance risk premium decomposition from the model without preference shocks are
similar so we omit them for brevity. In this case, the central (downside) risk premium con-
tributes less (more) to total risk premium than in the model with preference shocks. Table 7
provides summary statistics for the implied variance risk premium decompositions and Table
8 provides the average difference between the data-implied risk premia and those implied by
the Bekaert, Engstrom, and Ermolov (2020) models. Table 8 shows that the contributions
of the downside/central /upside variance risk premia are significantly lower/higher/higher
(higher/lower /higher) in the model with (without) preference shocks than those implied by
the data.

3.3 Disaster Risk Models

3.3.1 Gabaix (2012)

Gabaix (2012) develops a time-varying disaster risk model that is able to quantitatively

explain many standard asset pricing puzzles. We follow the Dew-Becker et al. (2017) im-
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plementation (including their parameter choices) in our analysis.*” In this model, the log
price-dividend ratio is non-linear in the model’s single state variable, L;. Therefore, we solve
for M:(j)T as a function of the state variable numerically given the assumed L, process condi-
tionally as a function of L;. Given an estimate for the the model-implied M;‘(j)T as a function
of L;, we extract the implied L; at each date by matching the transformed M:(_%%F from the
data as usual. Given the extracted state variable, we estimate physical and risk-neutral mo-
ments needed for our decomposition at each date via simulation according to expressions for
these moments in Internet Appendix [A.7.5.1.

Panels (a) and (c) in Figure 6 plot the market risk premium decomposition. The downside
risk premium is consistently the largest contributor to the total risk premium with the
upside risk premium contributing essentially nothing. Table 6 (Table 7) provides summary
statistics for the implied market (variance) risk premium decomposition. Conditionally, both
the average downside market and variance risk premia increase in magnitude as risk-neutral
volatility increases, which is similar to the data-implied results. Table 8 provides the average
difference between the data-implied risk premia and those implied by the Gabaix (2012)
model. The contributions of the downside/central/upside market (variance) risk premia are

significantly higher/lower/lower (higher/lower/higher) than those implied by the data.

3.3.2 Wachter (2013)

Wachter (2013) develops a time-varying disaster risk model that aims to explain the excess
volatility puzzle. We follow the Dew-Becker et al. (2017) discretization of Wachter (2013)
(including their parameter choices) since this provides a convenient version of the model that
is calibrated at the monthly frequency. The model includes one state variable, \;, so we use

M:@T to extract the implied state variable at each date using Result TA.15. We then use

3TThis calibration is similar to that in Gabaix (2012) and is also able to match the Sharpe ratio of one-
month variance swaps reported in Dew-Becker et al. (2017). We use this version of the model since we are
also interested in evaluating the model’s ability to match the conditional variance risk premium and its
decomposition.
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Results TA.14 and TA.15 to compute the implied physical and risk-neutral moments needed
for the risk premium decompositions. See Internet Appendix [A.7.3.2 for additional details.

Panels (b) and (d) in Figure 6 plot the market risk premium decomposition. The central
risk premium contributes the majority of the total risk premium. The downside risk premium
contributes less than the central risk premium, but more than the upside risk premium.
Interestingly, the time variation in these decomposition contributions are similar to those
from the data (see Figure 2, Panel (d)). Panels (c) and (f) in Figure 7 plot the variance
risk premium decomposition. It is clear from this figure that the downside risk premium
effectively constitutes the entire variance risk premium.

Table 6 (Table 7) provides summary statistics for the implied market (variance) risk
premium decomposition and Table 8 provides the average difference between the data-
implied risk premia and those implied by the Wachter (2013) model. The contributions of the
downside/central /upside market (variance) risk premia are significantly lower /higher /higher

(higher /lower /lower) than those implied by the data.

4 Conclusions

In this paper, we propose a novel methodology that allows us to decompose the risk premium
on arbitrary moments of excess market returns into components related to compensation for
exposure to the left tail, the center, and the right tail of the market return distribution at
each date. Under the assumption of no-arbitrage, we derive analytic expressions for each
of these components in terms of option prices without making any assumptions about the
market return distribution or the functional form of investor preferences. This allows us to
quantify the contributions from conditional downside, central, and upside risk premia to the
conditional total risk premium at any date and across investment horizons ranging from one
month to one year. We provide empirical results for to two special cases where we estimate

decompositions for the market risk premium and the variance risk premium.

38



The downside risk premium comprises a large fraction of the total market risk premium
across all dates and horizons. The central risk premium comprises a large fraction of the
total market risk premium as well, but its contribution decreases with both horizon and in
risk (as measured by market volatility). The upside risk premium contributes less to the
total market risk premium unconditionally than the first two, but, like the downside risk
premium, its contribution increases with horizon and when market volatility increases.

The downside risk premium also comprises a large fraction of the total variance risk pre-
mium regardless of horizon. The central risk premium comprises a small fraction of the total
variance risk premium, and its contribution decreases with horizon. The upside risk premium
also comprises a small fraction of the total variance risk premium, and its contribution in-
creases with horizon.

These data-implied decompositions provide powerful tools for understanding risk premium
dynamics. Although these decompositions may be useful in many settings, we choose to use
them to evaluate prominent representative agent asset pricing models to highlight one appli-
cation. A common feature among all these models is that they (typically) have state variables
that vary over time, leading to time-varying risk premia. Despite this, the success of a model
is often judged based on its ability to match unconditional moments in the data. Part of
the hurdle to evaluating these models conditionally has been identifying a consistent method
to link state variables to observable information. Another hurdle has been the difficulty of
measuring conditional risk premia in the data that can be used to evaluate implications
from the models. We overcome the latter hurdle with our data-implied decomposition. We
overcome the former by developing a consistent (across models) methodology for extracting
conditional state variables given salient asset pricing data.

We identify clear inconsistencies between the model- and data-implied decompositions.
First, imposing that a model match the conditional log price-dividend ratio and risk-neutral
moments of the excess market return typically yields extracted state variable time series

having higher volatility than that implied by assumptions in the original models. This im-
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plies that more effort should be placed in ensuring that modeling assumptions with respect
to state variable processes are consistent with their data-implied counterparts. Second, we
find statistically significant differences between the data-implied and model-implied decom-
positions across almost all models and components of the market and variance risk premia.
This is particularly true of log-normal models, which have a difficult time matching the total
downside risk premium implied by the data, but it is also true of models with shocks that
produce higher tail risk via non-Gaussian shocks.

Admittedly, moments from these decompositions were not targeted in the original calibra-
tions of any of the models we investigate and represent high hurdles for parsimonious repre-
sentative agent models to tackle. However, the reasonably good performance of the Bekaert,
Engstrom, and Ermolov (2020) and Wachter (2013) models provides hope that such models
will be up to the challenge of explaining conditional risk premia and their components. We
hope our data-implied decomposition provides a useful tool for calibrating similar models in

the future, and helps provide a deeper understanding the sources of conditional risk premia.
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(a) RP{M . [A,] Levels: BEE (w/ Pref. Shocks)  (b) RP{").[A,] Levels: BEE (w/o Pref. Shocks)

50 T T T T 60 T

RPY[A] RPY[A]
45 - RPY[A]| A RPY[A,)

RPU[A) 501 RPUVIA]| ]
40k RPYA)]| RPW[A]
35+

40

30 -
251 1 30

20
20
57

10

10
5t

LA

0 Y - 0 AN -
1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020
Year Year

(c) R ]P’(l)T[AS] Contribs.: BEE (w/ Pref. Shocks) (d) RP(l)T[AS] Contribs.: BEE (w/o Pref. Shocks)

RPD[4] RPU[4]

A, A,

A A
I A A

100

o
=

L
a
=}

80

L
N
S

60

40 -

N w
o o
RPW[A] (annualized, %)

Contribution (% of RPM[A])
RPW[A] (annualized, %)

20 -

Contribution (% of RPM[A])

=
o

S}

1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020
Year Year

Figure 5
Model-Implied Market Risk Premium Decompositions (Habit Models)

These graphs plot model-implied market risk premium decompositions based on Proposition 3 for the habit formation
models we study (see Subsection 3.2). Panels (a)/(c) plot results from the Bekaert, Engstrom, and Ermolov (2020)
model with preference shocks. Panels (b)/(d) plot results from the Bekaert, Engstrom, and Ermolov (2020) model
without preference shocks. Panels (a)-(b) plot the annualized risk premium levels for each model at each date in
percent. Panels (c)-(d) plot each component’s contribution to the total risk premium for each model at each date as a
fraction of the total risk premium. The dark/medium/light shaded regions represent the downside/central /upside risk
premium contributions, respectively. All decompositions use a 30-day horizon to match model calibration frequencies
in the original papers (monthly), and set A,=[0,0.9], A,=[0.9,1.1], and A,=[1.1,+00). All time series are smoothed
by averaging over two months of lagged daily data to reduce the appearance of noise.
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(a) RIP§1_)>T[AS] Levels: Gabaix (b) RIP’§1_)>T[AS] Levels: Wachter
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Figure 6

Model-Implied Market Risk Premium Decompositions (Disaster Models)

These graphs plot model-implied market risk premium decompositions based on Proposition 3 for the disaster models
we study (see Subsection 3.3). Panels (a)/(c) plot results from the Gabaix (2012). Panels (b)/(d) plot results from
the Wachter (2013) model. Panels (a)-(b) plot the annualized risk premium levels for each model at each date in
percent. Panels (c)-(d) plot each component’s contribution to the total risk premium for each model at each date as a
fraction of the total risk premium. The dark/medium/light shaded regions represent the downside/central /upside risk
premium contributions, respectively. All decompositions use a 30-day horizon to match model calibration frequencies
in the original papers (monthly), and set A,=[0,0.9], A,=[0.9,1.1], and A,=[1.1,+00). All time series are smoothed
by averaging over two months of lagged daily data to reduce the appearance of noise.
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Table 1
Preference Parameter Estimates

This table reports preference parameters estimates for 7 (zs) (Equation 14), p(xs) (Equation 15), and & ()
(Equation 16) with s € {d,c,u} and x4 = 0.85, . = 1.00, and x,, = 1.15. These correspond to the three regions
of interest in the gross market return space defined by A,;=[0,0.9], 4.=[0.9,1.1], and A,=[1.1,400). 1/7 ()
is the relative risk aversion. Parameters are estimated separately for each of five horizons (30, 60, 90, 180, and
360 days). Estimations are done using nonlinear least squares according to the description in Subsection 2.2.
Values in brackets represent the 95% confidence intervals obtained from 10,000 block bootstrap simulations. The
block length is set to be four years for simulations at all horizons. Parameters are estimated using daily S&P 500
excess market return data (ex dividend) from CRSP and risk-neutral moments computed from daily option prices
obtained from Option Metrics. Data is daily and ranges from January, 1996 through June, 2019.

Horizon (days)

Region Parameter 30 60 90 180 360
1/7 (xq) 3.54 3.98 3.38 2.41 1.03
[1.76, 7.04] [2.21, 6.77] [1.78, 6.05] [1.24, 6.79] [0.71, 2.38]
T (24) 0.28 0.25 0.30 0.42 0.97
A, (0.14, 0.57] [0.15, 0.45] [0.17, 0.56] [0.15, 0.81] [0.42, 1.42]
p(xq) 0.99 1.03 1.05 1.20 1.92
[0.81,1.33] [0.97, 1.34] [0.96, 1.52] [0.97, 1.99] [1.02, 2.52]
Kk (xq) 0.81 0.95 0.96 1.27 3.09
(0.62, 1.38] [0.89, 1.54] [0.87, 1.98] [0.92, 3.37] [0.98, 5.19]
1/7 () 2.04 2.19 2.01 1.60 0.85
[1.13,4.21] [1.33,3.29] [1.16,3.21] [0.97, 3.44] [0.70, 1.77]
T (x.) 0.49 0.46 0.50 0.63 1.18
N [0.24, 0.88] [0.30, 0.75] [0.31, 0.86] [0.29, 1.03] [0.56, 1.43]
¢ p(x) 1.82 1.75 1.74 1.86 2.29
(0.76, 2.83] [1.19, 2.67] [1.00, 2.82] [1.01, 3.01] [0.79, 3.40]
K (xc) 1.79 1.86 1.82 2.14 3.82
[0.57,2.69] [1.20, 3.14] [1.00, 3.62] [1.08, 4.46] [1.13, 5.14]
1/7 () 1.04 1.01 0.97 0.95 0.71
(0.75, 3.74] [0.79, 1.86] [0.74, 2.16] [0.68, 2.09] [0.59, 1.44]
T (24) 0.96 0.99 1.03 1.05 1.41
N (0.27, 1.34] [0.54, 1.26] [0.46, 1.35] [0.48, 1.46] [0.69, 1.70]
“ p (zy,) 5.76 7.10 6.82 4.91 3.00
0.65, 6.71] [1.34, 8.76] [0.77, 9.07] [0.28, 8.44] [0.00, 8.56]
K () 3.97 5.29 5.08 4.88 4.94
(0.45, 4.66] [2.00, 5.76] [0.98, 6.25] [1.18, 7.66] [1.06, 7.81]
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Table 2
Unrestricted Data-Implied Market Risk Premium Decomposition Summary Statistics

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according to
Proposition 3 using preference parameters reported in Table 1 with n =1 (i.e., the market risk premium). Panel
A reports statistics for the risk premium levels (annualized, in percent) and Panel B reports statistics for the
contributions of risk premia from each region to the total risk premium (as fractions of the total risk premium, in
percent). A;=[0,0.9], A.=[0.9,1.1], and A,=[1.1,4+00) and these labels correspond to the downside, central, and
upside risk premia, respectively. A = A;U A.U A, and this label corresponds to the total risk premium. Statistics
reported under “Unconditional” use the full estimated time series for each risk premium measure. Statistics re(ported
under “Cond. Means” report the means for each time series conditional on 30-day risk-neutral variance (I\\/JI:_%%,, [A])
falling below it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”).
These correspond to periods of low, moderate, or high market volatility, respectively. Statistics are reported for
risk premium decompositions at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January,
1996 through June, 2019.

Panel A: RP\") . [A,] (%) Panel B: RP("[A,]/RPV[A] (%)
Cond. Means Unconditional Cond. Means Unconditional

Horizon Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

(days)
A 3.19 6.92 17.82 8.72 7.50

30 Agq 1.21 3.13 10.35 4.45 4.97 38.05 44.67 55.30 45.67 9.33
A, 1.88 3.37 4.71 3.33 1.18 59.84 50.43 30.67 47.84 13.32
A, 0.07 0.38 3.05 0.97 2.15 2.11 490 14.02 6.48 6.14
A 3.98 8.03 18.44 9.62 6.99

60 Ag 2.01 4.53 11.76 5.71 4.90 51.23 56.71 62.22 56.72 7.04
A, 1.73 247  2.68 2.34 0.46 45.38 32.87 16.73 31.96 12.05
A, 0.13 092 4.15 1.53 2.13 3.39 10.42 21.05 11.32 8.17
A 3.98 7.50 15.80 8.69 5.60

90 Agq 231 4.62 10.45 5.50 4.01 58.70 61.77 64.86 61.78 5.70
A, 1.36 1.62 1.55 1.54 0.19 35.53 23.34 11.05 23.32 10.16
A, 0.23 1.20 3.90 1.63 1.75 5.77 14.88 24.09 14.91 8.52
A 3.82 6.52 12.33 7.29 4.15

180 Agq 2.57 439 8.56 4.98 3.06 67.91 67.67 68.45 67.92 4.56
A, 0.68 0.64 0.58 0.64 0.09 18.54 10.89  5.17 11.37 5.63
Ay 0.50 1.43 3.21 1.64 1.22 13.55 21.44 26.38 20.71 6.70
A 254 4.02 717 4.44 2.48

360 Ay 1.79 276  4.82 3.03 1.71 71.39 69.12 67.10 69.18 4.86
A, 0.19 0.19 0.20 0.19 0.05 8.08 520 295 5.36 2.45
A, 0.50 1.02 2.12 1.16 0.81 20.53 25.68 29.95 25.46 5.52
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Table 4
Unrestricted Data-Implied Variance Risk Premium Decomposition Summary Statistics

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according
to Proposition 3 using preference parameters reported in Table 1 with n = 2 (i.e., the variance risk premium).
Panel A reports statistics for the risk premium levels and Panel B reports statistics for the contributions of risk
premia from each region to the total risk premium (as fractions of the total risk premium, in percent). Risk
premia are annualized by multiplying by each horizon (in units of fractions of a year). A,=[0,0.9], 4.=[0.9,1.1],
and A,=[1.1,+00) and these labels correspond to the downside, central, and upside risk premia, respectively.
A=A;UA.UA, and this label corresponds to the total risk premium. Statistics reported under “Unconditional”
use the full estimated time series for each risk premium measure. Statistics reported under “Cond. Means” report
the means for each time series conditional on 30-day risk-neutral variance (M:(jzp [A]) falling below it’s first quartile
(“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These correspond to periods
of low, moderate, or high market volatility, respectively. Statistics are reported for risk premium decompositions
at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January, 1996 through June, 2019.

Panel A: RP®) . [A,] (%) Panel B: RP\) . [A,]/RPP)[A] (%)
Cond. Means Unconditional Cond. Means Unconditional

Horizon Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

(days)
A -0.29 -0.67 -2.50 -1.03 1.46

30 Agq -0.25 -0.60 -2.22 -0.92 1.19 83.28 89.15 92.11 88.42 6.94
A, -0.05 -0.09 -0.11 -0.09 0.10 19.19 1456 7.63 13.99 6.87
A, 0.01 0.02 -0.14 -0.02 0.33 -247 -3.71  0.26 -2.41 4.54
A -0.51 -1.10 -3.65 -1.59 1.99

60 Aq -0.44 -097 -2.97 -1.34 1.46 87.83 89.79 85.96 88.34 4.05
A, -0.07 -0.10 -0.02 -0.07 0.12 14.06  9.94 243 9.09 5.63
A, 0.01 -0.01 -0.61 -0.16 0.63 -1.89  0.27 11.62 2.57 6.77
A -0.62 -1.26 -3.72 -1.71 1.91

90 Agq -0.54 -1.08 -2.88 -1.39 1.32 88.44 87.61 81.84 86.37 4.38
A, -0.07 -0.08 0.03 -0.05 0.10 1256  7.56 -0.01 6.92 5.98
A, 0.01 -0.07 -0.83 -0.24 0.69 -1.00  4.83 18.17 6.71 8.60
A -0.88 -1.63 -4.13 -2.07 2.03

180 Agq -0.73 -1.31 -3.05 -1.60 1.39 85.57 82.37 76.88 81.80 4.35
A, -0.08 -0.04 0.08 -0.02 0.11 899 295 -2.30 3.15 5.86
A, -0.04 -0.25 -1.11 -0.41 0.71 544 14.68 25.42 15.06 9.04
A -0.81 -1.34 -2.67 -1.54 1.21

360 Agq -0.62 -0.98 -1.83 -1.10 0.82 78.33 7497 69.77 74.51 4.61
A, -0.06 -0.05 -0.05 -0.06 0.09 709 372 093 3.87 5.20
A, -0.11 -0.28 -0.77 -0.36 0.39 14.58 21.31 29.30 21.62 7.41
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Table 5
Restricted Data-Implied Market Risk Premium Decomposition Summary Statistics

This table reports summary statistics for the restricted data-implied risk premium decomposition according to
Proposition 3 with n = 1 (i.e., the market risk premium). The decompositions set preference parameters to
be 7 =1, p = 2, and k = 4 across all regions and horizons. Panel A reports statistics for the risk premium
levels (annualized, in percent) and Panel B reports statistics for the contributions of risk premia from each
region to the total risk premium (as fractions of the total risk premium, in percent). 4,=[0,0.9], 4.=[0.9,1.1],
and A,=[1.1,+00) and these labels correspond to the downside, central, and upside risk premia, respectively.
A= A3UA.UA, and this label corresponds to the total risk premium. Statistics reported under “Unconditional”
use the full estimated time series for each risk premium measure. Statistics reported under “Cond. Means” report
the means for each time series conditional on 30-day risk-neutral variance (I\\/HIET [A]) falling below it’s first quartile
(“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These correspond to periods
of low, moderate, or high market volatility, respectively. Statistics are reported for risk premium decompositions
at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January, 1996 through June, 2019.

Panel A: RP\") . [A,] (%) Panel B: RP("[A,]/RPV[A] (%)
Cond. Means Unconditional Cond. Means Unconditional

Horizon Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

(days)
A 1.61 3.53 10.19 4.72 4.96

30 Agq 0.64 1.65 6.05 2.50 3.30 39.75 4591 57.16 47.18 10.09
A, 093 1.68 2.36 1.66 0.60 58.20 49.26 29.12 46.46 13.74
A, 0.03 0.19 1.71 0.53 1.36 2.0 4.83 13.71 6.35 6.07
A 1.91 394 10.33 5.03 4.69

60 Agq 1.03 232 6.71 3.09 3.22 53.32 58.51 64.17 58.63 7.81
A, 0.81 1.16 1.25 1.09 0.22 43.42 31.38 15.18 30.34 12.16
A, 0.06 0.44 231 0.81 1.41 3.26 10.11 20.65 11.03 8.20
A 2.16 4.23 10.31 5.24 4.45

90 Agq 1.34 272 6.88 3.41 3.06 61.23 64.12 66.53 64.00 6.36
A, 0.70 0.83 0.79 0.79 0.10 33.25 21.46  9.46 21.40 10.01
A, 0.12 0.65 2.58 1.00 1.41 5.52 1443 24.01 14.60 8.78
A 2.70  4.84 10.30 5.67 4.07

180 Agq 1.91 3.36 7.03 3.92 2.77 70.41 69.71 68.61 69.61 5.20
A, 0.44 042 0.37 0.41 0.06 17.05 9.74  4.23 10.19 5.43
Ay 0.33 1.02 283 1.30 1.34 12.55 20.55 27.16 20.20 7.50
A 3.35 550 10.34 6.17 3.79

360 Agq 249 391 697 4.32 2.49 74.17 71.38 68.01 71.24 5.09
A, 0.24 0.24 0.25 0.24 0.06 7.51 480 2.62 4.93 2.31
A, 0.60 1.32 3.05 1.57 1.31 18.32 23.81 29.37 23.83 6.00
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Table 6

Representative Agent Model-Implied Market Risk Premium Decomposition Summary
Statistics

This table reports summary statistics for the model-implied risk premium decompositions based on representative
agent models described in Section 3 with n = 1 (i.e., the market risk premium). Panel A reports statistics for the
risk premium levels (annualized, in percent) and Panel B reports statistics for the contributions of risk premia
from each region to the total risk premium (as fractions of the total risk premium, in percent). Results are reported
for the following models: Bansal and Yaron (2004) (“BY”), Bansal, Kiku, and Yaron (2012) (“BKY”), Drechsler
and Yaron (2011) (“DY”), Bekaert, Engstrom, and Ermolov (2020) (“BEE”) with and without preference shocks,
Gabaix (2012) (“Gabaix”), and Wachter (2013) (“Wachter”). A,=[0,0.9], A.=[0.9,1.1], and A,=[1.1,+00) and
these labels correspond to the downside, central, and upside risk premia, respectively. A = A; U A.U A, and this
label corresponds to the total risk premium. Statistics reported under “Unconditional” use the full estimated time
series for each risk premium measure. Statistics reported under “Cond. Means” report the means for each time
series conditional on 30-day risk-neutral variance (MI(_%%F [A]) falling below it’s first quartile (“Lo”), between its
first and third quartiles (“Mid”), or above its third quartile (“Hi”). These correspond to periods of low, moderate,
or high market volatility, respectively. Results are based on state variables extracted from the data under each
model using their original calibrations, which are monthly in all cases, and use daily data from January, 1996
through June, 2019.

Panel A: RP) . [A,] (%) Panel B: RP\" ,.[A,]/RP).[A] (%)

Cond. Means Unconditional Cond. Means Unconditional

Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.
A 0.63 3.84 14.33 5.66 7.61

BY Agq 0.00 0.03 1.04 0.28 0.98 0.00 0.47 4.98 1.48 2.66

A, 0.63 3.70 10.44 4.62 4.38 100.00 97.66 81.18 94.13 9.69

A, 0.00 0.11 2.84 0.76 2.73 0.00 1.86 13.84 4.39 7.05
A 3.59 5.64 12.13 6.75 4.68

LRR BKY Ag 0.01 0.13 0.99 0.32 0.70 0.37 2.04 6.76 2.80 2.89

A, 3.53 5.17 8.59 5.61 2.27 98.41 92.30 76.04 89.76 10.06

Ay 0.056 035 2.54 0.82 1.88 1.22  5.66 17.20 7.44 7.20
A 1.76 5.54 21.21 8.51 11.23

DY Agq 0.08 2.20 10.29 3.69 5.50 4.17 34.73 48.68 30.58 18.44

A, 1.56 278 5.13 3.06 1.46 89.20 56.25 30.30 58.00 23.54

A, 0.12 0.56 5.79 1.76 4.91 6.63 9.02 21.02 11.42 7.25
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Statistics (continued)

Table 6
Representative Agent Model-Implied Market Risk Premium Decomposition Summary

Panel A: RP() [A,] (%) Panel B: RP\",.[A,]/RP") . [A] (%)
Cond. Means Unconditional Cond. Means Unconditional
Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.
A 1.35 3.29 1147 4.85 5.84
A 027 1.11 6.46 2.23 3.80 19.47 30.77 52.66 33.42 13.94
BEE (w/ Pref. Shocks) @ 2
A, 1.09 2.18 3.83 2.32 1.12 80.53 69.23 42.11 65.28 16.79
Habit A, 0.00 0.00 1.18 0.30 1.47 0.00 0.00 5.23 1.31 4.43
abi
A 0.65 3.35 12.07 4.86 6.36
A 52 2.7 27 .84 4.4 .94 4 . . 14.31
BEE (w/o Pref. Shocks) d 0.5 9 9 3.8 8 68.94 83.47 79.53 78.85 3
A, 0.13 056 2.26 0.88 1.09 31.06 16.53 19.33 20.86 14.31
A, 0.00 0.00 0.55 0.14 1.40 0.00 0.00 1.14 0.29 2.65
A 472 7.06 10.82 7.42 2.50
Gabaix Ay 3.28 558 9.29 5.93 2.47 69.07 78.61 85.48 77.94 6.52
A, 140 1.43 149 1.44 0.04 30.02 20.76 14.12 21.42 6.31
. A, 0.04 0.04 0.04 0.04 0.00 091 0.63 0.39 0.64 0.20
Disaster
A 3.04 573 14.31 7.20 6.24
Ag 0.83 193 6.36 2.76 3.21 27.26 32.91 42.48 33.89 6.18
Wachter
A, 2.13 3.17 3.92 3.10 0.72 70.37 57.20 33.14 54.48 15.33
A 0.08 0.63 4.03 1.34 2.67 2.37  9.89 24.38 11.63 9.17
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Table 7
Representative Agent Model-Implied Variance Risk Premium Decomposition Summary
Statistics

This table reports summary statistics for the model-implied risk premium decompositions based on representa-
tive agent models described in Section 3 with n = 2 (i.e., the variance risk premium). Panel A reports statistics
for the risk premium levels (annualized by multiplying by 12, in percent) and Panel B reports statistics for the
contributions of risk premia from each region to the total risk premium (as fractions of the total risk premium, in
percent). Results are reported for the following models: Drechsler and Yaron (2011) (“DY”), Bekaert, Engstrom,
and Ermolov (2020) (“BEE”) with and without preference shocks, Gabaix (2012) (“Gabaix”), and Wachter (2013)
(“Wachter”). A4=[0,0.9], A.=[0.9,1.1], and A,=[1.1,400) and these labels correspond to the downside, central,
and upside risk premia, respectively. A = A;UA.UA, and this label corresponds to the total risk premium. Statis-
tics reported under “Unconditional” use the full estimated time series for each risk premium measure. Statistics
reported under “Cond. Means” report the means for each time series conditional on 30-day risk-neutral variance
(Mr(jgp [A]) falling below it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third
quartile (“Hi”). These correspond to periods of low, moderate, or high market volatility, respectively. Results are
based on state variables extracted from the data under each model using their original calibrations, which are
monthly in all cases, and use daily data from January, 1996 through June, 2019.

Panel A: RP®), [A,] (%) Panel B: RP®) [A,]/RPZ) [A] (%)
Cond. Means Unconditional Cond. Means Unconditional

Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.
A 0.00 -0.42 -1.94 -0.69 0.99

LRR DY Ag -0.01 -0.44 -1.96 -0.71 1.01 -62.36  100.17 101.62 59.90 209.08

A, 0.00 -0.01 0.06 0.01 0.25 4.09 1.83 1.26 2.25 4.87

A, 0.01 0.03 -0.03 0.01 0.21 158.28  -2.00 -2.88 37.85 206.57
A -0.07 -0.31 -2.46 -0.79 1.62

BEE (w/ Pref. Shocks) Ag -0.03 -0.25 -2.27 -0.70 1.46 46.26  70.41  92.51 69.90 19.57

A, -0.04 -0.06 -0.14 -0.07 0.07 53.75  29.65 7.11 30.04 19.68

Habit A, 0.00 0.00 -0.05 -0.01 0.12 0.00 -0.06 0.38 0.06 0.96
A -0.17 -0.91 -3.19 -1.30 1.60

BEE (w/o Pref. Shocks) Ag -0.16 -0.86 -2.74 -1.15 1.28 86.96 94.28  88.78 91.08 15.13

A, -0.01 -0.06 -0.34 -0.12 0.19 13.04 5.74  10.55 8.77 15.07

A, 0.00 0.00 -0.10 -0.02 0.27 0.00 -0.02 0.67 0.16 2.22
A -0.87 -2.46 -6.81 -3.15 2.68

Gabaix Ag -0.87 -2.45 -6.74 -3.13 2.65 101.16  99.67  98.96 99.86 0.92

A, 0.01 -0.01 -0.08 -0.03 0.04 -0.90 0.40 1.14 0.26 0.84

) A, 0.00 0.00 0.01 0.00 0.01 -0.26  -0.06 -0.11 -0.12 0.11

Disaster

A -0.38 -0.78 -1.90 -0.96 0.76

Wachter Ag -0.39 -0.82 -2.10 -1.03 0.87 102.14 104.70 109.47 105.25 3.07

A, 0.00 0.00 0.07 0.02 0.08 -0.44 0.19 -2.11 -0.54 1.67

A, 0.01 0.04 0.13 0.06 0.06 -1.70 489 -7.36 -4.71 2.33
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Appendix A Proofs

Proof for the Coefficients in the Taylor expansion in Equation 13. Derivatives

of f.. (x) are given by:

8f$s (1’) — 7WtU’ [Wt‘rs} U, [th.]Q’
Oz (U [Wyz])
1" 2
2 ) " U (W)
0 f$2; (1’) _ *WEU (ths) U, (th)Q —9 ( / )3 ,and
0%z (U (W) (U (W)
3 " 3
%s(x) = WU (Wia,) U””(thc)2 B 6U'”(th)u”(th) Jr6(U (ch))4 )
r (U (Wea)) (U (We))® (U (W)

Evaluating these derivatives at z; and substituting in the definitions of 7 (zy), p (), and

K (zs) in Equations 14, 15, and 16 gives the desired result. [ |

Proof of Proposition 1. Assuming no-arbitrage, we can write

Mt—»T Et [Mt—>T]
E¢ [My—71] Missr

E¢ [My7]
M1

M) [A] = Ee [ (Rarasr — Rpgosr)” HAS} = E [ (Ratisr — Rppor)” HAS}AD

Replacing B, [M;_,7| /M;_r in Equation A.1 with the expression in Equation 18 yields:
M (A = B lgs, (Rareor) (Rareor = Rpaor)"Ia,). (A.2)

Next, we replace the function g,, (R —7r)in Equation A.2 with the expressions in Equations
10 and 11 and apply the definition of the covariance operator (COV] [z,y] = Ef [zy] —
E; [z] E; [y]) to obtain

> Ok (xs) COV; [(RM,t—>T —z)", (Rmpmt — Rpar)” HAS}
Mgn—ZT [A‘?] = b=l %) & + IE;; [(RM,t—YT — Rf,t—>T)n HAs] .
L+ >0 Ok (zs) Ef [(RM,HT —x4) ]
k=1

Using our definition of I\\/JIIXL:)F [A;] and rearranging yields

S * k n
E t 1, s ’ st - 5 s
> bk (zs) COV [(RJVI to1 — ), (Rt — Rposr) La }

MEZ)T [As] — M:gj)’ [As] = A=l (A.3)

o0

14+ Y 0 (zs) Ef [(RM,t—>T —Z)
k=1

k

A0



Proof of Corollary 1. Replacing (Ras+—7 — xs)k in Equation A.3 with the expression in
Equation 17 yields

oo k .
S % A (@0, k) COV] |(Ragaosr = Rpaoor)*™ , (Rareor — Rpaor)" L, |

n *(n k=1 0
M7 (4] - M ST [A] = = — —
1+ Z Z At (s, K, J) [(RMt—>T — Ry, t—T) _j}
k=1j=0

(A.4)
where \; (x4, k, ) is as defined in Equation 26. Applying the definition of the covariance
operator (COV; [z,y] = E; [xvy] — Ef [z] Ef [y]), Equation A.4 simplifies to the result. |

Proof of Proposition 3. We only consider the case where n > 1 (the case where n =1 is

straightforward). In this case, we start with the identity

(Rattst — EtRpr )" = Z (Rattst — EtRpg )" 1a,
se{d,c,u}

and take expectations under the physical and risk-neutral measures to show

RP", = > Eil(Rueosr —ERaesr) L) — Y Ef[(Rareor — EfRaresr)" 1a],
se{d,c,u} se{d,c,u}
= Z RPET—LZT
se{d,c,u}

where the second equality follows from our risk premium definition in Equation 29. Next, we

can rewrite our expression for the risk premium when n > 1 in Equation 29 as

RPET—LZT [As] = E¢ [(Ryvtst — Rpptsr + Rt — EeRpper) " 1a,] — M:(_?)T [Ag]

= n!(=1)" 4§ n— *(n
Z (n(_ k))'k?' (E; [RM,t—>T - Rf,t—>T]) b (RM¢_>T — Rfvt_gﬂ)k Ta, | — Mt(—ﬂ)“ [As]

0
"ol (=) "k n— “(n
> T (M 1) My [ - A,

where the second line follows from the Binomial theorem and the last time from our definition

of Mt—>T [As]. u
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IA.1 Notation

Symbol Description

t Generic current date

T Generic future date

S Market index value at date ¢

Ryrior Gross market return from date t to 7' (Note: Ry 1 = St/St)

Ryyr Risk-free rate from date t to T

Cior [K] Call price at date t with expiration at date T" and strike price K

P, 1 [K] Put price at date t with expiration at date T" and strike price K

* Denotes the risk-neutral measure; for instance, VAR* denotes
risk-neutral variance.

E; [1] Expectation at time ¢ under the risk-neutral measure

E: [1] Expectation at time ¢ under the physical measure

Prob; [B]  Risk-neutral probability at time ¢ of event B

Ay Set describing regions of the gross market return space with
s € {d, ¢, u} (see Equations 4, 5, and 6); note that A = A;U A, U A,

LA, Indicator function for gross market return inclusion in set A;

x Threshold in gross market return space for computing downside
truncated moments (see Equation 4); we set = 0.9 for all empirical
results

T Threshold in gross market return space for computing upside
truncated moments (see Equation 6); we set T = 1.1 for all empirical
results

T Points in gross market return space around which Taylor expansions
are taken and at which preference parameters are estimated;

s € {d, ¢, u} (see Equations 4, 5, and 6); we set 24 = 0.85, x. = 1, and
x, = 1.15 for all empirical results

T (xs) Risk tolerance evaluated at x4 (see Equation 14)

p () Skewness tolerance evaluated at x, (see Equation 15)

K (xs) Kurtosis tolerance evaluated at x (see Equation 16)

Oy (xs) Parameters related to utility function derivatives (see Equation 12)

At (zs,k,7) Function of preference parameters defined in Equation 26

Shorthand for E; [(R; 71 — Ry—71)" 1a,] (see Equation 20)
Shorthand for E; [(R; 71 — Rys—71)" 1a,] (see Equation 21)

Shorthand for the risk premia defined in Equation 29

Generic representative investor utility function evaluated at investor
wealth, W

Stochastic discount factor realization over the time period from ¢ to T’
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IA.2 Robustness and Additional Results

In this section, we explore the robustness of our results to various modifications and provide
some additional results. In Subsection [A.2.1, we provide plots of the preference parameters
reported in Table 1 and discuss their implications for the conditional SDF. In Subsection
[A.2.2, we provide market risk premium decomposition plots under the restricted preference
parameter assumptions from Subsection 2.3. In Subsection [A.2.3, we construct all risk-
neutral moments from observed options prices rather than using the implied volatility curve
fitting technique (see Footnote 13) and show this does not materially alter our main results. In
Subsection TA.2.4, we explore the effect of potential option mispricing due to supply /demand
imbalances and show that this does not materially alter our main results.

TA.2.1 Unrestricted Preference Parameter Plots and the Implied SDF

Figure [A.1 plots estimates relative risk aversion and Figure [A.2 plots estimates of 7, p,
and k reported in Table 1 for visualization. These estimated preference parameters have
implications for the behavior of the SDF in different regions of the return space. Given a
set of estimated preference parameters in each region and measures of risk neutral moments
at date t for horizon T, we can construct the conditional implied SDF in each region as
the inverse of Equation 18. We do this for three different dates in Figure [A.3. The dates
are chosen to be on dates with low market volatility (3 January, 2006 and 2 January, 2014)
and one date with large market volatility (15 September, 2008). Within a given horizon,
the SDF plots are very consistent across dates implying that the SDF does not change
much over time.*® It should also be noted that, although different preference parameters
are used to construct the implied SDF in different regions, the SDF does not jump much
at the boundaries between different regions relative to the overall range of the SDF across
the plotted market return space. The SDF flattens with horizon, implying investor marginal
utility increases more for equivalent decreases in market value in the short term than the
long term.

TA.2.2 Restricted Preference Parameter Decomposition (Additional Re-
sults)

We provide market risk premium decomposition plots under the restricted preference param-
eter assumptions from Subsection 2.3 in Figure [A.4. We provide these plots here to save
space in the main draft and since they are similar in appearance to those from our main
unrestricted preference parameter results provided in Figure 2.

38The only exception is during November, 2008 in the peak of the financial crisis. During this period, the
upper limit of the SDF became lower in the down region of the return space. This implies that during the
financial crises investor marginal utility was particularly high in states of the world with very low realized
market returns.
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Table TA.1 provides forecasting regression results of the form in Equation 33 but using
the risk premium decomposition constructed using the restricted preference parameters. In
this case, we do not necessarily expect the null hypotheses that ar = 0 and by = 1 to be
satisfied to the extent that the total risk premium computed here represents a lower bound,
except in the case that this lower bound is tight. In the table, we see patterns similar to
those in Table 3. In fact, we cannot reject the separate nulls that ar = 0 at any horizon
whether we use the Full Sample or Ex Crisis samples. However, we can reject the null that
by = 1 at the 30- and 90-day horizons when using the Ex Crisis sample. The fact that by > 1
is consistent with this measure representing a lower bound on the risk premium. All of the
out-of-sample R-squared values are slightly negative when using the Full Sample. However,
the out-of-sample R-squared values become positive in the Ex Crisis period with magnitudes
similar to those using risk premia computed from estimated preference parameters.

IA.2.3 Observed Prices Instead of Implied Volatility Fitting

In this subsection, we explore whether constructing risk-neutral moments by numerically in-
tegrating over observed options prices rather than using the implied volatility fitting method-
ology alters our main results related to the market risk premium decomposition. Aside from
numerically integrating over observed option prices (using the same equations summarized
in Internet Appendix [A.4) rather than prices imputed from fitted implied volatility curves,
all procedures are the same. This includes re-estimating preference parameters, which are
similar to the original estimates so we do not report these. Results for the modified market
risk premium decomposition are provided in Figure IA.5 and Table [A.2. These results can
be compared with our analogous main results in Figure 2 and Table 2. The modified decom-
position produces results that are both qualitatively and quantitatively similar to our main
results and we conclude that the choice to compute risk-neutral moments by integrating over
options prices implied by fitted implied volatility curves versus integrating over observed
prices is innocuous.

TA.2.4 Potentially Overpriced Options

There is evidence that the well-known implied volatility smirk displayed by index option
prices is at least partially the result of supply/demand imbalances caused by the inability
of market makers to perfectly hedge option exposures (Garleanu, Pedersen, and Poteshman,
2009). These imbalances imply that observed option prices are mispriced and do not reflect
no-arbitrage prices. Garleanu, Pedersen, and Poteshman (2009) define mispricing in the cross-
section of option moneyness as deviations in measured Black-Scholes implied volatility from
the physical volatility estimated using Bates (2006). The authors show that this difference is
on average decreasing in option moneyness (see Figure 1 in their paper). Importantly, they
show that (on average) the implied volatility of OTM calls is approximately the same as the
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Bates (2006) volatility measure (i.e., these options are “correctly” priced if the Bates (2006)
measure is the correct measure of volatility).

If the option prices we observed deviate from their no-arbitrage prices due to demand
pressure, this is a problem for the risk-neutral moments we construct and use to perform the
empirical implementation of our risk premium decomposition. Although a full estimation of
demand-driven option pricing models and their effects on observed option prices is beyond
the scope of this paper, we construct a heuristic method for assessing the potential effect of
such demand pressure on observed options prices. We do this by modifying our measured
implied volatility curves for cross-sections of option prices (in moneyness) at each date and for
each maturity. Our main task is to provide a reasonable transformation of observed implied
volatility curves to account for potential demand-driven mispricing and effectively correct
observed options prices so that they reflect no-arbitrage relationships.

One approach would be to simply use the Bates (2006) volatility measure as the “correct”
measure of implied volatility across all strikes for each date/maturity combination. We feel
that this is too restrictive since it implies index prices are log-normal (i.e., the standard
Black-Scholes assumption). There is significant evidence that this is not the case and that
index prices are negatively skewed. To allow for this empirical fact, we consider approaches
to shrink observed implied volatility curves towards the constant Black-Scholes benchmark.
Two key insights from Garleanu, Pedersen, and Poteshman (2009) are that demand-corrected
implied volatility curves should be lower than observed implied volatility curves and that
OTM calls are approximately correctly priced. Given these insights, we assume that the
OTM call with the lowest observed implied volatility is approximately correctly priced for
sets of options at each date/maturity. We denote the associated implied volatility and strike
price as IV and K, respectively. We then construct a transformed implied volatility curve
for each date/maturity as follows. Let all observed volatilities and strikes be denoted by
1V; and K;. Let the transformed implied volatilities be denoted by ﬁ/i. For any OTM
calls with K; > Kj, we set ]Vi = IVy. Next, for any options with I'V; < IV, we set
v, = IV, Finally, we select a constant, a, and transform all other implied volatilities
according to: IV; = IV; — a (IV; — IV;). As long as a € [0,1], this transformation shrinks
the observed implied volatilities, IV, towards IVy. When a = 1, we have IV; = IV, Vi (i.e.,
the transformed implied volatility curve is flat and takes on a value equal to the implied
volatility of the OTM call option with the lowest implied volatility). When a = 0, we obtain
the original implied volatilities (i.e., IV; = IV; V).

The final ingredient in our heuristic correction is to select a. We do this in a conserva-
tive way that sets the risk-neutral market return skewness (approximately) to the physical
skewness. Our baseline risk-neutral and physical skewness measures imply that risk-neutral
skewness measured from observed options prices is approximately twice that of the physical
skewness implied by our estimated preference parameters in Table 1. This holds uncondi-
tionally and is approximately true conditionally. As outside validation of this result, results
reported in Beason and Schreindorfer (2020) imply that the ratio of unconditional risk-
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neutral to physical skewness is about 2. As an identifying assumption, we assume that this
relationship holds conditionally and identify the a value such that this is true. We find that
this holds on average when a ~ 0.45 and set a to this value in our analysis.

This implied volatility transformation attempts to match risk-neutral implied volatility
and skewness to those from the physical market return distribution by shrinking the implied
volatility curve towards I'Vy. The idea is that any differences between I'V; and I VZ represent
options price premia that are the result of supply/demand imbalances unrelated to risk.
To the extent that these price pressures exist, our transformation should produce implied
options prices that are closer to their no-arbitrage benchmarks.

Given our estimated value of a, we re-estimate all risk-neutral moments using the trans-
formed implied volatility curves, re-estimate preference parameters, and report the resulting
unrestricted market risk premium decomposition in Figure [A.6 and Table [A.3. These re-
sults can be compared with our analogous main results in Figure 2 and Table 2. The modified
decomposition produces results that are both qualitatively and quantitatively similar to our
main results. The most noticeable difference is that this modification results in the central
risk premium becoming a relatively larger component of the total risk premium at the ex-
pense of the downside risk premium. This is expected given that we have effectively decreased
the implied risk-neutral skewness, making it more similar to the physical distribution skew-
ness. The effect of this is to reduce the importance of the downside risk premium. It should
be noted, though, that the downside risk premium still maintains a large contribution to
the total risk premium. The upside risk premium contribution is very similar to in our main
specification. The implied volatility transformation we impose in this subsection represents
a drastic shift of the risk-neutral distribution towards the physical distribution (it effectively
cuts the implied volatility smirk slope in half), yet the analysis produces similar results for
the risk premium decomposition. We conclude that potential demand-driven options mis-
pricing (or any other mispricing that generates an excessive implied volatility smirk) does
not significantly alter our main results and conclusions.

IA.3 Utility Function-Implied Decompositions: Log, CRRA,
CARA, and HARA Utilities

This section derives exact closed-form expressions for physical truncated moments in terms
of risk neutral quantities when investor utility takes on various commonly specified func-
tional forms. We focus on the log, CRRA, CARA, and HARA utility since these represent
the most common forms of time-separable utility functions in extant literature. Given the
utility-implied physical moments and corresponding risk-neutral moments, we can estimate
risk premium decompositions implied under these various preference assumptions. Analytic
expressions for the physical and risk-neutral moments as functions of option prices are pro-
vided in Internet Appendix [A.4. Note that, given any utility function, one can compute such
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closed-form expressions in terms of risk-neutral moments that can be estimated from option
prices.

These formulations of our decomposition put slightly more structure on the decomposition
than in the data-implied decomposition since they make assumptions about the functional
form of representative investor preferences. Hence, they impose restrictions on the preference
parameters that we estimate from the data for our unrestricted decomposition. They do not,
however, impose as much structure as the representative agent models discussed in Section
3, which make assumptions about both the functional forms of preferences and state variable
processes that govern the economy. Importantly, to derive results under these specific utility
assumptions, we do not make any assumptions about the distribution of market returns or
other state variables that govern the economy.

Remark 1. Assume there exists a representative agent with log utility whose wealth is entirely
invested in the market. Given no-arbitrage, the inverse SDF is given by

Et [Mt%T] _ RM,tﬁT
M, r E; [Rart—7)

and the conditional physical truncated moments are given by

n 1
ME—ST [AS] =

= 57— MUV (A + M (Al (1A.1)
ft—T

—T

for any n and any As € {A, Ag, Ac Au}. Closed form expressions for these risk-neutral mo-
ments are provided in Internet Appendix IA.J.

Proof. See Internet Appendix A 4. [ |

Remark 2. Assume there exists a representative agent with CRRA wutility over final wealth
given by

Wy —1

UWr) = 11—«

where « 1is the relative risk aversion, Wp = Wi Ry 45 the final wealth, Wy is the initial
wealth, and Ryr—1 is the return on the market. Assuming no-arbitrage, the inverse SDF is
given by
E[Misr] — Risr
Mt—>T E;fk [R?W,t%T}

and the conditional physical truncated moments are given by

B} [ St (Raesr — Rpsr)” ]IAJ

E? [RaM,t%T]

IA.6
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for any n and any Ay € {A, Ay, Ac Ay}. Closed-form expressions for Equation IA.2 are
provided in Internet Appendiz IA.).

Proof. See Internet Appendix [A 4. [ |

Remark 3. Assume there exists a representative agent with CARA utility of the form
U(WT> = 1- 675[WT

where & is the absolute risk aversion, Wp = W Ryry—r is the final wealth, W, is the initial
wealth, and Ryp—7 s the return on the market. Define relative risk aversion as o = aW;.
Assuming no-arbitrage, the inverse SDF is given by

E [Myr]  etfar
M,y Ef [eofiaeo]

and the conditional physical truncated moments are given by

E; [GO‘RM’HT (Rartsr — Rpsr)” ]IAJ

]E%“ [eaRM,taT]

M) [A] =

(IA.3)

for any n any As € {A, Ag, Ac Au}. Closed-form expressions for Equation IA.3 are provided
in Internet Appendiz IA.J.

Proof. See Internet Appendix [A 4. [ |
Remark 4. Assume there exists a representative agent with HARA wutility of the form

CLWT
1 -y

U(WT>=1_—7(

v
+b) with a > 0 and fWT +b>0,
Y

-

where Wr = Wi R 11 18 the final wealth, Wy is the initial wealth, and Ry is the return
on the market. Assuming no-arbitrage and decreasing relative risk aversion,® the inverse
SDF is given by
£ [mt—>T] . (—a* (RM,t—>T/Rf,t—>T) - 1)1_7
My E; [(—a* (Ryg—r/Rpsor) — 1)1_”}

1—7 -1
=l —— —1
o= (=)

39Decreasing relative risk aversion implies b < 0. We could also derive a similar expression assuming
increasing relative risk aversion (b > 0), but choose to omit this less economically relevant case.

where
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and R s the relative risk aversion evaluated at Wy Rs,.r. The conditional physical truncated
moment is given by

M, [4,] = E; [(—a* (Rargr/Ryesr) — V)" (Rurgsr — Rpoor)” I, ]
e E; [(—a* (Rargosr/Rpsr) — 1)1_7}

(IA.4)

for anyn any Ay € {A, Ag, Ac Ay}. The closed-form expression for Equation IA.4 is provided
in Internet Appendix [A.J.

Proof. See Internet Appendix A 4. [ |

Given these physical moments and measured risk-neutral moments, we can compute our
risk premium decomposition according to Equation 29 under these various preference spec-
ifications. Closed-form expressions that allow us to compute these moments directly from
option prices are provided in Internet Appendix [A.4. Table [A.4 provides a summary of the
average risk premium levels and contributions from each region under each set of preference
assumptions. In the case of CRRA and CARA utility, we provide results for levels of rela-
tive risk aversion at three, five, and seven. In the case of HARA utility, we are limited to
relatively low levels of risk aversion due to the functional form, and set these to 1.0, 1.1,
and 1.2. Although the levels of risk premia implied by each specific utility function (Panel
A) can be quite different than those from our data-implied decomposition, the contributions
(Panel B) are actually more similar to those from the data-implied decomposition relative
to those from the representative agent model-implied decompositions. This implies that the
additional structure implied by these models can lead to model misspecification that has
counterfactual implications for the relative contributions to the total risk premium to which
the utility-based decomposition are immune.

IA.4 Expressions for Computing Risk-Neutral Moments

In this section, we use the Carr and Madan (2001) spanning formula to derive expressions
for various risk-neutral moments needed for our decomposition as functions of observable
options prices. The spanning formula can be written as:

Yo 00
h(y) = h(yo)+ (Y —yo) by (o) +/0 hyy (K) (K —y)" dK+/ hyy (K) (y = K)"dK (IA.5)
Yo

where h (y) represents a generic function of y. We refer to y, as the “Carr and Madan
expansion point.” In our case, we are interested in functions of the future market index at
time 7', St (i.e., we set y = S7). We can think of y, as a baseline market index value (e.g.,
Yo = Ryu1 Sy, where Sy is the current market price at time ¢). We switch between using
Ryri—r with the equivalent expression Sp/S; in this section when appropriate for clarity.
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We also make use of the following indicator functions when computing truncated moments:
Ta. = Lus,<sr<zsrys Lay, = lisp<es,y, and Iy, = Iig,~zs,) -

Expressions in this section require us to compute integrals of functions of option prices with
respect to the strike price. Using the Black-Scholes formula, there is a one-to-one mapping
between observed prices and implied volatilities. To compute risk-neutral moments we map
observed prices to implied volatilities, fit the implied volatilities according to the procedure
described in Footnote 13, then invert the fitted volatilities to obtain prices needed for the
expressions in this section.

IA.4.1 Risk-Neutral Moments Centered on Rf; .1

In this subsection, we derive expressions for risk-neutral moments of the form
E* [(Ryist — Rpesr)"] and E* [(Rar 7 — Rysr)" 1a,] where Rpryyr is the gross market
return from time ¢ to T, Ry, is the risk-free rate from time ¢ to 7', and I4, is an indicator
function for realized market returns belonging to sets A defined in Equations 4, 5, and 6.
Note that we can express the gross market return as Ry —r = St/S;.

TA.4.1.1 Untruncated Risk-Neutral Moments Centered on Ryyre
E* [(RM,t—>T - Rf,t—>T)n]

Set the function A (+) in Equation TA.5 to

S n
h(Sr) = (ST - Rf,HT> . (IA.6)
t
Derivatives of this function are
hy(Sr) = (5T _p " (IA.7)
y(OT) = s, s, fit—T .
1) (S e
htsr) = M (T - Rpr) (1A5)
t t
Next, set yo = RS Evaluating the function and its derivatives at values needed for
Equation TA.5 yields:
h(Rf,tﬁTSt) = 0,
h,y (Rf’tA)TSt) = 0, and
b () = n(n—1) E—R e
vy - St2 St fit—=T .
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Substituting these expressions into Equation [A.5 yields:

Sy " n(n—1) [frerS (g no2 N
<St - Rf,t—>T> = St2/0 E - Rf,t—>T (K - ST) dK
nin—1) [ K n—2
+¥/ ( — Rf,HT> (Sp — K)" dK.
St Rf 7St St

Taking expectations under the risk-neutral measure at time ¢ yields:

E; (Rt — Retsr)"]

n(n—1)R BpimrSe /¢ n-2
— ( ) f,t—>T/ ( . Rf,t—>T) Prr [K] dK
0

S? Sy
n(n—-1R e} K n—2
er / < - Rf,t—>T> Ci7 [K]dK (TA.9)
St RyiorSe \Ot

where P, [K] and Cy_r [K] are the put and call prices with strike prices K at time ¢ and
expiration date 7. Note that when n = 1 the expression yields E; [(Ra—r — Ryi—7)] = 0
as expected (i.e., because the risk-neutral expected market return is the risk-free rate).

IA.4.1.2 Downside Risk-Neutral Moments Centered on Ry yrs
E* [(RM,t—>T - Rf,t—)T)n HACJ

Set the function A (-) in Equation IA.5 to that in Equation IA.6. Next, set yo = 25;. Evalu-
ating the function and its first derivative at values needed for Equation IA.5 yields:

h(zS;) = (z— Rpsr)" and
n n

hy (&515) = g@—Rﬁt—ﬂF) '
t

Substituting these expressions into Equation [A.5 yields:
ST " o n n—1
—— — Ry = (z—Ryisr) +n(z— Ryior) 5 Tz
t

St
n(n—1) [ (K n-2
+¥ / ( — Rf,HT> (K —Sr)tdK
0

S? S,
-1) [* (K n?
(nn—1) / < - Rf,HT> (Sr — K)* dK.
Sz J,s \ S
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Multiplying by Iig,<zs,1 vields:

S " n w1 (S
(Sf — Rf,t—>T) Iisr<as,y = (@— Rpior) Lispcas,y +n(z— Ryisr) ! <Sf - x> Iisr<zs.)
nn—1) [ (K n—2
+7( S2 ) A (St - Rf,tﬁT) (K - ST)Jr H{ST<gSt}dK
t
nn—1) [ (K n=2
nin~1) 52 ) /S (St - R‘ﬁHT) (St — K) Iisrcus,dK.
t xSt
Simplifying this expression yields:
ST ! n n—1 1
5, Ritor ) Uspcas,y = (2— Rptor) Lisp<as,y —n(z— Rypisr) 5 (St — S7) Lisp<ws,}
nin—1) [ (K n-2
+% /0 (St - R,«,HT> (K — Sp)" dK.
t

Taking expectations under the risk-neutral measure at time ¢ yields:

E* [(Rm—1 — Rpt—r)" 1a,]
n—1 BT

Sy

nin—1)R 25 (| n=2
+%/ (S - Rf,t—>T> Pir [K]dK (IA.10)
t 0 t

= (z—Ryyr)" Probf [Ryrr < z] —n(z — Ryyr) Py [2S4]

where Prob; [Ryr+—r < z] is the risk-neutral probability at time ¢ that Ry;,r < z and can
be computed as:

aPt—>T [K]

TIA.11
oK ‘K—zst ( )

Prob; [Ryrir <zl = Rpisr

aPt—>T[K]

where =57 is the partial derivative of the put price with respect to K evaluated

K:gSt
at K = zS;. We also make use of the definitions I, = Ifg,<zs,} and Rarep = Sp/Si. We
m)t"—T[K]‘ by computing the slope between put prices with strikes that span

compute
OK | g_ys,

&St.

TA.4.1.3 Upside Risk-Neutral Moments Centered on Ry, .7: E* [(Ryrsr — Rpior)” La,]

Set the function A (-) in Equation TA.5 to that in Equation TA.6. Next, set yo = ZS;. Evalu-
ating the function and its first derivative at values needed for Equation TA.5 yields:

h (fSt) = (T - Rfﬁt*)T)n and
hy @) = o (@ = Rpaor)"
t
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Substituting these expressions into Equation [A.5 yields:

S " n — n— S —
(ST - Rf,HT> = (@ Rpsr)" +n(@ - Rpesr)"™ (ST - x)
t t
nn—1) [ (K ne2
yoin1) & ) / (5 - Rf,HT) (K — Sp)"dK
i 0 t
nin—1) [ (K n?
+%/ <S Rfvt_g“) (STfK)J'_ dK.
i 7S, \ Ot
Multiplying by I;g,>zs,) vields:
ST R " I — n — n—1 ST —_
5, ~Bror ) Useswsy = (T — Ryior) Lispszs,y + 1 (T — Ryesr) 5, 7 Iis,>ms,}
nn—1) [ (K ne2
+¥ / 5 — Brisr (K = S7) " g, 555,y dK
Si 0 St
nn—1) [* (K n=2
+(72> / 5~ Brist (7 — K)" Ispoms,pdK.
Sf, TSt St
Simplifying this expression yields:
5 _ g "I = @-R " T-R ot Lo —msy)t
5, freor) Usesasy = (T — Rpior)" Lispszs,y + 1 (T — Rysr) 5 (ST —TSt)
nin—1) [ (K n2
+¥ / ( — Rf,t—)T) (ST — K)Jr dK.
S5 7S \ Ot
Taking expectations under the risk-neutral measure at time t yields:
E* [((Rypst — Rpt—r)" 1a,]
n £ — — n— R —
= (T — Rf,t—>T) P’I“Obt [RM,t—>T > 1‘] +n (1‘ - Rf,t—>T) ! f;—>T Ct—>T [I‘St]
t
~1)R ~ (K "2
+M/ ( - Rf,t—>T> Cir [K]dK (I1A.12)
S 7S, \ Ot

where Prob; [Ryi—r > T is the risk-neutral probability at time ¢ that Ry47 > T and can
be computed as:

0C; 1 K]

Prob; [Ryg—r >%] = —Rppsr 0K ’K_a;st

(IA.13)

BCtHT[K}
oK ‘K.Z‘St
at K = 75;. We also make use of the definitions 14, = I;s,>zs,} and Ryp = Sp/Sy. We

act—)T[K]
0K

where is the partial derivative of the call price with respect to K evaluated

compute

TSt

by computing the slope between call prices with strikes that span
K=x5;

[A.12



TA.4.1.4 Central Risk-Neutral Moments Centered on R, ,r: E* [(Ryrimr — Rptor)” La.]
Observe the following identity:

H{ZStSSTSEST} = 1- H{ST<15t} - H{ST>ESt}' (IA14)

This identity implies the following identity relating the risk-neutral moments:

E* [((Rmpist — Rptsr) 14l = Ef[(Rmtst — Rpimr)"]
—E* [(Ramt—s1 — Rppsr)" 1a,]
—E* [(Ryt—»1 — Rpt—r)" 1a, ]

where we have made use of the definitions 14, = Iiz5,<s,<zs7}, 1a, = Lisp<as,y, and Iy, =
Its;>zs,y- Substituting in expressions from Equations IA.9, IA.10, and IA.12 and simplifying
yields:

E* [(Rat—t — Rpt—r)" 1a,]
= —(z— Rypisr)" Prob; [Sr < zS¢] — (T — Ry4—1)" Prob; [St > TS

1 R 1 R
+n(z—Rpyor)" " EE2I P p 28] —n (@ — Ryynr)" 2O 28]

S —5
nn—1 R RiimrSe /g n—2
+% [/ (S - Rﬁt_)T) P [K] dK]
t Sy t
nn—1)R zSt K n—2
+# [/ (S — Rf7t—>T> Ct—>T [K] dK] . (IA15)
t Ry 7St t

IA.4.2 Risk-Neutral Moments for log Utility-Based Physical Moments

Proof. Proof of Remark 1. Assuming no-arbitrage conditions, we can show

IE[ Mir  Ey[Mi_7)
B [ Misr] My

E, [M .
= E; M(RM,t—)T—Rf,HT) Ia,
Mt%T

T

)ﬂ
&
i

(Rumt—1 — Rppr)” HAS]

Ef [Rai—1 (Rage—1 — Rppr)" 1a,]
Ef [Rasi—7]
E; [(Ryst — Rptst + Rppsr) (Rppsr — Retsr) " 1,
E} [Rayr1—T)

*(n+1)
= =L 74 s - .16
Rf,t—)T

[A.13



TA.4.3 Risk-Neutral Moments for CRRA Utility-Based Physical Moments

Proof. Proof of Remark 2. Assuming no-arbitrage conditions, we can show

t—T

Mr By [myr]
A = [k
[ ] k |:Et [Mt—>T] miT

E .
_ o Bt g R
My ' ’

Ef [R?w,t—ﬁr (Rayi—1 — Ryusr)" 14,]
Ef {R?\l/[,taT]

(Rvpmt — Rpar)” HAS:|

(IA.17)

The second expression is obtained by replacing the inverse of the SDF by its expression. This
ends the proof.
|

We then show how to compute risk-neutral moments in Remark 2 (Equation [A.2). Specif-
ically, we would like to compute moments of the form [E} [(RMJHT)“ (%—f — Rﬁt_)T) I Aé}.
We first apply the binomial theorem to show:

= E} [(Rarao1)” (Rarior — Rpesr)" 1a,]
" n!

—k)!

OM

(Rpsmr)" " E [(RMVHT)H“ HAS] . (IA.18)

So we need only compute moments of (RMJ_)T)HO‘ [4, in order to construct moments of
(Rarisr)” (Rarisr — Ryasr)” 1a,. We again make use of the Carr and Madan (2001) span-
ning formula (Equation IA.5) to compute these moments as functions of options prices.

IA.4.3.1 CRRA: Untruncated Risk-Neutral Moments: [E; [(RMVHT)HQ]

Set the function A (-) in Equation IA.5 to

S k4o
HORRA () — <5T> _ (IA.19)
t
Derivatives of this function are

k+a—1

hyCRRA (Sr) = k;to‘ (*Zf) and (TA.20)
k k+a—1 a2

g (sp) - elerazl Sy (1a.21)

t t

[A.14



Next, set yo = Ry;7S;. Evaluating the function and its derivatives at values needed for
Equation TA.5 yields:

hOREA (R pS)) = (Rpor)™™,

and

k+0[ )k—i-a—l

thRA (RftsrSt) = S, (Rfisr

)

hCRRA () = (k4 a)(k4+a—1) <K>k+a_2.

¢ S

Substituting these expressions into Equation [A.5 yields:

Sp\ e k+a St kta—1
= (Ryi>T) +(k+a)| = —Rsisr | (Rpsr)

e S,
E+a)(k+a-1 RpisrSe (¢ k4+a—2
t
k+ k4+a—1) [ KO\ a2
t Rf,t—»TSt t

Taking expectations under the risk-neutral measure at time ¢ yields:

E; [(RM7HT)I€+Q}

= (Rf,t—>T)k+a
k+a)(k+a—-1R RpamrSe g po\ bto=2
Jeta)(b+a— 1Ry / () Pror [K]dK
St 0 St
k+a)(k+a—1)R > K\
Lkt a)( ° ) Byior / <S> Cryr [K] K. (1A.22)
t R+ St t

Equation TA.22 can be combined with Equation [A.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 when I4, =1 (i.e., the untruncated moment case).

1A.4.3.2 CRRA: Downside Risk-Neutral Moments: E; [(RM,HT)’““ ]IAd]

Set the function A (:) in Equation TA.5 to that in Equation TA.19. Next, set yo = xS5;.
Evaluating the function and its first derivative at values needed for Equation [A.5 yields:

RCRRA (16) = (2)"* and
k+a o
h;}RRA (gSt) = s, (g)k-i- 1

[A.15



Note that hgyRRA (K) based on Equation IA.21 is unchanged. We can substitute these into the

Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{s;<zs,} to obtain:

S k+a a k +o s
(i) Iisrezsy = @) Iisr<us,y + (ST —25) Sy @™ Misr<as)
ko) (k+a—1) (25 (K\Fo2
Lkt ( L ) / s, (K = 57)" Lisy<us,)dK
S; 0 St
L i 1 © /K k+a—2
+( +a)( 2—|—a ) / el (ST—K)+]I{ST<xSt}dK‘
St xSy St )

Rearranging and simplifying (noting that the second integral is zero) yields:

S k4o N o1 1
(3) Hsraass = @ Tisyaasy — (4 @) @ - 8- 570"
t t
_ 1 Est K k+a—2
UESIUE )/ K (K Sp)* d.
Si 0 St

Taking expectations under the risk-neutral measure yields:

E; [(Rareor)* " L,

= () Prob; [Sr < 28] — (k + ) (z)" 7! Rpior P_7 [25]

S;
(k+ o) (k+a—1)Rpssr /S K
+ 5 =
S 0 St

k+a—2
) Pryr K] dE. (IA.23)

Equation TA.23 can be combined with Equation IA.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 with [4, = 14,.

IA.4.3.3 CRRA: Upside Risk-Neutral Moments: E} [(RMHT)HQ I Au]

Set the function A (-) in Equation IA.5 to that in Equation IA.19. Next, set yo = ZS;.
Evaluating the function and its first derivative at values needed for Equation [A.5 yields:

hC’RRA (ESt) — (E)k+a and
k+a _
CRRA (= —\k+a—1

Note that hgyRRA (K) based on Equation IA.21 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation [A.5) and multiply the whole equation

[A.16



by Iis,>zs,} to obtain:

S k+o - o i k +a a—
<Sf> Lisr>zs,) = (x)]c+ Is,>zs,y + (ST —TSh) 4 ("T)]H 1H{ST>fSt}
k+a)(k+a—1) [T (K\"?
! )(52 : /o (St> (K = 57) " Igsyoms, K
t
ktao)(k+a—1) (> (K\"?
t TS5t

Rearranging and simplifying (noting that the first integral is zero) yields:

S\ T kta k+o _ hra— _
(Sf) Iispszsy = (@) Lispszs,) + s, @) (Sp — 38"
_ %) k+a—2
JEra)kta 1)/ <K) (Sp — K)* dK.
Si 7S, \ St

Taking expectations under the risk-neutral measure yields:
E; [(Raremr) 1,
« * —_ — oa— R —
= @FT Prob} [Sp > TSy + (k + o) ()T 22T 0 28]

Sy
(rebre N R [ (K
52 s, \Si

k+a—2
) Cryr [K] dE. (IA.24)

Equation TA.24 can be combined with Equation [A.18 to compute the risk-neutral moments
required for Equation [A.2 in Remark 2 with I4, =14, .

IA.4.3.4 CRRA: Central Risk-Neutral Moments: [ [(RMHT)HQ ]IAC}

The identity in Equation [A.14 implies the following identity relating the risk-neutral mo-
ments:

E* [(RM,HT)HQ]IAC} = E; |:(RM,t—>T)k+a]
B [(Ragen) 1,

~E* [(Rarr) 1,

where we have made use of the definitions 4, = Ijz5,<s,<zs:), 1o, = Iigp<es,), and I, =
Its,>zs,}- Substituting in expressions from Equations IA.22, TA .23, and IA.24 and simplifying
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yields:

E* [(RM,t—m)Ha ]IAC}
= (Rpsmr)™ ™ — (@) Prob; [Sr < 28, — @) Proby [Sr > TSy

a— R - a— R _
+(k + ) (@H ! fgﬁT P 1 xS] — (k+ ) (33)’€+ ! %Ct%T [ZS]
t t
k+a)(k+a—1)Ry RpisrSe (¢ k+a—2
+ ( ) ( > ) fit—=T £ Py [K] dK
St xSt St
kE+a)(k+a—-1)R 5 K\ Fta—2
+ ( ) ( 2 ) fit—T / (S> Crr [K] K. (IA.25)
t Ry 7St t

Equation A .25 can be combined with Equation IA.18 to compute the risk-neutral moments
required for Equation IA.2 in Remark 2 with [4, = I4,.

IA.4.4 Risk-Neutral Moments for CARA Utility-Based Physical Moments

Proof. Proof of Remark 3. The conditional truncated moment is

n « | E¢lm n
Mz(H)T [As] = Ej [M (Rari—1 — Ryimr) ]IAS}
N e Bm it N
= E; [HWM (RM,tﬂT - RfﬁtaT) ]IAS]
E* [exBm t»T R - R "1
_ t [6 ( M,tR—>T f,t—>T) AS] . (IA.26)
E; [ea IVI,tHT]
This ends the proof. [ |

The last expression is obtained by replacing the inverse of the SDF by its ex-
pression. In this sub-section, we show how to compute risk-neutral moments in Re-
mark 3 (Equation IA.3). Specifically, we would like to compute moments of the form

E; [eaRMvHT (Ryrisr — Rygyr)" T AS] . We first apply the binomial theorem to show:

]Ef I:e(IRALtHT (RM,t%T — Rf,taT)n ]IAs]

" n— n' n—k * 6% C
= > =yt W=k (Rpisr)" " E; [6 Bavest (Ryyyp)” HAS} ~ (I1A.27)
i ! !

So we need only compute moments of e*fm.i=7 (R M7t_>T)k I 4, in order to construct moments of
et (Ryry op — Rpysr)" L, We again make use of the Carr and Madan (2001) spanning
formula (Equation TA.5) to compute these moments as functions of options prices.

[A.18



TA.4.4.1 CARA: Untruncated Risk-Neutral Moments: E; [eaRM»HT (RMHT)IC]

Set the function A (+) in Equation TA.5 to

k
ROARA (§) = (oFF (if) . (IA.28)
t
Derivatives of this function are
se (Sp\"  k ose (Sp\'T!
}CARA _ @ o (T P oot (2T d IA.2
Y (St) Ste S, + Ste S, an ( 9)
2 se (SP\Y  _ak o5r S\
LCARA (g _ & agf (PT 9t o [ 2T
w1 =g ) et s
E(k—1) 452 [ Sp\*F 2
%e“s*t (;) : (IA.30)
t

Next, set yo = Ry;7S;. Evaluating the function and its derivatives at values needed for

Equation TA.5 yields:
hOARAY(Ryyor ) = R (Rpy )",

« k _
thRA (Rf,t—>TSt) — geaRf,taT (Rf,t—>T)k + geaRf,taT (Rf,t—>T)k 1 . and
t

t

2 K\* ok ,x [K\'!
hCARA K _ Oéi Oését - 9 Vs, [ =
o (K) ¢ \s ) e T s,

k(k—1) o (K\"?
t—m ¢ (o :
S S,

Substituting these expressions into Equation [A.5 yields:

@ k _
e Bri=r (Ry )" + (St — Ry S) [S@aRf'HT (Rpemr)* + geaRf’HT (Rpsmr)” 1}
t t

Ry 7St o2 k(K k ak x (K ket k (k' - 1) x (K b
Z oo [ 22 29— %5 [ — e [ — K — TdK
g [ “H(g) rgei(s) Mg (s) s

t

e o? ox (K\" _ak ,x (K\"! k(k—1) ox (K k=2 n
— %5 | = 2__e%s; | = N T % (I - K K.
+/Rf,,,wst ls (5) &t () +get(s) |er-rra
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Taking expectations under the risk-neutral measure at time t yields:

]EZ‘ |:6O(R]\/I,t~>T (RM,t—>T)kj|

e Rriot (Ry )

Rfisr /Rf’f”st wi | o (KN K\F! K\F?
: ,, 2\ 4 oak k(k—1
T, ety ) k(g ) HEE-D(g

0o k k—1 k—2
Jer’t;T / 50 a2 K + 2ak K +k(k-1) K Cir [K]dKIA.31)
S Ryt Se St St S

Equation ITA.31 can be combined with Equation [A.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 when I4, =1 (i.e., the untruncated moment case).

Py K] dK

1A.4.4.2 CARA: Downside Risk-Neutral Moments: E: [eaRMM (Raresr)” ]IAd]

Set the function A (:) in Equation IA.5 to that in Equation IA.28. Next, set yo = xS5;.
Evaluating the function and its first derivative at values needed for Equation [A.5 yields:

ROARA (35,) = ¢°%(z)* and
hCARA _ « az k k x k—1
Y (xS) = e (x)" + e (2) .

S, S,

Note that hnyRA (K') based on Equation IA.30 is unchanged. We can substitute these into the

Carr and Madan (2001) spanning formula (Equation [A.5) and multiply the whole equation
by I{s,<xs,} to obtain:

a3 ST g
e S <St> L5 <zs,}

k
- e@@)kﬂ{sw&}ﬂs —25) [ e @ + et @ Lscasy

o t
<L

s? ¢ S, 5? S, S? S,

k k—1 k—2
S2e 5 (t) +252€ &3 (&) +%e " <St> ] (ST_K)+H{ST<£St}dK'
t

K\F K\ Rl 1 K\ B2
o8 () +2a—k s <> + h(k )eas% () (K — Sr)* Iisp<as, ) dK

IA.20



Rearranging and simplifying (noting that the second integral is zero) yields:

ol ST ¥
e s (&) H{ST<£St}

1
= 2 (2)" Iispeps,) — {0‘6% (@)F + keo® (2)* 1} 5, o sr)”

xS 2 k k—1 k—2
I BT K 2a7k af K k(k—1) af K K — ST di
+/0 lSQe (St + 2 s, + 5 e S, ( St) .

Taking expectations under the risk-neutral measure yields:

E; [ (Raguor)* L,

Rf,t%T
St

th*}T \/wSt ai : <K>k <K)k1 <K>k2
+—= e’ St |la® | =— | +2ak +k(k—-1
S2 0 Sy S ( ) Sy

Equation TA.32 can be combined with Equation [A.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 with [4, =14,.

= ¢°2 (2)* Prob! [Sp < 25, — [aeaz (2)* + ke (@kil] Bior [25]

Po_r K] dK. (TA.32)

1A.4.4.3 CARA: Upside Risk-Neutral Moments: E; [eaRMHT (Rarisr)” }IAu]

Set the function A (-) in Equation [A.5 to that in Equation IA.28. Next, set yo = ZS;.
Evaluating the function and its first derivative at values needed for Equation [A.5 yields:

hCARA (38,) = ¢ (7)" and
hCARA (£S,) = & eom @)" + ﬁe 7 (z)F !
v Si Si

Note that hgyARA (K') based on Equation IA.30 is unchanged. We can substitute these into the

Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation
by I{s,>zs,} to obtain:

sz (Sp\*
604 St (53::) H{ST>TSt}

T = OF (= ko oz k-
= @) Usyoms + (578 | 5o @ + e @ ggpms,
t t

k k—1 k—2
ak ,x (K kE(k—=1) ox (K +
/ ot (5) et () e (5) ](K_ST) ot

e s% _ k+2ake S 5 k_l_i_we‘*s% E e
S2 S2 St StQ St

[A.21

(ST - K)+ H{ST>TSt}dK'




Rearranging and simplifying (noting that the first integral is zero) yields:

ol ST ¥
e St (St) H{ST>TSt}

- . e 1
= T @) syoz + [0 (@) + ke (37 g (57 —78)"

I R ok (K b ok (K Rt ok (K k=2
— — 2ake™St | — k(k—-1 5t [ —
+St2/$stlae t(5t>+ae S, +k( )e” st S,

Taking expectations under the risk-neutral measure yields:

(Sr — K)" dK.

E; [ (Raguor)* I, |

= T (@) Prob [Sp > 78] + [ae™ (@) + ke™ (7)"] Rpeor 2L O [251)
t

oo k k—1 k—2
+Rf,t;T / 5 [ o2 K + 20k K +k(k—1) K Ci7 [K]dK. (IA.33)
Si ZS; St St S

Equation A .33 can be combined with Equation [A.27 to compute the risk-neutral moments
required for Equation IA.3 in Remark 3 with 14, = 14,.

TA.4.4.4 CARA: Central Risk-Neutral Moments: E; [eaRM»HT (RMHT)k I Ae}

The identity in Equation [A.14 implies the following identity relating the risk-neutral mo-
ments:

E* |e*BMmioT (RM,tHT)k]IAc] E; [eaRM’HT (RM"HT)k}
_E* |:601RM,14>T (RM7t—>T)k HAd}
_E* |:eO£RM,t—>T (R]\/Lt—)T)k HAu:|

where we have made use of the definitions 14, = Iiz5,<s,<z5:}: La, = Ligp<as,y, and Iy, =
Ifs>zs,)- Substituting in expressions from Equations IA.31, TA.32, and IA.33 and simplifying
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yields:
E* [BQRM’HT (Rasmr)" HAC}
= e*Brior (Ry, tHT)k — e (z )k Prob; [St < 5] — e** (f)k Prob; [St > TS|

R _
+ [ae%( e 1} 12T p o 28y — [aew @) + ke (7)F~ 1} Ry, HTcHT [ZS:]

St
R S
R T Fit—T Ot
+ fit— ea
:CSf

K k K k—1 K k—2
2= 20k k(k—1
St [a (St) e <St) o )(St)

th—)T /xSt WK ) (K)k (K)kl (K)k:Q
+—= e"St la® | =) +2ak +k(k—1
St Jry, s, St St ( ) S

Equation IA.34 can be combined with Equation [A.27 to compute the risk-neutral moments
required for Equation [A.3 in Remark 3 with I4, = l4,.

Y=

P [K]dK

Cior [K]dK. (IA.34)

IA.4.5 Risk-Neutral Moments for HARA Utility-Based Physical Moments

Proof. Proof of Remark 4. The conditional truncated moment is

7 * E; [m n
M 4] = E; {tn[%_t;T] (Bat—r — Rytsr) HAS]

Ef [(~a" (Rareor/Rpaor) =)' (Ragaor = Rpoor)" L,
= — . (TA.35)
E; |(~a* (Raamr/Rpior) =)'

Next, we show how to compute risk-neutral moments in Remark 4 (Equa-
tion [A.4). Specificallyy, we would like to compute moments of the form

. 1—y n .
£ |:<_Rf(,1t—>T Ryt — 1) (Ryvrisr — Rypeor) HAS} We first apply the binomial

theorem to show:

* 1—v

a n

(R Rt — 1> (Ruye—»1 — Ryis) HA;|
fit—T

Rf,t%T

* 1—v
a
(— Rt — 1) (RM,HT)’“JIAS] . (IA.36)

* v .

So we need only compute moments of (— Rfat TRM,HT — 1> (R HT)’“]I 4, in order to
. 1=y _

construct moments of (— Rfat TRM’HT — 1) (Rari—st — Rpsr)" La,. We again make use

of the Carr and Madan (2001) spanning formula (Equation [A.5) to compute these moments
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as functions of options prices.

TA.4.5.1 HARA: Untruncated Risk-Neutral Moments:

Our goal is to compute:

E;

Rf,t—>T

a* 1—y
(— Rt — 1> (RM,HT)IC]

Set the function A (-) in Equation IA.5 to

* S 1—v S k
pHARA (g — (— a (T> —1) (T) . 1A.37
(57) Riisr \ S S, (1A.37)
Derivatives of this function are
. k
o = o (2 ()0 (9
Y ( T) ( ’Y) Rf,t%TSt Rf t—T S,
k' a* ST )1 ’y< T)k 1
+—= |- — ] -1 — d TA.38
Sy ( Ryir (St) St o ( )
2 —y—1 k
hHARA S —_ 1— < a ) ( @ T) — 1) (T)
vy ( T) FY( 7) Rf,t—)TSt Rf,taT t St

e () (3)”
Rf,t%TSt2 Rf,teT St St
k(k—1) at [ Sy s\
— — ] -1 — . TA.39
e ( Rf,HT<St> > St ( )

Next, set yo = RS Evaluating the function and its derivatives at values needed for
Equation TA.5 yields:

B HARA (Rf’t—)TSt) = (—a* — 1)1*7 (Rf’teT)k )
a* -
thRA (RpssrSy) = —(1—7) =——— (—a* — 1) Rl (Rf)t_)T)k
Ry 1St
k _ _
g (0" =" (Rpsr) and
t

[A.24



* 2 * —y-1 k
K K
im0 - o) s (5)-) 7 (6)
w () TN Rrers) U Ror s S,
g (w50 G
be,taTSt2 Rf,tHT St St
A () 6
5252 Rf,t%T St St ’
Substituting these expressions into Equation [A.5 yields:
(m= (307 (%)
Ryt St St

= (—a" = 1" (Rpasr)”
+ (St — Ry1—7St) thRA [Rft—1St]

Rf,tHTSt
- / hIARA (K) (K — Sr)" dK
0
- / hIARA () (S — K)T dK.
Ry ¢ 7St

Taking expectations under the risk-neutral measure at time ¢ yields:

a* 1—v
( Ryt — 1) (RM,t—>T)k‘|

E |-
t Rf,t%T

= (=" = 1) (Rpuor)*

Ryt 7St
+Ry 4 / ht AR (K) Py (K] dK
0

+Ryf it / hit ARA(K) Cyor [K dK. (IA.40)
Rf,tHTSt

Equation TA.40 can be combined with Equation IA.36 to compute the risk-neutral moments

required for Equation IA.4 in Remark 4 when I4, =1 (i.e., the untruncated moment case).

*

1—
IA.4.5.2 HARA: Downside Risk-Neutral Moments: E; {(— Rfi—»T Rutosr — 1) v (RM,taT)k Ia,

Set the function A (:) in Equation IA.5 to that in Equation TA.37. Next, set yo = xS5;.
Evaluating the function and its first derivative at values needed for Equation [A.5 yields:

*

1—y
WHARA (35,) = <— fat T$—1> (z)* and
g

[A.25



* * -
a a k

— xz—1 T

FY) Rf,taTSt ( Rf,t%Ti ) (7)

+’€< @ x_1>w(x)’“.

St Rf t—T

hHARA (z8) = —(1-

Note that hfyARA (K') based on Equation IA.39 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation

by Iis,<xs,} to obtain:
1—v k
ST>
—1 1) Ligycus,
( Rf 1T ( > > <5t (e

11—~ .
z—1 z) 1 S,
( Rroor > (@)" Lisr<zs.y

+ (S7 — 28) hy M (25)) Ispcns,)

+/ hg /P (K) (K = S1) " sy cps, ) dK
0

+/ hIARA (K) (S — K) Iisp<us,ydK.
xSt

Rearranging and simplifying (noting that the second integral is zero) yields:

(s (3) ) (5)
Ryior \ Si S ) Freesd

a* 1—~ k
= — z—1 x)" 1 S,
( Rt > ()" Lisr<zs.}

—hHARA (2.8,) (S, — Sr)*

xSy
+ / RIARA (K) (K — Sp)™
0
Taking expectations under the risk-neutral measure yields:

B

* 1—v

a

<_R Ryt — 1) (RM,tHT)k ]IAJ
fit—=T

* 1—
= (— a T — 1) (g)k Prob; [St < z.5¢]
Rf,t—>T
_Rf,HTthRA (@Sy) Pisr [Sy]

xSt
+Ryi 7 / RIARA(K) Py [K] dK. (IA.41)
0

Equation [A.41 can be combined with Equation [A.36 to compute the risk-neutral moments
required for Equation IA.4 in Remark 4 with 4, =14,.
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*

1—
1A.4.5.3 HARA: Upside Risk-Neutral Moments: [ {(— Ragior — 1) (Rarosr)* L,

Rf,t—>T

Set the function A (-) in Equation [A.5 to that in Equation [A.37. Next, set yo = ZS;.
Evaluating the function and its first derivative at values needed for Equation [A.5 yields:

* 1—y
RHARA (7G,) = <_Rf“t Tx—l) ()" and
=
* * -
RHARA (G — _(1— a4 (— @ a:—l) 7)*
HARA (75,) O-Ve—s 7 (@)
k a* Y ke
+— (- T—1 7).
St < Rf,t%T > ( )

Note that hZ/ARA (K') based on Equation IA.39 is unchanged. We can substitute these into the
Carr and Madan (2001) spanning formula (Equation IA.5) and multiply the whole equation

by I(s;>zs,} to obtain:
a* 1—~ k
St
( RfHT ( t) ) (St) (o=}

11— .
T—-1 z) 1 3
< Rror > (@)" Lisr>zs,}

+ (ST — TS;) hHARA (TSt) Lysp>ws,)

+/ hEARA (K) (K — S7)" s, 57s,3dK
0
* /*s hlyquRA (K) (St — K)Jr H{ST>55t}dK‘

Rearranging and simplifying (noting that the first integral is zero) yields:

(s () ) (5) s
Ryt \ St S, ) e
a* 1—y &
<Rf,t~>T > () {ST>%S:}

+hIARA (78,) (Sp —T8,) T

- / hIARA () (Sp — K)T dK.
TSt
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Taking expectations under the risk-neutral measure yields:

oA

* 1—v

a

<R Ryt — 1) (Ratimsr)” Ltsr>zs,)
fit—T

a*

N ( Rf,t—)T
Ry h AR (TSy) Coyr (251

1—ry
T — 1) ()" Prob} [Sp > TS}]
+Ryisr / RIARA(K) Cyyr [K] dK. (IA.42)
x5Sy

Equation TA.42 can be combined with Equation [A.36 to compute the risk-neutral moments
required for Equation [A.4 in Remark 4 with I4, =14, .

17
IA.4.5.4 HARA: Central Risk-Neutral Moments: E; [(—R;;T Rurisr — 1) 7 (RM,t—>T)k Ia,

The identity in Equation IA.14 implies the following identity relating the risk-neutral mo-
ments:

* 1—y
a
E* <R Ruriost — 1) (Raraor)” ]IAC]
fit—=T
* 1—v
. a k
= E; <_R Rari—r — 1) (Bai—7) ]
fit—T
* 1=y
. a k
—E <_R R]L[J-}T - 1) (RMJ,—)T) HAd‘|
fit—T
* Lt
* a k
-E ( Rarisr — 1) (Rae—) HAul

Ryt

where we have made use of the definitions 14, = liz5,<s,<z5}: La, = Ligp<as,y, and Iy, =
Its;>zs,)- Substituting in expressions from Equations IA.40, IA.41, and IA .42 and simplifying
yields:

E*

* 1—v

a

(— Ryt — 1) (R]V[,t—>T)k HAC‘|
Rf,t%T

= (=" =177 (Rpor)

* 1—v * 1—~
_ ( @ g 1) (z)" Probf [Sp < z.5;] — ( ¢ z- 1> @)" Prob} [Sp > TS]
Rﬁt%T Rf,tﬁT
+ Ry (RIARA (28)) Py (25 — BIARA (®S) Cor [2S4])
Ry 7St TSt
+Rf it ( / REARA(K) Pyr (K] dK + / hEARA(K) Cyyr [K] dK) . (IA.43)
xSt Ry 7St
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Equation A .43 can be combined with Equation [A.36 to compute the risk-neutral moments
required for Equation [A.4 in Remark 4 with I4, = l4,.

IA.5 Nonlinear Least Squares Estimation of Preference Parame-
ters

We would like to estimate the preference parameters 7 (), p (), and & (z5) at three points
in the market return space corresponding to s € {d, ¢, u}. These preference parameters
are required to compute the physical moments (via Corollary 1) needed to implement the
risk premium decomposition in Proposition 3. We use the relationship between physical and
risk-neutral moments from Corollary 1 to estimate preference parameters. Start by writing
powers of realized excess market returns as:

(Rar—r — Rf,HT)n = E;[(Ryior — Rf,HT)n} + 8,5:)@5

Applying Corollary 1, we can replace E; [(Ras—7 — Ryi7)"] to obtain:

= +k—j) (k=3) ()
330 Al k) (M - w0 )
(Bapor — Rpgor)” = M:gl:)r+ — +€7En—>)T,s'

L+ 5550 A (2, b, ) MG

k=1 7=0

We truncate this summation at k = 3 for tractability. This balances truncation error induced
by choosing lower k with the fact that estimated higher-order risk-neutral moments (needed
for higher k) can be inaccurate.*! Assuming the truncation error is time invariant, we can
write:

3k _
£ o) (58 520
(Rumt—»1 — Rpgsr)” = agf’l + M:(—% + ==

— +ei")y (IA.44)

. *(k—7j
1+ 3 3 A (s, by ) M 5D
k=13=0

where we include the constant agg 2 to account for the truncation error induced by limiting

the upper limit on the sum over k£ to be 3.*> To the extent that this error may be time

40Recall that this relationship is based on Corollaryl, M:SL% are untruncated risk-neutral moments, and
At (zs, k,7) is a function of the preference parameters 7 (z5), p (zs), and & (z,) according to Equations 26
and 12.

4 For example, see Rompolis and Tzavalis (2017), who investigate the accuracy of higher-order risk-neutral
moments computed from options when the cross-section of options is limited.

“2Note that all moments in Equation IA.44 are untruncated moments (i.e. M:(_T;% [A]). We suppress the

[A] dependence here for simplicity.
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varying, it will be relegated to the error term, 5§@T78. Note that this can be applied to
moments of any order (n), any time horizon (7). Recall that \; (x5, k, 7) is a function of the
preference parameters 7 (zs), p (zs), and & (z;) according to Equations 26 and 12. We set
xz =09 and T = 1.1 with z4 = 0.85, . = 1, and x4 = 1.15 in all reported results. That
is, we are interested in studying risk premia associated with down market returns less than
-10%, central market returns between -10% and +10%, and up market returns greater than
+10%.

Note that we must estimate nine total preference parameters for each horizon of interest:
three parameters (7 (zs), p(zs), and k(xs)) for each of the three regions of interest (s €
{d, c¢,u}) in the return space. Given realized excess market returns and measured risk-neutral
moments, we estimate the preference parameters 7 (xs), p(xs), and & (z5) using non-linear
weighted least squares to minimize the squared error using three versions of Equation [A.44:
n =1, 2, and 3. Each value of n brings with it three equations: one for each set of preference
parameters in each of our three regions of interest. Therefore, we have nine total equations
and sets of error terms that are generated using Equation [A.44 in our estimation.

Since we are also interested in estimating truncated risk premia, we need to ensure that
the preference parameters satisfy the restriction that the sum of truncated physical moments
equals the untruncated physical moment (at least on average across time). This restriction
can be introduced to the nonlinear least squares estimation by considering relationships of
the form

(Rarp—t — Rytmsr)”

= %") +
3 k *(n+k—j *(k—j *(n
% A kg) (M (A - 007 (A1 [A4))
> Ml A+ — : +etp. (1A45)
se{den) 13 3 M (e, ko MG (4]
k=1 35=0

This relationship follows from Corollary 1 and the identity in Equation 28. We allow for the
relationship to not hold exactly both conditionally (through inclusion of EEZ)T) and on average
across time (through the inclusion of agfl )). We do not require the relationship to hold exactly
conditionally due to the use of slightly different data from options prices when computing
truncated moments relative to untruncated moments (see Internet Appendix IA.4.1.1 for a
description of how these moments are computed using option price data). Given our estimated
parameter values, though, we also find that this restriction holds well both conditionally and
unconditionally (i.e. agpn ) 2 0 and the magnitude of 5§n_>)T are small relative to the magnitude

of the estimated physical moments, ME_ZT =E,; [(Rvisr — Rssr)"]). Withn =1, 2, and 3,
Equation TA.45 adds three additional equations and sets of error terms to include in the
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estimation.*?

When minimizing the sum of squared errors implied by Equations [A.44 and [A.45, we
weight the error terms by the inverse standard deviation of the left-hand-side time series asso-
ciated with each equation (i.e. the inverse of the standard deviation of (Ryrs—1 — Ryir)").
We do this because the volatilities of each left-hand-side variable are naturally of a different
magnitude for different n values. We would like the error terms associated with equations
having different n values to have approximately the same weight in the least squares mini-
mization, which is effectively achieved using this weighting scheme.

The final ingredient in our estimation comes in the form of a Ridge-type penalty on the
estimated preference parameters. That is, in addition to the sum of squared error terms from
the twelve sets of restrictions discussed above, we add an additional term of the form

&g o= or Y. [rr@)?+pr (@)’ +rr(2,)7] (IA.46)
se{d,c,u}

where ¢r is a tuning parameter. We add this penalty to the squared error objective function
for estimations at each horizon, T. We include the parameter horizon dependence here explic-
itly for clarity. We include the penalty term since the right-hand-side risk-neutral moments
are highly correlated. This can induce excessive noise in the preference parameter estimates
(see Hastie, Tibshirani, and Friedman, 2009, pp. 63-64). Adding a small penalty of this form
can help reduce variance in the estimated parameters without increasing estimation bias
much. We select the tuning parameter, ¢, using a standard approach. We apply a 10-fold
cross validation to the estimation and find that the test error is approximately flat for tuning
parameter values below 1073, We select a moderate value of ¢ = 2 x 107° across all horizons
to mitigate estimation bias induced by the penalty.

Given these ingredients, we estimate preference parameters separately at each horizon
of interest (30, 60, 90, 180, and 360 days) by minimizing an objective function that sums
squared errors from the 12 sets of equations described above (Equations 1A.44 and TA.45)
and the penalty term in Equation A.46 using daily data from January, 1996 through June,
2019.

IA.6 Projection of Generic SDF onto Aggregate Wealth

Without loss of generality, we set T'= ¢ + 1 to be consistent with the notation in the rep-
resentative agent models. Denote by M; ;.1 the projection of the representative agent SDF

43We could also include equation restrictions related to individual truncated moments (i.e., expressions for
MEZ)T [As] according to Corollary 1 and using (Rast—1 — Rf,tﬁT)" I 4, as realizations in the left hand side
of Equation TA.45 (without the summation). We choose not to use these since there are not many instances
where I4, = 1 nor are there many instances of I4, = 1 in the data (i.e., the extreme market events for which
we are interested in estimating risk premia) are not often realized in the data.
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on a set spanned by aggregate wealth {1, Wt+17'Wt2+17'Wta-l'“}' The projected SDF, which
can be written as M;_,;11 = h[Wi1], can alternatively be expressed as

M = h(WctRM,t%t-‘rl))

where W, = W, — C; and Rps 441 is a proxy for the market return. This projected SDF
can alternatively be written as

M i1 = pug WeaRni—es1)

where i, is a constant. Here, the function g[.] is defined as g[z] = (ue) " h [Wya]. Since
the projected SDF correctly prices any contingent claim whose payoff depends only on the
market return, the constant p; can be written as

Ht = M, (g (WctRM,t—>t+1))_1

where y1; is a constant equal to its own expected value. This enables us to write,

M 1 —1]
= (E; M Ei | =—————— (9 (WuRn
o = (B M) B |2 (0 WorBas o)

= (B¢ [Misen]) E; [(g (WctRM,tﬁt—i-l))il} :

Thus,
1

Et [Mt—HH-l] o g(WctR]W,t—>t+1)

M 1 B 1
t Q(Wct Rprtstt1 )

As seen above, the inverse of the SDF has a similar functional form when compared to the
inverse of the SDF in Section 1.1. Note that for the projected SDF correctly prices the market
return and any contingent claim whose payoff is a function of the market return. Thus, the
results in Section 1.1 hold. The functional form of the inverse SDF in equation IA.47 is the
same as that used to construct our data-implied decomposition (see Equation 3). However,
given a particular representative agent model, the analogous coefficients, 6y, (+), that come
out of a Taylor series expansion of the inverse SDF will be pinned down by the assumptions
and parameters in the given model.

(IA.47)

IA.7 Results and Proofs Related to Representative Agent Models

Our goal in this section is to derive relationships between state variables and asset pricing
moments in each model to allow us to extract state variables at each date, and to compute
the model-implied risk premia implied by each model given state variables. The state variable
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extraction procedure is done as described in the paper with related results necessary for the

extraction below. Summary statistics for extracted state variables are provided in Table [A.5.

The risk premia are the same as we have defined in our main draft, R]PEZ)T [Ag] (see

Equation 29). We therefore need to compute the model-implied physical and risk-neutral
moments as defined in our main draft, ME"_BT [Ag] and MZ&% [Ag] (see Equations 20 and 21).
Note that in many cases it will be easier to compute non-central market return moments
rather than excess market return moments as required in our definition of RIF’@T [Ag]. In
these cases, we can use the binomial theorem to transform non-centered moments of the

market return to excess return moments according to

n!

ot B [Birisial) ()" "RyE,

n

E, [(RM,t—>t+1 - Rf,t—)t-i—l) ] =

NE

~
Il
<

n' Rn—k Rnfkj

M=

E; [(RM,tatJrl - Rf,tatJrl)n H{RM’t_,H_1>a}} n—

=~
Il
<

and

3

n!

G (Bf [Rhrimera]) (CD" T REE,

E; [(Rastst41 — Rytser1)"] (n—

o
(=)

Tl! n—k Rn_k,

W (EI [Rﬁcv[,tat+1H{R1v1,tat+1 >a}}) (71) fit—t+1"

Ey [(Rai—stt1 = Bpist1) " TiRup o yrsr>a)) (n—

-

=0

Results needed to compute these moments given model state variables are provided below.

IA.7.1 Risk-Neutral Moments when the SDF and Returns are Log-Normally
Distributed

The following analysis will be useful for deriving some results related to representative agent
models. Without loss of generality, set T'=t 4+ 1. Note that

* g Mi_iyq n
log (Et (Rt*}tﬁ’l)) = log (Et (]];t]\tdt_)J:+l Rl ity ))
= log Ryt 441 +log (EtMt—>t+1 R?de)
= logRyii41 + Eilog (My_yip 1) + nEilog (Riiv1) + VAR, (log My—yiy 1)

+§VARt10g Riiv1 +nCOVy (log My ¢4 1,108 Ry 14 1)

which simplifies to

lOg (]E;k (R;L—HH»Z )) = log Rf,t%t#»l + Et lOg (Mtﬁt+1 ) + %VARt (lOg Mtﬁt+1 ) + %ZVARtIOg Rt%t+1

—|—n(Et log (Rt—>t+1 ) + (C@Vt (log Mt_ng_t,_] s 10g Rt—>t+1 ))
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The Euler equation E;M; ., ; = allows us to write

1
Ryt siq1
1
—log Ry 1141 =E¢log (My—yy 1) + §VARt (log My—141)

Thus,

log (]E;k (R?%FFI )) = ’I’L(Et IOg (Rtﬁt#»l ) + (C@Vt (IOg Mtﬁt+1 s log RtAHH,] )) + L;VARtIOg Rt*)t+1 .

Under the log-normality assumption, the Euler equation E; M, ;. ; R; ;1 ; = 1 can be expressed
as

E¢log (Mi—i41) + E¢log (Reiy1) + éVARﬂOg Ry tq1
+%VAR:& (log My—¢41) + COV, (log My 41,log Ri—iv1) = 0.

The above expression is equivalent to

— lOg Rf,t—>t+1 —HEt IOg (Rt—>t+1 ) + éVARtlog Rt—>t+1 + (C@Vt (IOg Mt—>t+1 s log Rt—>t+1 ) = 0

which simplifies to

]Et log (Rt—>t+1 ) —+ (C@Vt (lOg Mt—>t+1 , IOg Rt—>t+1 ) = log Rf,t—>t+1 — éVARflOg Rt—>t+1 .

Finally

log (E; (R4)) = mnlog Rpyoin+ VAR log Ry oy - (IA.48)

IA.7.2 Truncated Moments of a Log Normal Distribution

The following lemma will be useful for deriving some results related to representative agent
models.

Lemma IA.1. Assume that a random variable log X follows a normal distribution, from Lien
(1985), it follows that

E[XTxo.a] =(A [d1]) exp (E (log X) + VAR (log X))
with
_ VAR (log X) + E (log X) — loga

dy
VAR (log X)

and o
dy = dy — /VAR, [log X].
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TA.7.3 Long-Run Risk Models

Solving the representative agent problem via indirect utility, Epstein and Zin (1989) show
that the SDF has the form

0
C g
Mtet+1 = (59 (%tl) Ra,gl—nfglv (IA49)

where Cy4; is the consumption level, 9 is the time discount rate, and R, ;41 is the gross
return on aggregate consumption. The parameter § = (1 — ) / (1 — i) where v is the risk

aversion parameter and 1 is the intertemporal elasticity of substitution (IES). This is the
utility specification used by all models in this subsection.

TA.7.3.1 Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

The economies in both Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) can
be described by the following time series

Acip1 = e+ X4 + POt

L1 = P+ GuOtla i1,
oty = 0 (1—=v) +v0of + Gewisa,
Adiyr = g+ 0xp + GaoiNa i1 + PacOiMet+1, (IA.50)
where 1141, Mg t41, Na+1, and wypq are i.i.d, Acyyq = log Cé—jl is the log consumption growth,
and Ad;, 1 = log Dlg—tl is the log dividend growth. The Bansal and Yaron (2004) model obtains

when ¢4, = 0. In both models, o7 drives uncertainty in the economies. There are two state
variables in each model: z; and ¢Z. Given this setup, we show the following results.

Main Results

Result TA.1. Given the state variables x; and o2, the Bansal and Yaron (2004) and Bansal,
Kiku, and Yaron (2012) model-implied log price-dividend ratio is given by

P
log Ft = Aom + ALt + Agmof, (IA.51)
t

and the risk-neutral market return variance is given by
M%), | [A] = exp (A" + Az, + Ajlo}) — exp <2A8f + 207z, + 2A§fat2) : (TA.52)
The coefficients Agm, Aim, Azm, Ayl A, and A3 are defined below.
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Proof. See below. [ |

Result IA.2. The conditional non-central physical moment and non-central truncated physical
moments of the market return are

TL2
Ei [RY 1 ip1] = exp {nEt log Rast—tt1] + ?VARt [log RM,t—>t+1]} )
?’L2
E, [RnM,t—>t+1H{RM,H1 >a}} = N WML] €xp {” (]Et [log RM,t—>t+1D + B} (VARt [log RM,t—>t+1D} s

and ,

dy, =" (VAR [log Rg,i—e41]) + nEq [log Ragy—e41] — nloga

" n\/VARf [log RM,t—>t+1] ’
where
B log Rast 1] = AS + Af 'z, + AS"0? and VAR, [log Rarsev1] = Ay + AV 0?
Further B
N [d2n] =P [nlog Ry i—i41 > nlogal

where

dop = din — n\/VARt log Razsser1)-

All parameters are defined below.

Proof. See below. |

Result TA.3. The conditional non-central moment and truncated non-central moment of the
market return under the risk neutral measure are

n—1)

« [pn n
E} [Rir4oe1] = exp (” log Ry 111 + (TVARt [log RM,t—>t+1]) -

—
E: [R%,t%t+1H{RM,t—>t+1>a}:| = N |:d1,n} E?[ T]t/l,tﬁtJrl]ﬂ
where )
o AnytAn,t —logay
1,n — ’ ’
\/ An,tA";t
and )
! R R AR\ R
log a,, = An,tAn,t (An,tAn,t) (n loga — Mn,t)
with
; 2
Ui(tf = Aon + Az + Ag oy,
An,t = [A&no—ta A4,n0t7 Af’,na Aﬁ,no—t]a
uﬁt = nAf +nAf"x, + nASTUtz,
R/
An,t = [nﬁl,mAl,mexo'h nd)d,cgh n“l,mAZm(bay n(bdo't]-
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Further,

—x —x [
d2,n = dl,n - An,tAnyt

E: [H{RM,tat+1>a}] =N [E;,n} .

All parameters are defined below.

and

Proof. See below. [ |

Derivations and Proofs We can use the Campbell and Shiller (1988) approximation to
write the log gross return as

log Rot—st+1 = Ko + K121 — 2¢ + Ay,

where z is the log price-consumption ratio and

ko = log (1 + ez) — K1z and k1 = —.

The log price consumption ratio follows
2 = Ao + Az + A201527
where

(log(5 + (1 - i) Le + Ko + k14257 (1 —v) + 36 (:‘€1A2¢a)2>

Ay = IA.
_ 1
A = - (IA.54)
1—k1p’
2
10(1=3) 02 +0(x1Ai0,)°
Ay = - . (IA.55)
2 1—rv

The proof of these coefficients Ay, 4, and A, are given below. Using the Campbell and Shiller
(1988) approximation, the log market return can be written as

log Bart—t+1 = Kom + K1,mZm,t+1 — Zm,t + Adpi1, (IA.56)

where r,11 = log Rari—i4+1, 2me = log(S;/D;) is the log price-dividend ratio and d;y; is the
dividend growth. The price dividend ratio is

Zmt = Aom + AL m® + Az 07 (IA.57)
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where

1

Ha +010g8 — (1= 0) ko + Ko,m + (1= 0) Ao (1 = k1) + (=& = (1-6)) e

Aom = T (IA.58)
(= mm) | (1= 0) k1 As + wimAsm} 82 (1= ) + 3 (= (1= 6) 1Az + 51 Az, ) 62
_ 1
Aim = u, (IA.59)
1—K1mp
[ 2 2
PR I 3 <¢d,c — g% —(1-0) ¢c> + 2 (k1,mArm — (1—0) k1 A1)? ¢2 (IA.60)
(1= f1mv) F(1—0) Az (1 - r1v) + 102
We also show that the log risk-free return is
log Ry, = AN + Az, + Afo? with | (IA.61)
0logd — ype — (1 = 0) ko + (1 — K1) (1 = 0) Ag
A = — , (IA.62)
— (1= 0) k14252 (1 — v) + 3 (1 — 0) k3 A302
Al = — {7+ 1 —rip)(1-0) A}, (IA.63)
1 1
AT = {(1 ) (L= 0) As + 5522 + L (16 H§A§¢§} . (1A.64)

where the proof of AL, Alf and ALf are is given below:

Proof of the A Coefficients. Observe that

log Mt+1 + IOg Ra,t+1

0
(9 logd — EAthLl —(1-10)log Ra,t+1> +log Ryt 41
0
910g6 + <0 — ¢> ACH_1 + (9%0 + 0nlzt+1 — 0225)

0
{QlOgé + (9 - ’(/J) e + Org + Ok Ag + 05114252 (1 — l/) — GAO}

0 0
4 { (9 — 1/J> +0k1A1p — 0A1} Ty + (9 — ZZJ) DO, 41
+9"€1A1¢watnw,t+1 + {9'%11421/ - GAQ} atQ + 9H1A2¢Jwt+1.
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Therefore, the log of the expected value of M;_,;11Rs—514+1 18
log (E [MtﬁtJrlRa,th‘Fl]) = { flogd + (0 — %) te + Org + Ok Ag + 95114252 (1 — l/) —0Aq + % (0K1A2¢0)2 }

+ { <9 — Z) + HmAlp — 0A1} Tt.

2
+{ L(0-2) 62+ L (9m410,)" + (01 Ao — 043) }"?

Thus, the Euler equation E¢M; ;41 Rat—1+1=1 Implies

{910g5+(0—Z)uc—kﬁno—f—(m—1)0A0+0/£1A202(1—z/)+§(051A2¢0)2} = 0
9
0-*+0/€1A1p—9141 =0
0
Or1 Aoy — 0Ay + 1 9722¢2+1(0 Ar¢y)? =0
142V 27T 5 ¥ c T 5 (VRh1 A1y

which implies

{ logd + (1 - i) [ + Ko + k14257 (1 —v) + 36 (k1A26,)° }

Ay =
0 (1—%1) ’
_1
A = ¢
1 1—51[)’
2
160(1-3) 62 +6(mai0,)’
Ay = ¢ .
2 1—r1p

Next, note that
0
log My 41 +1og Rart—i41 = 0logd — JACt-&-l — (1 =0) (ko + K1ze41 — 2t + A1) + Koym + K1mZmt41 — Zm,e + Adiga

which simplifies to
log My 5141 +1og Ras t—t+1
Blogd — (1—0) ko — (1 — 0) k1 Ag + (—g (- 9)) e+ (1= 8) Ao + om + f1.m Ao — Aoum + fia
+{—(1 - 0) k1As + k1mAsm} {52 (1 —v)}
+{ G (1=0)+ (1 =0 A+ — AL+ (kimArm — (1= 0) k1A1) p }xt
- { (_Z - (1= 9)> Gcor + ¢d,c0t} Net+1 + { (—(1=0)k1As + K1 mAzm) v+ (1 —0) Ay — As } o?

+ {1 mArm — (1 = 0) k1 A1} duoinpip1 + {— (1 = 0) k1 Az + K1m Ao m } Qoit1 + Gaoid t+1-
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Thus the quantity below

flogd — (1—0) ko — (1 — 0) k1 Ao + (,, (- 9)) + (1= 0) Ag + Koum + K1.mAom — Aom + i
+ {— (1 — 9) k1A + Kl,mAg’m} {52 (1 — V)} + % (— (1 - 6‘) K1As + I€1’mA2,m)2 qb?,
+{ —E—(1—9)+(1—0)A1 A1m+{ ( )H1A1+/€1mA1m}p+¢}

L (=260t due— (1-0)6.) + 3 (srmAim — (1 — ) s A1) 62

oy .
+(1—0) Az — A + (K1, mAzm — (1 — 0) k1 A2) v + $63
is equal to zero. This implies that
| 1 pa + 01088 — (1= 0) ko + Kom + (1= 0) Ao (1= k1) + (=% = (1= 0)) e
oom — 73 N
b 1 _ m
(1= F1m) F{= (1= 0) kiAo + 1Az} T2 (1= v) + 3 (= (1= 0) k14 + K1 mAsm)” 02
o=
S
1 2
Az = Cr— { i <¢d,c - g@ —(1-9) ¢c) + 3 (KimArm — (1 — 0) k1 A1)° 2 + (1 — 0) Ay (1 — kyv) + 102 } .

Now, observe that:

log Raft—t41 =  Kom + K1,mZm,t+1 — Zm,t + Adig
2
= A + ATz + AS 0} + K1,m AL m @200z t41 + K1,mA2mPoWir1 + Oa0iNd 141 + Pd,cTtNe,t+1

with
AY = Kom + (Kim — 1) Ao + pta + K1,mA2mo (1= v),
A?r = (Iﬁ:me - 1) Al,m + ¢7
Agr = (”fl,my - 1) A2,m-
Therefore,
E: [log Rastt41) = Af + ATz, + AS'o?
and
VAR, [log Rari—i41] = Ay + AYo7
with
Agr = Hl m ¢2
Mrzmhlmﬁ+%+ﬁy
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Thus,
n2
B[R] = exp (85 + A5+ A 02) + 5 (43 + A7) )
Now, let us find the risk free rate.
0
log My _yt41 = 0Ologd — EACtH — (1 —0)log Ry t—st+1
= 910g5+ {Z) - (1 9)}uc (1 79)/430 - (1 70)%1140 — (1 70)%&114252(1 *I/) + (1 *Q)AO
0
+{_¢ —(1-0)—(1-0)r1A1p+(1 —G)Al}xt+(1 —r1v) (1 —0) Ayo?

0
+ {— —(1- 9)} GeOtNepr1 — (1 — 0) kK1 A10z0Mp 141 — (1 — 0) K1 Asdowiii.

(0
Thus
Slog Ry = Ologs+ {0~ (1=0) b — (L= 0w — (1= 0)macdy — (1 0) e (L =) + (1= 0) 4
{0 -0 - a0k -0 Ak 3 (- 0P A

2
00 At (8- (- 0)) a0t + 300 tageRet |

This simplifies to
log Ry i str1 = AL 4+ Az, + Affo?

with
o= - Hlogé—i—{—%—(1—9)},%—(1—9)/{0—(1—9),%1140 |
—(1-0) k1452 (1 —v) + (1 —0) Ag + 2 (1 — 0)* k7 AZ02
= el oaeo-a-mapsa-0a).
rf 1 9 g 2 1 2 2422
Ay = - (1—H1V)(1—9)A2+2(—¢—(1—9)) ¢c+§(1_9) KTATP, ¢ -

We now provide a proof of Result TA.1.
Proof. Proof of Result TA.1. From Equation [A .48, it follows that

log (Ef (R 1—141)) = 2log Ry y—is1 + VAR lOg Rag 141
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which simplifies to

log (B} (Rifime41)) = (247 + AY) + 2A%z, + (245 + AY") of

since
log Ry i str1 = AN 4+ Az, + Affo?
and
VAR, [log Rasisi11] = AYT + AT o7
Thus,
VAR [Rarsois1] = exp (A3 + A%, + A3%07) — exp (2A5f +2AMg, + 2A§fa§) . (IA.65)
with

AST = 2AN 4 AYT AST = 2AI AST = oA + AV

Next, from Equation [A.57, the price-dividend ratio is of the form

P,
log Ft = Ao + ALt + Ag ol (IA.66)
t

Combining Equations [A.65 and TA.66 ends the proof.

Next, denote

log Ry ¢—t41 4+ 0logd — vyue — (1 — 0) ko + nko m + nptg + (K1,m — 1) ndom

AO,TL =
+ (1 - /{1) (1 — 9) Ag + (nm’mAg’m - (1 - 0) H1A2)52 (1 — V)
Al,n = {_'Y +no + (1 - ‘9) Ay (1 - Iﬁp) + (Hme - 1) nAl,m}
Agm = {(1 — Kly) (1 — 9) AQ +n (Kil’mV — 1) AQ’m}
A&n = (nﬁl,mAl,mﬁbx - (1 - 9) H1A1¢x)
A4,n = (n¢d,c - 7¢c)
As, = (nk1mAsmds — (1 —0)k1A20,)
Agn = ndg
and
Agr = Kom + (Kl,m - 1) AO,m + pd + Hfl,mAQ,mE2 (1 - V) )
A‘ir = (Kl,mp - 1) Al,m + ¢7
Agr = (:‘ilﬁml/ — ].) Ag’m,
Ay = KiA3 .05,
A = RIAT 0+ 65+ B

We now provide a proof for Result [A.2.
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Proof. Proof of Result TA.2. Observe that
TL2
Ei (R 4iq1] = XD <”]Et log Ras,i—st+1] + ?VARt [log RM,t—>t+1]>
with
E; log Rart 1] = AT + Az, + ASTo? and VAR, [log Rasssii1] = AYT + AT 02 (IA.67)
Now we will provide the formula for

E’t [RnM,tﬁtJrl]I{RM,t_n+1 >a}] = E’t [exp (TL log R]\/[,t*)“rl) ]Ilog R, t—t4+1>log a]
= E;[exp (nlog Rast—t+1) |10g Rast—i+1 > loga) Py [log Ry i1 > logal

We then exploit Lemma [A.1 and show

E; [exp (nlog Rast—e41) [1og Rarp—se41 > loga]l = Eilexp (nlog Ras¢iq1) [nlog Rar i1 > nlogal

exp [nEt [log Rast—st41] + %VARt [log RM,th+1]:| N WI,WJ

N IE27"]
where N [82,71] =P, [nlog Ry t—+1 > nloga) and

4 _ n?VAR, [log Rasi—i+1) + nEq [log Ry i—i+1] — nloga
" n\/VARt [lOg RM,t—)t-l—l]

doy = 1~y VAR, [log Rarosii]

and N represents the CDF function for the standard normal distribution. Thus,

exp [n (AT + ATz, + AF02) + % (AYT + AY'02) | N [dy]
E, [RT]\L/[,t%t+1]I{R1v1,tqt,+1>a}] = |: N [82 ] :| N WQ,n]

where
n? (Ab’r + A‘l’raf) +n (Agr + A"y + Agrof) —nloga
Egm = El,n — N4/ A‘ér + A‘frd?.

dl,n =

We now provide a proof of Result TA.3.
Proof. Proof of Result IA.3. Observe that

Mt t+1
7[R ioig1] = Ee m Mt
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We then show:

M, 0
log (MRnM,tﬁt%»l) = log Rftt41+0logd + {— -(1- 9)} Acipr — (1= 0) ko
Ey [My—i11] P
—(1=0)k1zep1 + (1 = 0) 2t + nkom + K1 mZm 41 — Nmt + NAd 11
and
My _s41 n 9
log | =Ry e01 | = Bon +A1nT + Ao pof + A3 oz i1 + Aunoiesr1 + As nwir1 + Ag noiNae11
E; [MtﬁtJrl] ’
with
A log Ry tst41 + 0logd — ype — (1 — 0) ko + nkom + npta + nk1mAom — ndom
o,n —
— (1 — 9) k1A + (1 - 9) Ay — (1 — 9) /€1A252 (1 - V) + ’I’LI<J17mA27mE2 (1 — l/)
Al,n = { -y + TL¢ — TLALm =+ (]. — 0) Al — (1 — 9) I<61A1p + ’ﬂlil,mAme }
A27n = { — (1 — 9) K}lAQZ/ + (1 — 9) A2 — nAgvm + nI{17mA27mI/ }
AS,n = n"il,mAl,m¢r - (1 - 6) 51A1¢r
A4,n = 7/L(st,c - ’bec
A5,n = - (1 - 9) K/IAQQSU + nlil,mAZ,md)a
Agm = n¢d.
Thus o
logE! [R? =log [ ==L _Rn =157 + A
0og Ity [ M,t—>t+1] og <]Et [Myi1] M, t—t+1 Mg T By yNecw,d
where
Ui:z = AO,n + A1,n$t + AQ,nUtQ
Any = [As3n0t Agnoi, As o, Ag o]
n;,c,w,d = [Mestr1s Meyt15 Dot 1,70d,641] -

Further, from Equation TA.48, we can also infer that

n(n—1)

B VARt [IOgRM,t—>t+1]) .

Ey [ KLt—M-&-l] = €exp (n log Ry —eq1 +

Next, recall that

2
log Rartserr = AG + AT 2 + AS 07 + K1m A1l m @0tz 41 + K1m A2 mPoWir1 + Ga0tNd, 41 + Pd,cOtMe,t11

[A.44



which simplifies to nlog Rass—i41 = pl, + AR s c.0.a With
R _ ACT AST ACT 2
Hpy = NAy +NAT T+ NAy oy
R/
An,t = [n"’il,mAl,md)chtv n¢d,cata nﬂl,mAQ,m(bav n¢d0t]

Then
(n—1)

* n n
[y [ M,t—>t+1] = exp (n log Ryt ytp1 + ———

2 VAR [log Ruresty1 ]) .

Now let us compute

. Mt 41
Et [RR/[,t—)t+1H{RM,t—>t+1>a}} Et l: — i

m M,t~>t+1]I{RM,f,—»f,+1>a}:|
z,0 4
= exp (/-lmt) E; {(GXP (An,tnw,c,w,d)) H{HE',t+AS'jt77w,c,w,d>”105 a}}
= €eXp (/u‘i’,g) Et |:(8Xp (An,tnchﬁ%d)) H{ASjtnz,C,w,d>(nlog a)—us,t}:| :

Now observe that

Warnm cwa>toga-p2,} = H{A;,As(AE/A%)*Afs'm,c,w,d>A' AR (AR AR) ! ((nloga)—plt ) }

n,t

]I{A:q,,tnm,c,w,d>10g (l;} .

’ ’ -1 .
with logas = A/, AR, (Ag,tAf;t) (nloga— ut,). We then exploit Lemma IA.1 to show

E} [Rir it Rarosrsr>ay) = oxp (1177 ) Ee [GXP (Amtnm,c,w,d) H{exp(A;,tnz,c,w,d)m;}} .
Thus

* x,0 % 1.
Et [ %,t%t+1H{RJVI,t—>t+1>G}} = exp (/Ln),t ) N [dl,n} exp (zAn,tAn,t>

’
—x% Am Ap —logay, —% —% B —x
where d; , = 20250 and &y, = d), — /AL Ang a0 B} [Liny, nsa] = N [ds ]
n,tin,t

IA.7.3.2 Bollerslev, Tauchen, and Zhou (2009)

Bollerslev, Tauchen, and Zhou (2009) use the Epstein and Zin (1989) SDF and approximate
R, —1+1 in Equation IA.49 by the market returnRys ;1. They set up an economy governed
by the following time series

Gtr1 = dip1 = pg + 0g2g441,
U§,t+1 = a;+ pUU;t + VW2t 41,
Qt—i-l - CLq + ,Oth + ¢q\/@zq’t+1 (IA68)
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where gy, represents consumption growth. There are two state variables in their framework,
o;, and g.

Bollerslev, Tauchen, and Zhou (2009) build a model that combines stochastic volatility
with Epstein and Zin (1989) preferences to provide a theoretical foundation for the empirical
fact that the variance risk premium can be used to forecast market returns at short horizons.
Their model includes two state variables (o7, and ¢), so we use log (P,/E;) and M:(jzp to
extract implied state variables at each date using Result [A 4.

Summary statistics for the extracted state variables can be found in Table [A.5. Average
state variable values are similar in magnitude to and fall within the confidence intervals
implied by the calibrated model. Data-implied ag,t and ¢; standard deviations are higher
than those implied by the models and fall outside the model-implied confidence intervals.
The data-implied o7, (g;) autocorrelation is lower (higher) than the model-implied value.

Given values for the data-implied state variables, we can compute the physical and risk-
neutral moments necessary for the risk premium decomposition using model-implied mo-
ments from Results [A.5 and [A.6, which can be found below. Table [A.6 provides summary
statistics for the market risk premium decomposition and Table [A.7 provides the average
difference between the data-implied risk premia and those implied by the Bollerslev, Tauchen,
and Zhou (2009) model. The risk premia implied by Bollerslev, Tauchen, and Zhou (2009)
are quite surprising. For instance, the total risk premium is often negative. We confirm that
this also happens in the simulated model in approximately 44% of the simulated values.**
We also find that the data-implied risk premium standard deviation is quite high at about
145% (annualized), which is higher than the model-implied value of 19% and is likely caused
by the relatively high data-implied state variable volatility compared to the model-implied
values. Despite the high fraction of negative values, the unconditional risk premium implied
by the simulated model is more reasonable at 8.67%. This is slightly lower than the average
risk premium implied using extracted state variables (10.71%),* although the discrepancy is
small relative to the risk premium volatility based on our extracted state variables. Uncondi-
tionally, the central risk premium contributes about 80% of the total risk premium, although
the contribution varies significantly over time. For instance, during the 2008 Financial Crisis,
the upside risk premium actually contributed up to almost 90% of the total risk premium.
During the Dot-com bust, the total risk premium implied by the model actually becomes
negative, and the downside risk premium actually comprised approximately 90% of this pre-
mium. That is, the model implies that during this period investors were willing to accept

44This finding is consistent with related issues documented by Bekaert, Engstrom, and Ermolov (2020)
with respect to the Bollerslev, Tauchen, and Zhou (2009) model.

45This discrepancy is primarily caused by the fact that the extracted state variables are more volatile
than the model-implied state variables. Since the risk premium is related to exponentials of functions that
are affine in state variables, Jensen’s inequality effects cause the risk premium based on our extracted state
variables to be higher than that implied by the simulated model using the state variable processes from the
original calibrated model.
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negative expected returns for exposure to downside risk.

Main Results Given this setup, we show the following results.

Result IA.4. Given the state variables aﬁyt and q;, the Bollerslev, Tauchen, and Zhou (2009)
model-implied log price-dividend ratio is given by

P
log 5’1 = Ao+ A,02, + Ay, (IA.69)
and the risk-neutral market return variance is given by
M:(jz 11 [A] = exp (By + B0, + B'q:) — exp (Agf + A;fa;t + A;fqt> . (TA.70)

The coefficients Ag, Ay, Ay, B, B, and B3 are defined below.

Proof. See below. [

Result TA.5. The conditional non-central physical moment of the market return is

’I’L2
Et [ JnW,t—HH-l] = exp (’I’LEt [log RM,t—)t-‘rl] + ?VARt [log RM,t—)t-‘rl]) .

where

E; [log Rari—st41) = ko +K1Aog — Ao + k1Agae + k1 Agaq + jig
+(k1ps — 1) Aoa;,t + (”flpq - 1) Aqqt
and
VAR, [log Rari—i11] = (k146)" a0 + (k1 4409) @t + 02,

Using Lemma [A.1, the conditional non-central truncated physical moment of the market
return s

E, [R?W,t—)t+1H{RNI,t~>t+1>a}} = K [enlogRMvt_’HlH{"IOgRM,th+1>n10ga}]
,n2
= (exp {nEt [log R]V[,t%t#»l] + EVARt [IOg RM,t%H»l] }) N IEI]

where
’I'L]Et [log RM,t—>t+1] + 77,2VAR1; [log RM,t—>t+1] —nNn log a

’I’L\/VARt [log RM,tﬁ)H»l]
with dy = di — n\/VAR, [log Ri11]. All parameters are defined below.

Proof. See below. [ |

.
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Result IA.6. The conditional non-central risk neutral moment of the market return is

n(n—1)

EZ [ K/I,tat+1] = exp {nlog Rf,t*)tdﬂ + VARt [IOg RM7t4)t+1]}

The conditional non-central truncated risk neutral moment of the market return is
% n mr — 1 m/ m
K [RM,t—>t+1H{RM,Ht+1>a}} =N [dl] eXP{Q/\t AY }

where

g AN — X (nloga — Al )
o VAP
and dy = dy — /AP N . All parameters are defined below.

Proof. See below. [ |

Derivations and Proofs
We can use the Campbell and Shiller (1988) approximation to write the log gross return as
log Ry.t—i4+1 = Ko + K12t41 — 2t + Giv1-

In this model, there is no distinction between the aggregate and market returns, so we
denote ryy; =log Ry y—i41 =log Ra 141 The log price-consumption ratio is given by

ze = Ag + Agaj,t + Agqr.
The representative agent’s first-order conditions imply
log (E¢ exp {ms41 +7re41}) = 0.

Under this model, we can write

0
My +141 = Ologd — EgtJrl + 0141
0 0
= 0logd — Eﬂg - iag,tzg,t—i-l +0ko + 0k12041 — 02 + 09141
0 0
= 0Ologd — @Mg - Jag,tzg,t—i-l

+0kg + Ok1Ag + Ok1Agas + HnlAapUJ;t + 0k1 A0 /Gt 20 141
+O0r1Aqaq + 0k1Agpeqe + OKk1 AqPg\/Qt 2,141
—0A — HA[,U;t —0A4q 4 Opg + 004,124,441
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which simplifies to
0
Mgl +Tep1 = flogd — iug + 0ko + k1 Ao + 0r1 Avas 4 Ok1Agaq + Oy — 0 Ay

0
+ {Hag,t — 1/)Ug’t} Zg,t+1 + {9K1Ao—pg — 914.0} U;,t + eﬁlAJmZg,t+1
+{0k1Aqpg — 0Aq} @t + 0Kk1 Agdg/ T Zg 141

Therefore,

{ 010g 6 — G pig + Ok + k1 Ag + k1 Agay + k1 Agag + Opg — 040 }

1 0% ,
+ 9K1A0p0—9A0+§ H—E ot

1 1
+ {2 (9H1Ag)2 + (Hmpq — 9) Aq + 5 (9K1¢q)2 Ag} qt
=0
which implies that

Ologd — %,ug + 0ko + Ok1Ava, + 0k1Agaq + Opg
0o — )

(]. — Iil) 9
2
A 1 -7
2 (1 - Hlpa) 0
and
(kipg —1) A+ 0 (’ilAa)Q +6 (”1¢q)2 A(21 =0.
Consequently,

(1— m1py) /(1 map,)? — 02414202
0 (’il(bq)z .
Now, let us find the risk-free rate. Notice that

A=

6
mip1 = 6Ologd — $9t+1 -1 =0)re41

010g5—%ug—(1—0)&0—(1—9);19—51(1—9)140

—Ask1 (1 —0)as — Agr1 (1 —0)aqg + (1 —0) Ao

—Y0g,tZg,t+1 + {(1 — 9) As — Ask1 (1 — 9) ,00} Ug,t
—Ask1 (1 —0) \/qtzo,t41
+{(1—0)Aqg — Agr1 (1 = 0) pq} ar — Agr1 (1 — 0) ¢q/qtzg,t+1-
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Hence
0logd — Gpug — (1= 0) ko — (1= 0) g
log Rptser1 = =9 +(1—0)A0(1— k1) — Agkr (1 —0) ay

—Agr1 (1 —0)ay

1
{5 =04 0= mpn)} a2,

T(Agk1 (1-0))> +(1—0) Ay (1 — K1py)
+% (Aq'%l (1 - 9) ¢q)2

Hence
log Ry i—sis1 =AY + Alfo? , + Abq (IA.71)

g

with
910g57%,ug*(lfo)’ioi(lie)’ug
AY = =4 (1= 0) A (1 - k)~ Ay (1—0)a, (-

—Aq,‘il (1 — 9) Qg

1
A‘if = — {272 +(1-6)A,(1— mpg)} ,
p LAk (1= 0)) +(1—0) Ay (1 — K1py)
A = —
2
+3 (Agr1 (1= 6) 3,)
Next, note that
log Rarpst41 = Ko+ K1Ze41 — 2t + Gir1
ko + K1Ag — Ao + k1Asae + K1Agaq + g
+ (k1pe — 1) Agop ; + K1 Ag/G1%0,141
+ (F1pg — 1) Aqqt + K14q0q\/Qt2g,t+1
tT0g,t2g,t41-
Hence
E¢ [log Ryt—si41] = ko +k1Ag — Ao + k1doas + k1 Agag + pig

+ (rk1po — 1) Agag , + (k1pg — 1) Agar
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and
VAR, [log Rari—t+1] = (’flAa)z qt + (’ilAq(ZSq)2 q + US,¢~

We now provide a proof of Result [A.4.
Proof. Proof of Result [A.4. From Equation [A .48, it follows that

log (Ef (Riy.—141)) = 2log Ryy—is1 + VARG Rag 141

Thus,
log (Ef (Ririmses1)) = 244 + 2A§fff§,t + 205 g + (k140)° @ + (m1Aq09)" @ + Tote
Hence,
log (EI (RJQ\/I,t—>t+1)) = QABf + (2A§f + (“1Aa)2 + (”1Aq¢q)2) q + (1 + 2A§f) 0§,t

which simplifies to
log (E; [R?\/I,t—nf—&-l]) =By + B0, + B q,

g,t
where
By = 2AY,
B! = 1+2Af,
qu = 2A§f —|— (H1A0>2 + (HlAq(bq)z .

The variance of the market return under the risk neutral measure is
VAR] [Ragt—e41] = exp {By! + B0, + B3 g} — exp {247 + 2A5 02, + 2A%q, } . (IA.72)

Recall that the log price consumption ratio follows

P
1%ﬁ:m+&@ﬁ@% (IA.73)
t

This ends the proof.

We now provide a proof of Result TA.5.
Proof. Proof of Result IA.5. Note that the log return, which is given by expression

log Rprisiv1 = Ko + k1do — Ao + k1At + K1Agaq + g
+ (ﬂlpo - ]-) Aoo—;t + HlAa'\/qT&ZU,t+l
+ (k1pg — 1) Agqr + K1 AqPg\/Gt2g 141

tT0g,t2g,t+1,

is normally distributed. Thus,

TL2
Et [RTJ\Ll,t—M—i-l} = exp <n]Et [log RM,t—>t+1} + ?VARt [log RM,t—>t+1}> (IA74)
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with

E; [log Rart—st41] = ko + K1Ag — Ao + k1Asae + k1 Agaq + jig
+ (Hlpa - 1) Aoasyt + (Klpq - 1) Ath

and
VARt [lOg RM,t—>t+1] = (/QlAg)Q qt + (KlAq¢q)2 qt + O';t.

Using Lemma [A.1, the conditional truncated physical moment of the market return is

n _ nlog Ry t—st41
E, [RM,t%t+1H{RJM,t4>t+1>a}} = E; [e - H{nlogRM,,,H,,Jr1>nloga}]

1
(eXp {Et [10g Ras,te1] + 5 VAR [log Rarist41] }) N [di]

where
= Et [10g RM,t—)t—i—l] + VARt [log RI\/I,t—>t+1} — nlog a

dy =
\/VARt [IOg RM,thJrl]

Wlth 32 = 81 — \/VARt [10g RM,t—>t+1]~

We now provide a proof of Result TA.6.
Proof. Proof of Result IA.6. Recall that

nn-—1
log (]E: [R?Ltﬁwrl}) =nlog Ry 7 + (T)VARt [108; R]M,t%t+1} .
To derive expressions for the truncated physical and risk-neutral moments, observe that

(miy1+nlog R, 1)
e * o ]I{nlogRM,t_,t+1>nloga} .

E: [R}\%,t—)t+1H{RM,t—>t+1>a}} = Et |:
Thus,

myy1 +nlog Ry ser1

0
= 910g5 — @gtﬂ — (1 — 0) Tyl T N1

0
= 910g6—$9t+1+(n+9—1)rt+1
910g5+(n+0—1)14:0+((n+0—1)—%)ug—k(n—&—ﬁ—l)/ﬁAo
—(n+0-1)Ag+(n+60—-1)ri1Aca, + (n+0—1)Kr1Aqaq
+{ (n+0—1)ri1Agps— (n+6—-1)A, }%“‘{ (n+0—1)k1Asps — (n+60—1) Ago7 }Uz,t

0
+(n+0—-1)k1A4:/q20 141 + ((n +6-1)— ¢) Ogt2gt+1+ (n+ 60— 1) k1 Agdg\/qi2q,t+1-
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Hence
!
M1 +nlog Ry i1 = Ay + A zg,

where
_— Ologd + (n+0—1)ky+ ((n+071) - %) pg+(n+0—1)k1Ap
mr=
—(n+0-1)Ao+ (n+0—-1)rk1Asas + (n+6 —1)Kk144aq
2
{ (n+6—1)r1Agpg — (n+6—1)A, }Qt+{ n+6—1)k1Asps — (n+6 — 1)AUO'§¢ }Ug,t
and
(n+0—1)r1As\/q¢ Zo 41
A;n = ((n + 9 — ].) — %) Ug,t and Z;V”“ = Zg,t+1
(n+0—1) k1A /a Zg41
Next,
IOg RIVI,thJrl = Aat + )\: Z?PLT
where
Ab: = Kot r1do — Ao + K1dgas + K1Agag + pg + (k1ps — 1) Aoag)t + (k1pg — 1) Agqe
and
KIAU\/QTE
A: = Og,t
k1440 /qt
Finally
Ef [RX{,th+1H{RM1t_>t+1>a}] Et {eAB"MrAI" zlﬂTﬂ{Agip\;’z;ﬂ’»nloga}}
= eASnTIEt [eAZ"/ Z;nTH{A;"/z?”>A(nlog ang,t)}}
where ) ,
AV = A
Hence,

A= (A;"’A;") ()\f)\{>71 .
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We then exploit Lemma [A.1 to show

m! _mmr 1 ’ —
Atz Sym'ym
E; |ett %t H{)\;”'z;"">>\(n1oga—Ag‘t)}:| = (exp{z)\t A })./\/' [d1]

with /
i ATUAT — X (nloga — Aat)
T e
and

TA.7.3.3 Drechsler and Yaron (2011)

The key variables that drive the economy in Drechsler and Yaron (2011) are summarized by

Yiii = pu+ FYo 4+ Gz + i

4 p— . .
where Y, = (Act, 4,07, 02, Ady), 241 is a vector of standard normal shocks, and J;,; is a
compound Poisson process.

Main Results

Result IA.7. Given the vector Yy, the Drechsler and Yaron (2011) model-implied log price-
dividend ratio 1s

P, ,

t
and the non-central risk-neutral market return moments are

( 3

flogd — (1 —0) (ko + Ag (k1 — 1)) + f (A¥)

Ey [R%,HHJ = Ryt yiq1Xp + (nkom + nk1mAom — nAom)

+(-(0—-1)A—nA, +g(A\")Y;

with

— (Blogd + £ (—A) — (1 —0) (ko + Ag (k1 — 1)))
Rf,t—>t+1 = €Xp

—(1-0)A+g(-A) Y,
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and
A=rve.+ (1 —-0)k1A and A* + A = nky Ay, + neg.

The coefficients, Ay, A, Ao and A, are given below. e. and eq are column vectors that
select log consumption growth and log dividend growth in Yy 1. Ry i1 18 the model-implied

risk-free rate. Given Ef [Rﬁ/[’t_nﬂ}, M:ft)ﬂ can be computed using Equation 17 by setting
T = Rart—i41 and v = Ryy1, then taking expectations under the risk-neutral measure:

*(n - n'(_l)n_k * n— *
M = 3 D B st (B [Rhl). 1470
=0

Proof. See below. [ |
Result TA.8. The non-central physical moment of the market return is

(nkom + nk1mAom — nAom) + £ (nk1mAm + neq)
EtR]T\L/I,tJrl = €Xp

+{g (nk1mAm + neq) — nAm}/ Y,

and the truncated moment is

Et |:R7]:4,t+11RM,t+1>a:| = Et { <6Xp {Ayyt + (A* + A) 3/15-‘!'1}) ]I{Ay,t—&—(A*-i—A),Yt+1>nloga}}
with
Ay e = (nkom + k1 mAom — nAom) —nA,Y:

where
A=rve .+ (1—-0)rkA and A" + A = nky Ay + neg.

All parameters are defined below.

Proof. See below. [ |

Result TA.9. The non-central risk-neutral moment of the market return is

( 3

flogd — (1 —0) [ko + Ao (k1 — 1)]

Ef Ry i1 = Rrirexpq + (nkom + nk1mAom — nAom) + £ (A*) ;

+{—-(0—-1)A—nA, +g(A")}Y,
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and the truncated risk-neutral moment is

!
g TN Yig 1

* n _ * | A
E; [ M,t+1lRM,t+1>a] - RfiHEt € Ay,t+(A*+A),Yt+1>nloga]

with
Ay,t = (nl‘io,m + NHl,mA()’m — nA07m) - nAth
and
( \
flogd — (1 —0) [ko + Ag (k1 — 1)]
A;t - + (nﬁo,m + n’fl,mAO,m - nAO,m)
—(0-1)AY, —nAY,
\ J
where

A=rve.+ (1 —-0)rkA and A" + A = nky Ay + neg.

All parameters are defined below.

Proof. See below.

Derivations and Proofs The Y; process in Drechsler and Yaron (2011) is

Aciiq Ac, Ze,t+1 0
Ti41 Ty Zet+1 J:Jc,t+1
—2 = —2
Tt11 Pl G | G e | 0 '
2 2
0441 o Zot+1 o t41
Adyiq Ad, 2d,t4-1 0
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where the z; ;41 shocks are normally distributed, and

Drechsler and Yaron (2011) define G as

G,G, = h+ H,02,

with
he 0 0 0 @epgv/1—wev/1—willeq
0 he 0 0 0
h = 0 0 hs O 0
0 0 0 hy 0
epav/1 —we/T —wafleg 0 0 0 hy
and
H. 0 0 Pepar/Wer/waled
0 H, 0
Hy = 0 0 Hs
0 0o 0 H
Hg

Pepay/Wer/waldea 0 0
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with o
h; = gp? (1—w)E [aﬂ ,H, = ap?wi,

Jzt and J,, are compound Poisson processes defined as

Ntz-‘—l u
T T : T T T
Jot1 = E §7 1 where N, ~ Poisson (\) and &,y ~ =T <ux, V—) + Uy
j=1 *
and
N "
o o o . o o g
Joi41 = E £7,41 where N7, ~ Poisson (\]) and £7,,, ~ T (VU, y—)
. o
J=1

where T' (z, y) represents a gamma distribution with shape parameter x and scale parameter
y.%® The jump intensities are

Ap =15+ lfaaf and X] = 1§ + 17 07
where [§ = [§ = 0. Note that in this model,

Po = ﬁo - ltlj,mua

and:

Bre = Eggpx

Bt = T

R (e AR (e
with

ﬁw:Oa ﬁ?zl_pﬁa ,HO'ZO
We now provide a proof of Result TA.7.

Proof. Proof of Result [A.7.Consider a jump in the state variable x :

N Ny
— Tk . xT Tk
o1 = E (—fj,tﬂ + i) = NP — E S
Jj=1 Jj=1

46Drechsler and Yaron (2011) also explore using i1~ N (0,02) and &~ N (0,02) as alternatives,
which we omit here.
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where

Thus

where

Note

Hence

with

Thus,

with

Tk /’LI
jarr ~ L (va _> :
V$

E, [exp {wpJeen1}] = Eo{Eq [exp {upoper} NG}
NEo
= E,QE; |exp ukaHux—UkZ i
j=1

— Eo{exp (wVF ) B fexp {—u, X1}

x
N

Tk T x Ha
X = Z GiralNip ~ T (Nt+1’/:w V_) :
7=1

T

Vg

E; [exp {—ux X }] = exp {—Nt"ﬂrlvx In (1 + uk&> } :

= L {exp (Ntw+1Ak)}

Ap = ugpty — Vg In (1 + uk&> .

xT

E; [exp {upJein}] = By {exp (NtﬁlAk)}
= exp (X (eA’“ - 1))
= exp (A (¢ [we] = 1))

(0 [uk] = exp {ukﬂm — vz In (1 + uk&) }

Vg

[A.59
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iz

E; [exp {ugJzs+1}] = Ei {exp <uka+1um — N/ vy In (1 + up—

Vg

)i



Next, consider a jump in o

E; [exp{ugJpii1}] = Ei {Et [exp {urJo i1} |Nta+1} }

N

— g (o2
= E; { E; |exp q u E fj,t+1 |N t+1
j=1

= E;{E; [exp {usX}]}

where
N{
ag (o o l’[’o'
X = Z &N ~ T (Ntﬂ’/m V_>
j=1 o
Note
E; [exp {uxX}] = exp {—NfHVo In (1 — uk&> } :
Vo
Hence
E; [exp {urJyii1}] = Eq {exp (NfHAk)}
with
A, =—1v,1n (1 — uk&) .
VO'
Thus,
E; [exp {uJ5t11}] = exp (A] (¥ [ug] — 1))
with

W [u] = exp {—VU In (1 — uk‘y‘—;‘> } .

In this model, the log-SDF is
0
myy1 = 0logd — EACtH + (0 = 1) regra,

where
Tett1 = Ko + KU1 — U + A

with
Uy = AO + A/}/;fa

where A" = (Ae, Az, Az, Ay, Ag) and the market return is

Tmt+1 = Kom + B1mUm.t41 — Umt + Adisq
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with
Umt = AO,m + AmY;f

where Am - (Ac,ma Ax,ma Aﬁ,ma Aa,ma Ad,m)-
Finding Ao, A, ko, and x;: In this model, we have
0
me+1 + Tet+1 = 0 log 0 — EACt_A'_l + 07‘07754'_1

0
= flogo — EActH + 0 (ko + K1V — vg + Aciaq) -

Denote e, the vector that selects consumption in Y;,;, we have Ac; = e;Y}H. Thus,

mi41 + Tet+1 = 910g5 + 9/4)0 + (/ﬁll — 1) QAQ — QA/Y;
(2

’ 0 / /
u = (9—a> e.+ 0k A.

Denote

Then
E,e(me+1tre 1) — {exp <9 logd + Oko + (k1 — 1) 0 Ay — HA/Yt>} X {Et exp (u/YtH)}
From Equation A.1.2 in Drechsler and Yaron (2011), we have
B {exp (u'Yinr ) Vi | = exp (£ (u) + 8 (u) )
with
/ 1 / /
f(u) = pu+-uhu+1y, (Y (u)—1),

2

g(u) = F/u—i-%[u/Hiu]
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where [u/Hiu] is the n x 1 vector with i component equal to u' H;u. Thus,

i€{1,...,n}

Ologd + Ok + (k1 — 1) 0Ay + £ (u)
Ete(mt+1+%,t+1) = exp

+ <g (u) — 9A’> Y,
The representative agent’s first-order conditions imply
10g Ete(mt+1+7’c,t+1) =0
which implies

/

Olog d + o + (k1 — 1) 04+ (u) + (g (u) = 04") ¥, =0

This implies that
g (u)/ —0A =0
Ologd + Oko + (k1 — 1) 0Ag+ £ (u) =0
This system of equations is a function of kg and k1. These two coefficients are solved using

ko = —kylogky — (1 —ky)log (1 — k)
Ko + (Iil — 1) AO = —IOglil + (1 - Iil)A,E [Yt]

Together Ay, A, ko, k1 can be solved by using the system of equations

(

g(u) —0A =0,
Ologd + Org + (k1 — 1) 0Ag + £ (u) =0,

—#o — K1log ky — (1 — k1) log (1 — K1) =0,

ko + (k1 — 1) Ag +log k1 — (1 — k1) AR [Y}] = 0.

\
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Finding Ay ,,, A, Kom, and K1,,:  Recall that

0
M1 + T"mi+1 = elOg(S — EACH_l + (9 — ].) Tc,t—i-l

+/€O,m + R1mUmt+1 — Umt + Adt—|—1~

Note that

0
Mip1 + Tmap1 = 0Ologd — EACz%l + (0 — 1) reip1 + T
= Bo+ByYi11 +BY,
where

BQ = 010g5 + (Kq — 1) (0 — 1) AO + (0 — 1) Ko + /{O,m —+ (Hl,m — 1) AO,m;
B, = (1—0)A— A,
By = —A+eqtrrmAn,

and
A =re.+ (1 —-0)k A

Thus, log E,e(™t+1+7mt+1) = () implies
By + B,Y; + £ (By) + g (Bo) Y; = 0,
which implies that
By + f (B2) = 0,
B, +g(By) =0.

These two equations depend on kg, and K1 ,,, which can be obtained from the two equations
below

—Kom — K1m 108 K1 m — (1 — K1m) log (1 — K1 m) =0,

Ro,m + (’fl,m — 1) AO,m + lOg Rim — (1 — ’fl,m) AlmE [Yt] = 0.
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Finally Ay, Am, Kom, K1,m can be obtained by simultaneously solving the four equations

below:
)

Ologd + (k1 —1) (0 —1) Ao+ (6 — 1) ko + Kom
+ (’il,m - ]-) A07m + f (_A + €d + ’il,mAm)
(1_H)A_Am—i_g(_A—i_ed—*—Hl,mAm) :07

—Rom — Rim IOg Rim — (1 - K;l,m) log (]. - Kll’m) = 07

Koam + (Fim — 1) Ao +10g K1 — (1 — K1) AL E[Y] = 0.
\
Now let us find the risk-free rate
log Ry 41 = — log (Ee™*1).

Note that

!

mip1 = BOlogd — %eCYtH +(0—1) <I€0 + KUy — U + e/CY;H)
= flogd — %eéift—&-l + O —1) Ko+ (0 —1)r (Ao + A/Y;H)
—(0=1) (A + AV) + (0~ 1) Y
which simplifies to
mir1 = {0logd+ (0 — 1)Ko+ (0 —1)r1Ag— (0 —1)Ap}
+ { (_% 40— 1)) ¢t (0 1)mA’} Yo
—(0-1) A",

and
Myy1 = {elog5 —(1—0)[ko+ Ag (k1 —1)] — (A —1) A'Y;} — A,

Thus,

—log Rype1r = 0logs — (1—0)[ko+ Ao (k1 — 1)] — (0 — 1) AY,
+f (—A) +g(-N)Y,
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which simplifies to:

flogo +f(—A)
log Rftst41 = — —((1-0)A+g(—N)) Y.

—(1=0)[ro+ Ao (k1 — 1)]

We now provide a proof of Result TA.8.

Proof. Proof of Result TA 8.

Expression for E; [R’]"\”/Lt ot +1}:

EtR?J,t%t«i»l —_ Etenrm,t-H

Observe that

!
Nlpit1 = NEOm + NELmUmi+1 — MUt + NegYip

!
= (nKom + nk1mAom — nAom) — nA,Y;:

+ (nE1mAm + ned)/ Y.
Thus
ERy i1 = exp {(n/ﬁ),m + nkymAom — NAom) — nA;nY;}

xE; exp {(nm’mAm + ned), Yt+1}

and

(n’{(),m + nﬂl,mAO,m - nAO,m) +f (nKl,mAm + n€d>
EtRTJ\L/I,t—n—i-l = exp
+{g (nk1mAn +neq) —nA,} Y,

The truncated physical moment is

E; [R%,t+11RM,t+1>a} =E, { <exp {Ayﬂf + (A" +A) YHl}) H{Ay7t+(A*+A)/n+1>n10ga}}

where
!
Ayt = (nkom + nk1mAom — nAom) — nA,,Y:
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We now provide a proof of Result TA.9.
Proof. Proof of Result TA.9.

Expression for Ef [R’I”\‘Lt ot +1]:

* DN _ M1 +NTm t4+1
Ky Ryt i1 = Rpir1Eee o

Observe that
Mip1 + Npp1 = {9108;5 — (1 —=0)[ko+Ag (k1 —1)] = (0 —1) AlY}} — AV
+ (nﬁo,m + nlil,mAO,m - nAO,m) - nA/m}/t + (nﬁl,mAm + ned)l Y;—i-l

which simplifies to

)

6’10g5— (]_ —Q> [:‘io—f—Ag <I€1 — 1)]

Mgy + g1 = + (nKom + k1 mAom — nAom)

—(0—-1)AY, —nAY,

+ {nK1 mAm + neq — A}/ Yii1

Denote
A" =nky A + neq — A
Thus . \
Glogd — (1 —0) [ko + Ao (k1 — 1)]
Mp1 + Nmgp1 = + (nkom + nk1mAom — nAom) + A*IYQH-
—(0—1)AY, —nA.Y,
\ J
Therefore,

Ologd — (1 —0) [ko + Ao (k1 — 1)]
B Ry = Brav1exp q 4 (nKom + nk1mAogm — nAgm) + 1 (A*)

{-(0-1)A-nd,+g(A)}Y;
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The truncated risk neutral moment is

* m _ * [ M4 1+Nnrm t4+1
Et [ M,t+llRM,t+1>a} - Rf,t-i-lEt [6 " 1R1V1,t+1>aj|

Note that

M1+ Nrmpyr = A + A Y
where ) .

Ologd — (1 —0) [ko + Ao (k1 — 1)]
A;t - + (nKOJn + n/il,mAO,m - nAO,m)
—0-1)AY,—nAY,

\ J

Therefore,

/
* n o w | JAY AT Y
Et [ M,t+11RM,t+1>a] - Rf7t+1Et e 1Ay,t+(A*+A),Yt+1>n logal

IA.7.4 Habit Formation Models: Bekaert, Engstrom, and Ermolov (2020)

Bekaert, Engstrom, and Ermolov (2020) consider an expected utility function of the form

iﬁjt(cj _ Hj>1_7 - 1] :

E
t 1—~

J=t

where (3 is the time discount rate, C; is consumption and H; is the habit stock with the
restriction C; > Hj. In this framework, the log-SDF is given by

Mier1 = 10g B — g1 + VA1,

where ¢g;11 = log(Ciy1/Cy) is the log of consumption growth, and ¢ = log@; with
Q: = C;/(Cy — H;). We consider the two models studied in Bekaert, Engstrom, and Er-
molov (2020): (i) their model without preference shocks,"” and (ii) their model with prefer-
ence shocks. While the model without preference shocks is able to explain many standard
stylized facts in the data, it falls short of explaining the low variance risk premium per-
sistence. The model with preference shocks is designed to simultaneously explain the low
variance risk premium persistence and the average variance risk premium itself. We present

4TWe use their “Full” model specification in this case, as opposed to their “Baseline” specification.
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here a general specification that allows for preference shocks then later specialize it by setting
some coefficients to zero to obtain the model without preference shocks.

Bekaert, Engstrom, and Ermolov (2020) consider an economy having the following
time-series dynamics:

gi+1 = ? + gbg (nt - ﬁ) + OcpWp t+1 — OcnWn t+1,
dt+1 - § + ¢d (nt - ﬁ) + Vg (Ucpwp,t—i-l - Ucnwn,t+1> + Tn <_Jcnwn,t+1> 9
Q1 = q+Pg (@ — Q) + Ogpwp i1 + Tgnnis1 + TgqWy it1-

where

Piy1 = D+ pp(De — D) + Oppwpitt,
N1 = T+ pp (e —N) + TpnWn 1,

Str1 = S+ ps (8t —35) + OsqWyrit,
and where wy 111, W 11, W11 follow demeaned gamma distributions defined by

Wptrl ™~ r (pt, 1) — Pt
Wnt+1 r (nt, 1) — Ty,

Wyt+1 r (St, 1) — St.

Here, I' (x,y) is a gamma distribution with shape parameter x and scale parameter y.
Wpt41, Wnt+1, and wg 41 are independent and have zero mean. The log-SDF has the form

My_pp1 = Mo + mqqy + myng + My pWp,t+1 + My nWn 41 + My qWq,t+1,

See below for more details on parameters in the log-SDF. There are, in general, three state
variables in this framework: ¢;, n;, and s;. The model without preference shocks obtains
when the state variable s; is set to zero and certain parameter restrictions are imposed (see
below for more details). Given this setup, we show the following results.

Main Results

Result IA.10. Given p; = p and the state variables q;, ng, and s;, the Bekaert, Engstrom,
and Ermolov (2020) model-implied log price-dividend ratio is given by

P,
log Ht = Ky + K)py + Kpng + Klg + Kls, (IA.77)
t
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and the non-central risk-neutral market return moments are given by

nro + mo + {”m“p —g (m"wp + mw,p>}pt
Ey [ 7154,Ht+1} = Rysi41€xp +{nr, + m, — g (myn + nren) } (TA.78)
+ (nry+my) ¢ + (nrs — g (nrwg + my,4)) St

with
Rf,t—>t+1 = exp (fO + qut + fany + fppt + fsst) .

All parameters are described in more detail below. The function g (-) is defined as g (z) =

x+log (1 — x). Rpysit1 is the model-implied risk-free rate. Given Ef [R&Htﬂ], M;‘@H can

be computed using Equation 17 by setting x = Ryry—i41 and v = Ryy 41, then taking ex-
pectations under the risk-neutral measure. The resulting expression can be found in Equation

IA.76.
Proof. See below. |

Result TA.11. The conditional non-central physical moment of the market return is

e [Rk ] kro + krppe + krpng + kreqe + krgsq
t [, t—t41] = €XP

—ptg (krwp) — g (kron) — 519 (krug)
The truncated non-central physical moment is
Ei (R isii 1l Rasisiinsay) = € Be [e757 iz, Skina—e, )
with

gr,t = kro+ (krp - krwp)pt + (krn - krwn) ne + qu‘]t + (k'f's - krwq) St
Ziv1r = krop(Wpis1 + i) + Eron (Wnee1 + 1) + krug (Wge41 + S¢) -

with p, =p and

wpitr1 +p¢ ~ T'(py, 1),
Wnit1 +ne ~ T(ng, 1),
Wq,t+1 + s~ r (Sta 1) 5

Given the state variables, the truncated moment B, [R5, ., 1 I{ry.,0ir>ay] Can be computed by
simulation at each time t. All parameters are defined below.

Proof. See below. [ |
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Result IA.12. The conditional non-central risk neutral moment of the market return is

kro +mo + {krp — g (kTwp + Mew,p) } pe
Ef [Rﬁ/l,t—)t+1} = Ryt—tq10xXp +{krn +mpy — g (Mepn + krwn)} e
+ (krg +mg) g + (krs — g (krwg + My q)) St
The truncated non-central risk neutral moment is

* k _ Cr+Zit1,m
Et I:RM,tﬁt+1]I{RI\/I,t~>t+l>a}j| - Rf7t+1Et [e o 1Zt+1,r>kloga—£r,t] :

where
G = mo+kro+ (krp —krup —mep) D + (kT — krwn + My — My n) 1t
+ (krs — kryg — mey q) s¢ + (krg + mg) qu,
Zigim = (Mup 4 Ekrep) (Wpig1 + D) + (M + Eron) (Wnyegr + 1)
+ (krwq + mmq) (Wq,t-i-l + 5¢),
&t = kro+ (krp — kryp) e + (kry, — krgn) ne + krgar + (krs — krwg) st
Ziv1r = krup (Wpit1 + D) + Ekrwon (Wntr1 +ne) + krwg (Weee1 + 5¢)

Wpt+1 + 0t ~ T (e, 1), wppgr +ne ~ T (ng, 1), and w1 +5¢ ~ T (5¢,1).

Given the state variables, By [t 2t+1m1y S pioga—e,.] can be computed by simulation at each
time t. All parameters are defined below.

Proof. See below. [

Derivations and Proofs We provide proofs of Results [A.10, TA.11, and [A.12 below.

Proof. Proofs of Results [A.10, TA.11, and [A.12.
Let us denote 7y4; =1og Ry 4—+1. The log-SDF with preference shocks

myp1 = log B — g1 + YAG+1
can be written as

M1 = log B —vq — Ygi+1 + Vi1
= {log B =G +7dg7 +7G (1 = pg)} + (pg — 1) va@r — vy
+ (PYqu - ’YUCp) Wp,t4+1 + (YO en + ’Yaqn) W, t+1 + VOqqWq, t+1

This log-SDF simplifies to

mirr = 1088 — G — Yge41 + Ve
= mo+ mqqe + mpne + My, pWp,t4+1 + My nWn,t+1 + My, qWq,t+1
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with

mo = logfB+~ (ngﬁ - g) — qMmyg, My = —W)g»
mg = —(1=pg)7, My,q = Y0qq;
Mup = V(0gp —0cp)s Mu,n Y (Oen + gn) -

The log risk-free rate is

log Ry t—t4+1 = fo + fqqt + fune + fppr + fost (IA.79)
with
fO = —Mo, fq = —Myg, fn == (mn _g(mw,n))a fp = g(mw,p)a fs = g(mw,q) .
Now the price-dividend ratio is

2 3
El(mtﬂ' +detj) > (meqjtdes;)

P,
i = Et [em’f“erf“] +]Et el= +]Et ei=t

Dy

3
22 (Mg jtdiy;)
= [E, [emt+l+dt+l] +E, |:6mt+1+dt+le(mt+2+dt+2):| +E; |e=t I /

Observe that

Mip1 + deg1
= {mo+7g— dan} + meq + {my + da}t n
F{Muwp + V90ept Wptr1 + {Mwn — (Y +7g) Oen} Wn i1 + M qWq,t41-

Thus

E, [emt+1 +dig1 ]
—  Umotg—gamt+meq+{mn+datni}

xE, [e(mm,ervgacp)wp,Hl} E, |:6(mw,n7(’Yn+79)0cn)wn7t+l By [ avat+1]

Notice that

E, |:e(mw,p+ﬂ/chP)UJp‘t+1:| = exp{—-pg (m%p + 'ychp)} ,
By [elmen o tmnonisn] = exp{=mg (mu — (3 +70) 7o)}
Et [eﬂ’Lw,qwq,tﬁ—l} = exp{—stg (mw,q)} .
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Finally,

{mO +9g— d)dﬁ} +mqq + {mn + ¢d} Ny — prg (mw,p + ’Ygacp)
E, [em‘+1+d‘+1] = exp

—neg (mw,n - (’yg + 'Vn) Ucn) — 5t9 (mw,q)
= exp{A; + Bip: + Cing + D1gs + G15¢}

where

A = g+mg— ¢an,
By =g (Muwp +790cp)

Cl = myp+ ¢d —4g (mw,n - (’Yq + ’Yn) Ucn) 3
D1 = Mg,
Gl = -9 (mw,q)'

Now, observe that
Epy1 [e™+2T942] = exp {41 + Bipigr + Cingg1 + Digrr1 + Gisiga ),

and
E, [em‘+2+d‘+2] =E,; [exp{A1 + Bipi+1 + Cinuy1 + Di1ges1 + Giseri}]

Recall that

Gr1 = G+ g (@ — ) + OgpWpi41 + TgnWn,t+1 + TgqWq,t+1,
perr = P+ pp(Pr — D)+ Oppp i,
nep1 = A4 pn (e — M) + OpnWwnt41-

Thus:

E, [emt“ert“] Eiq [emt+2+dt+2] =E; [emt“ert“] exp {A1 + Bipi+1 + Cingy1 + Digevr + G1Se41 )
However, observe that
emi+itdirr — o{motg—danttmeqet{mntoatne} o o(Mwptr99ep)wp,tt1p(Muwn=1m+7g)Tcn)wn t+1 oMw,qwq,t+1
Thus:
(Mo +7 — ¢an) +mqeqs + (My + Ga) Ny
Eq [emHﬁdHl] Bt [emwﬁd“z} =E; |exp Ay + Bipiy1 + Cing1 + Digeyr + Giseya
+ (Mwp +V90ep) Wp,t41 + (Mwn — (Yo + Vg) Ten) Wn 1 + M gWg,t41

which simplifies to
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Ay

By
Co
Dy
Gs

More generally,

An

ap

3

OIS
3

By [emrttdemt] By [emer2tdee]
_ N ;

+ (D1pg + mq) gt + (my + da + Crpn) ne

E; [expq + { Biopy + Diogp + (M p + Yg0cp) }wp,t+1 + B1pppt

+ { C10nn + D10gn + (M — (Y0 + Yg) Ocn) }wn,t+1

+ {Dlgqq + Glasq + mw,q} Wq,t4+1 + Glpsst

= mo+g—¢an+ A1+ Bip(1 —pp) + Cii (1 — py)
+D1q (1 = pg) + G135 (1 = ps)
= Bipp — g(B10pp + D10gp + (Map + Y90cp)) »
My, + ¢q + Crpn — 9[Cr0nn + Diogn + (Mewn — (70 +7g) Ten)]
D1pg +myg,
= Gips — 9 (D10gq + G105+ My, q) .

An—1+mo+g— ¢ait + Bn1P (1 — pp) + Cpai (1 = py)

+Dn-1q (1 = pg) + Gn15 (1 — ps)

Bp—1pp = 9 (Dn-10gp + Bu10pp + (Mup + Y90cp)) ,

Cr—1pn +Mn + ¢a — g (Crne10nn + Dn—10gn + (Muwn — (Vg +70) 0en)) ,
Dy—1pg + my,

Gn-1ps — 9 (Dn-10gq + Gn_105q + My q) -

The price-dividend ratio can be expressed as

P oo
-t _ § eAitBipi+Cini+Diqi+Gisq
Dy

i=1

The first-order approximation of the log price-dividend ratio is

pdy = K§ + Kjpy+ Khng + K gr + KJs
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where

> Biexp (4; + B;p + Cinn + D;g + G;3)
Kl — =1
P o0 )
Z exp (Az + Biﬁ + Czﬁ + qu + ng)
=1
> Ciexp(A; + Bip+ C;n+ D;g+ G;3)
Kl _ =1
n o0 bl
> exp(A; + Bip+ Cin + D;g + G;3)
=1
> Djexp (Ai + Bip + Cin + D;g + G;3)
Kl _ =1
q ] 9
exp (A; + B;p+ C;n + D;g + G;5)
=1
> Giexp(A; + Bip+ Cin+ D;g+ G;3)
Kl _ =1
> exp (A; + Bip+ Cin + D;g + G;5)

=1

<
Il

and
K} =In <Z exp (A; + B;p + C;n + D;g + Gis)> - K,p— K\n—K)g— K5
=1

The first-order approximation of In (1 + gtt—fl) is

P,
In (1 + = ) = K§ + K)piy1 + King + Ko g + K2 seqa,

t+1
where
o0
K2 _ =1
p ] )
1+ Z exp (Az + Bip+ Cin+ D;q+ GLE)
i=1
> Ciexp (A; + Bip + Cin + Diq + G3)
K2 — =1
14 > exp(A; + Bip+ Cin + D;g + G;3)
i=1
> Djexp(Ai + Bip + Cin + D;g + G;3)
K2 _ =1
q (o) )
1+ > exp(4; + Bip+ Cin+ Diqg + G;53)
=1
Giexp(A; + Bip+ Cim+ D;g+ G;3)
K2 _ =1
1+ > exp (A; + Bip + Cin + D;g + G5)
=1
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and
KZ=1In (1 +) exp(Ai +Bp+Cim+ Dig+ Gis)> - K)p— K)n— KJq— KZ5.
i=1

The expression for the log market return is therefore

P,
rey1 = dip1+1n <1 + 2t ) — pdy

= g+ ¢d (nt - ﬁ) + Vg (Ucpwp,t—l-l - Ucnwn,t+1) + Yn (*O—cnwn,t+1)
+K¢ + K5Pt+1 + K2nip1 + K§Qt+1 + K2s111
—Ky — Kppy — Khny — Kjgr — K s

which simplifies to
Tt+1
g—¢an+ Ki — Kj + K2p— K2p,p+ K2n
—K2pan+ K2q— K2pgq + K5 — K2p,s
+ {900 + KEJUPP + Kioqp} Wp,t+1
+ {quaqn — (Vg + ) Ocn + Kzgnn} W t41

+{Kppp — K} oo+ {Kppn — Ky + da} ni + {KZps — K1} st
+ {Kgpq - K;} q + {Kgaqq + K205} wg it

This can be further simplified as

Tt41 = T0 + TpPt + TN + ¢t + TsSt + TwpWp t+1 + TwnWn,t+1 + TwqWq, t+1,

where

ro = g K — o+ K§+ K}p (1~ p) + K20 (1= pu)
+KZG(1— pg) + K25 (1 - py),

Tp = szP_K;’

rn = K2p,— K.+ g,

Tq = Kquq_K;’

rs = K?Ps—K§7

Twp = ’Vgﬂcp‘f'KzUpp"‘KquP’

Ton = K204 — (Vg + ) Oen + K200,

Twg = Klogq+ Ko,
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Our goal now is to derive

j k
j 31 ( k
E, [(RM,HtH - Rf,tﬁtﬂ)]} = Z I e R B[R]
j | 3t j b k
E, [(RM,t—>t+1 = Rptste1) LR oin>a)| = Z B Ry B[Rl Rar e a)] s
- ] - j k
. j JH(=1) k .
Ef [(RM,t—>t+1 —Rpier1)| = Z mRif 1 By (B i)
] k:O !
. ; - LT e
E} [(RM,t—>t+1 —Rpsoei) [nysisay| = D me ot B (R st 1 L Ra ey ega>a} ] -
] i !

We need to find

E, [RM tﬁtJrl} E, [R?W,t%t+1H{RM‘t—>t+1>a}:| , B [Réc\/l,t%t+1] , and Ef [R%,tﬁt+1H{Rl\l,t—>t+1>a}] .

Note that
_ kr
[RM tﬁtJrl] = E [e Hl]
_ Et [€k7'o+krppt+k7'nnt+k7'qqt+kr53t+krwpwp,f,+1+k7'wnwn,,t+1+k7'wqwq,t+1}
— ek'r()“l’krppt+k5Tnnt+quqt+krsStEt [ekmpwp,t+1+kmnwn,t+1+kmqwq,t+1]
kro + krppy + krpng + krqqe + krgsy
= exp
—pPtg (krwp) — g (krwn) — Stg (krwq)
Next,

E; [Ririi1] = ReasrBe My RY 1] = Rpgaa By [ tmen]
Observe that

kripq + mep

kro + krppe + krpng + krqqe + krgs;

= +Erpwp 41 + kTwnWn 141 + krwqwe,t+1

+mo + Mgqt + MpNt + My pWp t+1 + M nWn t+1 + My, qWq, t+1
kro +mo + krpp + (krp, + my,) ny

- + (krg +my) g + krsse + (krwp +my p) Wp 1

+ (mw,n + krwn) Wn,t+1 + (krwq + mw,q) Waq,t+1
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Thus
Ry i1 By [eFrmmtmen]
kro +mo + krpp + (kry, + my,) ny
= BRrioeaBe fexp [ 4 (kry +myqr) gr + krsse + (krup + M p) Wp i1

+ (mw,n + krwn) Wn,t+1 + (krwq + mUJ,q) Wy, t+1

Hence

kro + mo + {krp — g (krwp + muwp)} pr
By [R?\/[,tatﬂ} = Ry it410xp + {kry, + my — g (M + kron) e : (IA.80)
+ (krq + mq) gt + (krs — g (Frwg + muwg)) st

Now, let us find the truncated moments. Observe that

/{17’15-1—1 = kro+ k‘rppt + krpng + quqt + krgse
+Ekrpwp 41 + kTonWn t41 + Erogwg i+t
= kro+ (krp — krop) pe + (krn — krwn) n
+krqq + (krs — kryq) se
+krwp (Wpt41 + Dt) + krwn (Wnt+1 + 1)
+hrwg (Wt+1 + St)

= &+ Ziyir
where
&t = kro+ (krp — kryp) e+ (kry, — krgn) ny + krgqr + (krs — krwg) st
Zivir = krop (Wpit1 +D0t) + kron (Wnpr1 + 1) + krog (We,e+1 + St) -
Hence

k Zysr s
E, [RM,t%t+1H{RA4,th+1>a}] = 65 By [6 o ]I{Zt+1ﬁr>k1na_§ht}]

Next, let us find E; [R,, ;1 I{ry . er>a}]- Observe that

* k _ Mit1+Ert+Zey1,r
]Et [RM,t—>t+1]I{RM,Ht+1>a}] —Rf,t—>t+1]Et [e pRETS T H{Zt+1,r>/€10ga7£,m}}~
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Now, observe that

M1+ &t + Ziy1r

= Mo+ MGt + MpNt + My pWp t4+1 + M nWn t+1 + Muw qWq, t+1
+kro + (krp — krwp) pe + (krn — krwn) ne + krqqe + (krs — kryq) s
+Erop (Wp i1 +Pe) + kron (Wn 41 + 1) + krog (Wg 41 + St)

which simplifies to

Myy1 + &t + Zig1r
= mg+ kro
+ (krp — krop — My p) pr + (kry, — krgn +my — My n) 1y
+ (krs — krog — muw.q) se + (krg + mg) @
+ (Mep + Erwp) (Wptr1 +pe) + (M + krwn) (Wntr1 + 1¢)
+ (krwg + Mu,g) (Wa,t4+1 + 5¢)

= G+ Ziim
with
G = mo+kro+ (krp — krwp — muwp) pr + (krn — krwn + my — me,n) e
+ (krs — krwg — mu.q) se + (krg +mq) @
and

Zt+1,m - (mw,p + k‘rwp) (wp,tJrl +pt) + (mw,n + krwn) (wn,tJrl + nt)
+ (krwg + Mug) (We,t41 + 5t)

The model without preference shocks obtains when the state variable s; is set to zero and
the following parameter restrictions are imposed:*®

S=ps=0gg = Qd= Pg = Vo ="My, = My, = 0. (IA.81)

48Note that p, = o, = 0 in both the model with and that without preference shocks.
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IA.7.5 Disaster Risk Models
IA.7.5.1 Gabaix (2012)

We follow the Dew-Becker et al. (2017) implementation of Gabaix (2012) (including their
parameter choices). The key processes that drive the economy are

ACtJrl = fhe+ OcEet+1 + Jc,tJrl;
Livv = (1—pp) L+ prLly +0ren s,
Adiyr = nocecer — Lelly,,, 20,

where L, represents the recovery rate of stocks in a disaster. J.;1; is a disaster shock that
affects the consumption and dividend processes, and follows a compound Poisson process
given by

Nt
et = th where N; ~ Poisson (A) and & ¢ ~ N (pa, 04) -
i=1
The number of disasters, Ny, that occur each period follow a Poisson process with intensity
A. I'is an indicator function. J.;11, €14+1 and .44 are independent. In Gabaix (2012), the

representative agent has a power utility utility preferences with risk aversion parameter .
In this setting the SDF takes the form:

Cir\
My i1 =
t—t+1 5( C, )

where ¢ is the time discount rate. The log-SDF is
My = logd — yAcy.
Thus, the log of the return on the risk-free asset is

log Rpi1 = —log (Ee™*)

o — log (Ete(IOg(s_W/ACtﬁ»l))
—log (E; exp {log 6 — ypte — v0ccir1 — Veps1})
= —logd + ype — log Eyexp {—vocecit1 — VJept1} -

Note that

E; exp {—’YUcEc,tH - ’YJc,t+1} = (Et exp {—’)’Ucfc,tﬂ}) (Et €xXp {_’YJc,t+1}) .
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Since
E;exp{—vJeit1} = exp (A (e¥¢ — 1))

with
_ 1 2 2
Ye = —YHd + 2’7 0q-
Hence .
E; exp {—v0ceci41 — VJepr1} = exp {57203 + A (¥ — 1)} .
Thus

1
log Ryy1 = —logd +pe — 57°0; = A(e”9 = 1),

Now, let us compute the physical and risk neutral moments. We use the Campbell and Shiller
(1988) to approximate multiples of the log market return as

N1 = MKy + Nk1pdi — npdy + nAdyiy

Next, we project the log price-dividend ratio (pd;) on the stock recovery rate, L;, at each
date. In this model, the log price-dividend ratio is not linear in the state variable, L;. To
approximate pd; as a function of L;, we project it onto basis functions and impose that
the Euler equation holds (approximately) at each point in L;. Denote the projected price-
dividend ratio using

pdy = f [Lt] :

The physical non-central moment of the market return is

Et [ %,t—)t—i—l} — Et [en’l‘m,tJrl

Similarly, the non-central truncated moment

n _ Nrm,t+1
]Et [ M,t—>t+1]IR]vI,t~>t+l>aj| - Et [6 " ]IR]LI,tAt+1>aj|

Expressions for the non-central risk neutral and truncated non-central risk neutral moments
are

E; [ K/f,t—>t+1} = Ry 1By [enrm,t+1+mt+1:| :

and
* n _ Nrm,t4+1+Mt4+1
IEt [ M,tﬁt+1]IRM,t4>t+l>ai| - Rf,t—>t+1Et [6 m I[RM,tat+1>a:| :

Multiples of the log market return are given by

nrm,t—i—l ~ NKo =+ n/ﬁf [Lt+1] — nf [Lt] + TLAdH_l.
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Given the state variable, L;, we can use this expression to compute the physical and risk-
neutral moments above.

IA.7.5.2 Wachter (2013)

We follow the Dew-Becker et al. (2017) discretization of Wachter (2013) (including their
parameter choices) so that we can evaluate a monthly-frequency version of this model. The
key processes that drive the economy are given by

Act—H = e+ OcZet+1 + Jt—i—la

Aiv1 = (L= pa) ir + pade + oV Mz i1,
Adpyy = Qpie + ¢oczeppr + GJiia,

where the shocks z. ;11 and z) ;41 are uncorrelated and follow standard normal distributions.
Ji11 follows a compound Poisson process given by

Nty

Jii1 = Z &i1+1 where Ny ~ Poisson () and & 41 ~ N (fa, 04) -

=1

The number of disasters, IV;, that occur each period follow a Poisson process with intensity A;.
The variables z.¢41, 2)4+1, and Ji41 are assumed to be independent. Following Dew-Becker
et al. (2017), the household utility is

vy = (1 —B)log Cy +

log B, (e(1—)vtt1) IA.82
1—a 08 It (e ) ) ( )

and the log-SDF takes the form
My =1og B — Acppr + (1 — @) v — log (Erexp {(1 — @) vita}) -

Main Results

Result IA.13. Given the state variable, A, the model-implied log price-dividend ratio is given
by

P,
log — = Ag.m + A1,
0g D, 0m T A1 mAt
where Ay, and A, are given below.

Proof. See below. [ |

[A.81



Result TA.14. For any n > 0, the non-central physical moment of the market return is

( 3

nKkg +n (Ifl - 1) AO,m + n/ﬁALm (1 — p>\) J25%

K, ( TZA\L/I,tJrl) = exp +ndp. + 5 (nqboc)Q

\ + {n (Kipr — 1) Apm + % (nmALmaA)Q + (e¥s — 1)} At

Vs
with
1 2 9
po = (n0) pta+ 5 (n6)? .
The truncated non-central physical moment is
E; (RnM7t%t+11RM,tﬁ\t+1>“) = E, (6At+Zt+11At+Zt+1>nloga) )

where

Ay = nkg+n (ke —1) Aom + nk1Arm (1 — pa) pia
+n (k1px — 1) A1 mAs + nope
Ziv1 = NEIALmOAN M2rgt1 + NP0 21 + NPTy

All parameters are defined below.
Proof. See below.

Result TA.15. The non-central risk neutral-moments of the market return are

Ey [RnM,t—nH-l] = Ryisprexp (Ag + ATN)

where ) \
nko +n (k1 — 1) Agm + nr1Arm (1 — pa) fa
Ay = +AG + A5 (1 — pa) px + nopie + Ajpie
\ 5 (no + A43)% 02 )
and

n(kipy — 1) Ay + A7 + ASpa
+% (nk1Arm + A;)2 o2 + (e“";’s — 1)
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with .
Vo5 = (nd + A3 pa+ 5 (ng + A3)% 0

The truncated non-central risk-neutral moments of the market return are

* n * 1
E} (RM,t+11R]\1,t+1>U«) = Ry i1Ey {N [d1,t+1} (exp {A}}) exp {ﬂz 41 T 2% t—',—l}}

where
E;fk (R%,t+11RM,z+1>a) = Rﬁt-&-lEt (emtﬂ—i_nrm’t“lRM,t+1>a)
Note that
My + NP1 = 27 + Af
where
Ziy = {nkiAip + Astoxv/ Maarr + (o + A3) 0cze 1 + (nd + A3) Jia
and

P nko +n (k1 — 1) Agm + n.k1A1m (1 — pa) pia
t pu—

+ A5 + A3 (1= pa) i + nope + Ajpe
+{n (k1pr — 1) A1 + AT + Ao} e

All parameters are defined below.

Proof. See below. [ |

Derivations and Proofs We start with a conjecture that the log utility-consumption ratio
is a linear function of the intensity \;

— log Ct = A() + Al)\t. (IA83)

This allows us to express (1 — ) vyyq as

1-a)vg = (I—a)logCy+ (1 —a)(logCiyy —logCy)
—f- (1 — O[) AQ —|— Al (]_ — O./) )‘H—l'

[A.83



Hence

(1 — OJ) ACt+1 + (1 — Oé) A()
Eiexp{(l1 —a)vi11} = (exp{(l —a)logC:})E; | exp
+A1 (1 — Oé) >\t+1
( )

(1—a)logCi+ Ay (1 —a) pr

= | exp (1 —a)pe+ (1 —a) Ay

+A1 (1 =) (1= px) pa

\ /

(1—a)oczeirn + (1 —a) S

xE; | exp
+A1 (1 — @) oxv/Nzn i1
which simplifies to
( )
(1—a)log Gy + 4 (1 — a) pa
(1= a) e+ (1 - ) 4y
Eiexp{(1—a)v1} = |exp

+ A1 (1= ) (1= pa) i

+1(1- a)’ o2 + 1A2(1— a)’ o3\ )
xE; (exp{(1 — ) Ji11}) -

Note that
By (exp {(1 — @) Ji41}) = By (B¢ (exp {(1 — @) Jis1} [Nig1)) -
Thus

N,
Eq (exp {(1 — @) Jys1} [ Nep1) = exp{<1—a>udzvt+l+ o <1—a>203}
= eXP{SDaNtH},

where )
po= (1= )+ 5 (1o}
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Therefore,

E; (exp {(1 — ) Jr41}) = By (exp {0aNis1}) = exp (A (€7 — 1))

Consequently;,
(
(1—a)logCy+ A; (1 —a) pah
(1 _O‘)#c+(1 _a)AO
Erexp {(1 — @) vy11} = exp +A; (1= a) (1= py) i
+3(1— a)’o? + TAT(1— a)® o2\
+)\t (e“’a — 1)
\ /
Note that:

Uy = (1 - B) log C; + log E; (e((l_o‘)UH—l)) )

-«
We then replace this expression in Equation [A.82 and show:

( 3\

(I —a)logCy + Ai (1 — @) paAe
(I1—a)u.+(1—a)A
v = (1 - 8)logC; + (%) +A; (1 —a) (1= py) pa

+3(1— a)’ o2 + TAT(1— o)’ o3\

+)\t (6@0‘ — 1)

which simplifies to

v —logCy = {5/%—1‘51404‘1415(1—/7,\)#,\—1‘%5(1—04)0'3}

+ {Alﬁp,\ + %A%ﬁ (1—a)o; + ( g ) (e — 1)} At

l—«
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By identification with Equation [A.83, we deduce

Ay = Bﬂc‘FﬁAo—i‘AlB(l_Px)MA‘l‘%ﬁ(l_a)ag

Ay = AiBpa+ %A%B (1—a)os + <%> (¥ —1).

Thus,

Aozﬁ{BuﬁAlB(l—px)er%5(1—04)03}

and

0=24,(Bpx—1) + A26(1—a)aA+2(1f )(6%—1)

which implies

(1= B8px) £/ (Br — 1)° = {2(£) (e — DB (1 - ) 03}

A= .

Bl —a)o}
We choose the negative A;. Note that
- IOg Ct = AQ + Al)\t-
The log-SDF takes the form
M1 =log B — Acpyr + (1 — @) v — log (Egexp {(1 — @) vy })
which simplifies to
mip1 = logf—Acppr + (1 —a) Ao+ (1 — a) At
+ (1 —a)logCiyq —log (Eyexp {(1 — @) vy41})

and hence

1Ogﬁ - (1 - a)lvbc
M1 =

~A(1=a)(1=pa) s —3(1—a)o?
—OéACH_l + (1 — O() A1>\t+1

1
+ {_Al (1 - Oé) Px — 514% (1 —06)20'3\ - (e‘p“ — 1)} )\t-
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Thus,
My = Ay + AT + A + ASAc,

where

45 = logf—(1—a)pe— A (1—a) (1 - pn) s — 5 (1 — )0

Ai = _Al (1—04) P — QA% (1 —Oé>20'§— (64'0& - 1),
A = A(1-a),
A3 = —o.

The return on the risk-free asset is given by

log Ryt 41 = — log Ky (My—41) -

Note that

Er (Mit41)
E;exp {Af + Al + A1 + A5Ac41}
= (exp {4} + AI\}) Erexp { A5 11 + A5Acii1}
AS + Aspie + A3 (1 — pa) o + 1 (43)% 02
= |exp E;exp { A5 41}
FAI + ASpaN + L (43)7 02N,

Now, note that

N,
E; (exp {A5Ji41}) = Erexp {Ag,udNtH 4 2 (AS) } =E;exp{¢°Nii1},

where
= A3pa + 5 (AS)
Hence,
Eq (exp {A3Ji11}) = E {exp (A (€7 — 1))}
Finally,
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( 3\

A5 4 A + A5 (1— pa) oy + 2 (A3)% 02

By (Mii41) = exp + AN+ ASpah + 5 (A3)° o3\
+A¢ (€9 — 1)
\ Ve
and
log Rftyi41 = Af]f + AIifAta
where
Ay = —{ Ay + A + A3 (1= py) i + 3 (A3)" 07 }
1
At = s PR+ e - D).

Following Dew-Becker et al. (2017), we use the Campbell and Shiller (1988) approximation
to express the log market return as

Tmt+1 = Ko + K1pdip1 — pde + Adyyq

where pd; is the log price-dividend ratio.
We provide a proof of Result [A.13 below.

Proof. Proof of Result IA.13. We conjecture that pd; is linear in the state variables
pdy = Aom + A1 s (IA.84)
Thus,

Tmit1 = Ko+ K1 (Aom + AimAis1) — (Aom + ArmAe)

+ (gb,uc + ¢Uczc,t+1 + ¢Jt+1)
= Ko+ K1Aom + E1AL N1 — Ao — Al

+ope + Poczepi1 + OJita.

This expands to

Tmis1 = Ko+ (k1 — 1) Aom + K1 A1m (1 — pa) pa + (K1px — 1) AN
FR1 AL MO M2rit1 + Opte + G021 + Oppa.
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To identify A, and A; ,,, we use the Euler equation
log (E,e(m+men) = .

Note that

mi41 + T"mi+1 = {/{0 + (Hl - 1) AO,m + /{IALm (]- - P/\) M)\} + lejfc + A(S]

+{(k1px = 1) Arm + AT} N + F1ALmoAV Me2a i1
+o0c2c41 + OJipr + ASh1 + A3Ac

which simplifies to

Ko+ (K1 — 1) Ao + K1 Arm (1 — pa) g
M1 + Tl =

+ A3 e 4 Dpe + A+ A3 (1 — pa)
+{(k1pr — 1) Arm + AT + ASpa} Mt

+ (K1 A1, + A5) UA\/)\_tZA,t+1
+ (gbgc + Ago-c) th-&—l + (¢ + A%) Jt+1

Thus

log Ete(mt+1+7'm,t+1)

ko + (k1 — 1) Agm + K1 A1m (1 — pa) pia
+ (A3 + ) e + A + A3 (1 — pa) pn + 3 (g0, + A3oe)”
(K1px — 1) A + A7 + ASpy
+ At +1og Eq (exp ((¢ + A3) Jet1)) -
+3 (k1AL + A3)* 03
Note that
E; (exp ((¢ + A3) Ji11)) = Erexp (pg,s Ney1) = exp (A (€79 — 1)),

where

1
Pgs = (O + A3) ptg + 3 (¢ + A3)° o2
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Therefore,
log ]Ete(mt+1+Tm,t+1)
Ko+ (k1 — 1) Aom + K1 A1m (1 — pa) fa

(A5 + ) e + A+ A5 (1 — pa) pr + & (do. + A30.)?

(K1pa — 1) Arm + A7 + ASpa
+ At (IA.85)

1 (k1A + A3)7 03 + (e¥or — 1)

Since, log E;e(™+1+7m+1) = (), this implies that each term of Equation IA.85 is zero. As a
result, the coefficients from the conjecture in Equation [A.84 are

1 Ko+ K1A1m (1 — pa) px + (A5 + @) e

FAS+ A5 (1= pa) s + & (g0 + A30.)”
and
1
2{(kipx = 1) + w1 A30% } Arp + K1OAT 42 {5 (43)% 03 + A] + Aspy + (€90 — 1)}

which simplifies to

where
1
C = 2 {Ai + ASpy + (ePos — 1) + 3 (A3)? 0,2\}
B = {(kipr—1) + s 450}
A = kio}.
Hence
—B+vVB? — AC
Al m — .
’ A
We choose the negative value A, ,, as in Dew-Becker et al. (2017). We provide a proof of
Result TA.14 below. [ |
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Proof. Proof of Result TA.14. Let us find the physical moments and truncated moments:

By (Ryfiqq) = Ey (e"mit).

Note that
Nrpar1 = Nk +n (k1 — 1) Agm + 11 Ay (1 — pa) pa
+n (Kipx — 1) ALt + nE1ALmOAN M2 t11
+n¢,LLc + 7’L¢O'CZC¢+1 + n¢Jt+1.

Hence

4 A

nkg +n (Kil — 1) AO,m + n/ﬁAl,m (1 — p)\) J75N
E, (R?J,t—&—l) = exp +nop. + 1 (ngo.)?
+{n(k1px = 1) Arm + § (n1A1Lmos) "} N
XE; (exp {noJii1}) -
Note that
E: (exp ((n¢) Jet1)) = Erexp (9 Ne1) = exp (A (€72 — 1)),
where
1 2 o

s = (n0) pa + 5 (n6)? 03

Thus,
( )
nko +n (k1 — 1) Agm + nk1Arm (1 — py) f
E, (Rjye11) = exp +nopc + 5 (ngo,)?
+{n(kipr—1) A + 3 (nk1 Ay moy)” + (€99 — D} A
\ /

Now, let us find the truncated moments

n _ Nt 41
Et (RM,t-i-llRM,t+1>a) - IEt (6 " 1nrm,t+1>nloga)

— Nrm,t+1
— Et (6 et 1n7"m,t+1>nloga)
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Note that
i1 = Ae + Zipa

where
Ar = nrg+n (k= 1) Agm + ki Asm (1= pa)
+n (kipx — 1) AL + nopee
Zit1r = nkiAypoaV Mz + ngocze i + nodip

Proof. Let us compute the risk neutral moments

« (o My o,
logEt( M,t+1) = log {Et (ﬁ M,t+1)}

— log Rf,t—H + 10g {]Et (emt+1+’l’b7“m7t+1)} .
Observe that

Mit1 + Mpar1 = Nk +n (k1 — 1) Agm + 1k Ay (1 — pa) pa
0 (kipx — 1) AL + nE1 Ay moay/ Mz
+ndpe +neo 2o +nodig
A AN A+ A,

which simplifies to

nKkg +n (/fl — 1) A07m + nKJlALm (1 — ,0,\) J25\
Myt + N pp1 =

+A) + A5 (1= pa) pa + ndpe + Ajpe
+ {Tl (lilp)\ — 1) Al,m + Ai + A;p,\} >\t

+ {nr1Aim + A5} oy \/A_tz/\,tﬂ
+ (TLQZS + A?’,) Oclet+1 + (n¢ + A?&) Jt+1-
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Thus,

nko +n (lil - 1) AO,m + nlilAl’m (1 — p)\) J25%
+A5 + A5 (1 — pa) px + nope + Azpe
Ef [Rirssein] = Rpsrrexp +{n (kipr — 1) A1m + A5 + ASpat N

+% (nk1Ay, + A;)2 cri)\t

+5 (g + A3)% 02 + A, (€70 — 1)

Since
Ey (exp ((ng + A3) Jip1)) = exp (N (e — 1)),

where .
s = (00 + A3) pa + 5 (n¢ + A3)° 0.
Now, let us compute the truncated risk neutral moment

* 7 _ M1 +N"m t4+1
]Et ( M,t+11RM,t+1>ll) - Rf,t-*-lEt (6 " 1RM,t+1>a) :

Note that
M1+ N1 = Ziq + Af

where
Zi = {nk1Asp + A5} o/ Maair + (0 + A5) 0cze i + (0 + A5) Jia

and

nkg +n (/ﬁ)l — 1) AO,m + TL./ﬂ}lALm (1 — p)\) 1258
A =
+AG £ A5 (1= pa) pa + nope + Azpue

+ {n (Iilp)\ - 1) Al,m + Ai + A;p)\} )\t‘

Given the state variable )\;, the truncated risk-neutral moment can be computed at each
date. [ |
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IA.8 Discussion of Differences with Respect to the Decomposition
in Beason and Schreindorfer (2020)

Beason and Schreindorfer (2020) present a related decomposition of the unconditional equity
risk premium that generates different implications for the relative contributions for downside,
central, and upside risk premia to the total risk premium compared to our results. Namely,
results in Beason and Schreindorfer (2020) imply that their equivalent of the downside, cen-
tral, and upside risk premia constitute (approximately) 80%, 30%, and -10% of the total
equity risk premium, respectively. This empirical result is very different than our baseline
results (Table 2, Panel B), which imply the downside and central risk premia contribute sim-
ilar amounts to the total risk premium (unconditionally) at about 45% each, and the upside
risk premium contributes about 10% of the total risk premium unconditionally. To under-
stand these different empirical results, we discuss three differences between our methodology
and that in Beason and Schreindorfer (2020). First, Beason and Schreindorfer (2020) use a
slightly different definition of the risk premium decomposition than we use herein. Second,
their unconditional decomposition makes use of different empirical techniques to estimate
the physical and risk-neutral market return densities than we use herein. Third, Jensen’s in-
equality effects could explain some of the discrepancy between our respective decomposition
results. We discuss each of these issues in more detail below.

We begin by discussing the relationship between our definition of the equity risk premium
decomposition relative to that in Beason and Schreindorfer (2020). Starting with their Equa-
tion 4 and redefining their net market returns, R, in that equation to be gross returns (to be
consistent with our consistent use of gross market returns), their truncated of risk premium
associated with market returns between x; and x5 is given by:

RE" [A,,] = [ Rur (f (Rar) — f* (Rar)) dRay. (1A.86)

We use H/@D(l) [A;,,] to designate this risk premium to highlight that this definition is anal-
ogous to (but not exactly the same as) our definition of the risk premium, RPW [A,], in
Equation 29.* f and f* represent the unconditional physical and risk-neutral return den-
sities, respectively. To highlight the differences between the two risk premium definitions,
we focus on the downside region for clarity. This corresponds to our case where Ay, = Ay.
The same case is obtained from Equation [A.86 by setting 7 = 0 and x5 = x, which is the
cutoff for our downside region (0.9). In this case, the Beason and Schreindorfer (2020) risk

49We remove the “t — T” subscripts for simplicity since Beason and Schreindorfer (2020) consider only
the one-month horizon.
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premium definition becomes:
— (1) G .
RP ' [AJ = [ Ru(f (Ru) = f* (Rar)) dRus. (TA.87)
0

Equivalently, we can express this integral in terms of expectation operators:

N(l) *
RP ' [Ay = E[Ruyla,) — E*[Ryla]

where 4, is an indicator function for realizations of market returns in region A, (that is,
Ry € 10,z]). Using the identity Ry = Ry — Ry + Ry, we can express the Beason and
Schreindorfer (2020) downside risk premium in terms of a component that is equivalent to
the unconditional version of our downside risk premium, RP® [A4], plus a component that
is equivalent to a contingent claim that pays off one dollar in the event that Ry, € Ay:

RP" [4d = E[(Ry — Ry + Ry) Lo, — E* [(Rar — Ry + Rp)La,
= E[(Rv — Ry)La,| —E"[(Rv — Ry) L4,
VE[R;Ly,) — E* [RyL4,]
= RPW[A] + Ry (E[l4,] — E*[I4,]). (IA.88)

Intuitively, this discrepancy exists because Beason and Schreindorfer (2020) define the trun-
cated equity risk premium in terms of market returns in Equation TA.86, whereas we define
our truncated risk premia in terms of excess market returns throughout. Note that when in-
tegrating Equation IA.86 over the entire return space (z1 = 0, x5 — 00), the two definitions
are consistent since fooo Ry f*(Ry)dRy = Ry. However, the two definitions are distinct
when the region of interest is a subset of the return space. For completeness, the truncated
market risk premia in the central and upside regions in Beason and Schreindorfer (2020) are
related to ours as follows:

RPV (4] = RPO[A]+ Ry (E[la] - E*[L,]) and (IA.89)

RP" [4,] = RPO[A,]+ Ry (E[Ly,] — E* [I,,]) (IA.90)
Therefore, the unconditional truncated market risk premia under our definition will be dif-
ferent than those implied by the Beason and Schreindorfer (2020) by terms related to the
risk premia on contingent claims of the form E [I4,] — E* [I4,] that pay off one dollar in each

respective region of market returns, s € {d, c,u}. We call these “Arrow-Debreu risk premia”
and define

RP” [A,] = E,[Ls,] —Ef[Ia,].
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How do we expect these differences highlighted in Equations TA.88-IA.90 to manifest in
terms of the measured truncated risk premia? Using our methodology, we can compute the
conditional Arrow-Debreu risk premia, ]RIP’,gO) [A], by setting n = 0 in Corollary 1 to estimate
E [I4] and using standard techniques described in Internet Appendix IA.4 to estimate the risk-
neutral counterpart. We plot estimated ]RIP’,EO) [Ag] in Figure IA.7. The unconditional (over
time) average values of RP\") [A,] for s € {d, ¢, u} are -1.88%, 1.35%, and 0.58% (annualized
and in percent), respectively. Our unconditional average values of RPV [A4] for s € {d, c,u}
(reported in Table 2 and Figure 2) are 4.45%, 3.33%, and 0.97%, respectively (annualized

and in percent). Therefore, the discrepancy in the risk premium decomposition definitions

— (1
could cause large differences in our measured RP(Y) [As] compared to RIP’( : [As] implied by
Beason and Schreindorfer (2020).
Our unconditional values of RP"” [Ag] imply the following relationships (all else equal)

— (1
between our unconditional RP(") [A,] and the rp" [A;] values implied in Beason and Schrein-
dorfer (2020):

RP" (4] < RPO (4],

RP"[4] > RPM[A], and
R [4,] > RPO[4,].

Figure 1 in Beason and Schreindorfer (2020) actually imply the opposite relationships be-
tween our respective truncated risk premia. Namely, their Figure 1 implies

R (4] > RPO (4],

RP" (4] < RPM[A], and
RP" (4] < RPOM[4,].

Why is this the case? This brings us to the second major difference between our decom-
position and that in Beason and Schreindorfer (2020), which is related to how they estimate
the physical and risk-neutral densities. In their case, they estimate f using realized historical
returns and estimate f* using an optimization approach over conditional f* implied by op-
tion prices. Their this procedure yields an estimate for E [f*] /E[f] that is not monotonically
decreasing in market returns (see Beason and Schreindorfer (2020), Figure 2)."Y The fact
that their E [f*] /E[f] is only slightly decreasing in the central region yields an implied cen-
tral risk premium contribution (approximately 30%) that is lower than that implied by our

5ONote that the ratio E[f*] /E[f] is not exactly the same as the unconditional SDF, which is given by
E[f*/f].
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methodology (approximately 45%). The fact that their E[f*] /E[f] is slightly increasing in
the upside region yields an implied upside risk premium that is negative with a contribution
to the total risk premium of approximately -10% (compared to our estimate of approximately
10%).

We sidestep the issue of estimating the physical and risk-neutral densities by using our
transformation between risk-neutral and physical moments implied by Corollary 1. As can
be see in Figure IA.3, our methodology implies conditional SDF's that are (approximately)
monotonically decreasing in market returns. The result is that our downside, central, and
upside risk premia are all positive so that each has a positive contribution to the overall
risk premium. Finally, the implied magnitude of the downside risk premium in Beason and
Schreindorfer (2020) is larger than our unconditional value because their E [f*] /E[f] (their
Figure 2) is higher than our conditional SDF's in the downside region (see Figure [A.3). This
implies that their E[f] — E[f*] is higher than our implied value in this region, yielding a
larger downside risk premium.

The third potential contributor to differences between our risk premium contribution
measures and those in Beason and Schreindorfer (2020) is related to Jensen’s inequality.
Beason and Schreindorfer (2020) compute their contributions effectively by integrating over
E[f] — E[f*], whereas we first compute conditional contributions and average over these.
One way to make our measures more comparable to theirs would be to compute contribu-
tions directly from the unconditional average risk premium levels. For instance, using results
reported in Table 2, we could compute: E [RP&T [Ad]} JE [RIPQT [A]} = 4.45/8.72 ~ 51%.
Since our estimate of the downside risk premium contribution reported in Table 2 is ap-
proximately 46%, this implies that even ignoring the Jensen’s inequality terms would not

reconcile the large differences between our risk premium contribution estimates and those in
Beason and Schreindorfer (2020).
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Figure IA.1
Relative Risk Aversion (1/7 (x))

This graph plots estimates of relative risk aversion based on reported values of 7 (z,) in Table 1. Relative risk
aversion is simply 1/7 (z5) (see Equation 14). Values are plotted for three points in the return space (24, z., and
x,) corresponding to the regions A4, A., and A,, respectively, and across five horizons (30, 60, 90, 180, and 360
days).
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Figure IA.7

Arrow-Debreu Risk Premia

This graph plots the data-implied Arrow-Debreu risk premia of the form RP\” [Ag] = Ey [I4,] — Ef [I4,] estimated
using unrestricted preference parameters reported in Table 1 to estimate E; [[4,] according to Corollary 1 with
n = 0 and E} [[4,] according to standard techniques described in Internet Appendix IA.4. These are computed
at the 30-day horizon and annualized to be consistent with plots of our market risk premium in Figure 2. The
decompositions use A4=[0,0.9], 4.,=[0.9,1.1], and A,=[1.1, +00). All time series are smoothed by averaging over
two months of lagged daily data to reduce the appearance of noise.
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Table TA.2

Unrestricted Data-Implied Market Risk Premium Decomposition Summary Statistics
(Observed Prices)

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according
to Proposition 3 with n = 1 (i.e., the market risk premium). The decompositions use risk-neutral moments
computed by numerically integration over observed option prices directly rather than using the implied volatility
fitting method. Preference parameters are also re-estimated using these moments. Panel A reports statistics for
the risk premium levels (annualized, in percent) and Panel B reports statistics for the contributions of risk premia
from each region to the total risk premium (as fractions of the total risk premium, in percent). A;=[0,0.9],
A.=[0.9,1.1], and A,=[1.1,4+00) and these labels correspond to the downside, central, and upside risk premia,
respectively. A = A, U A, U A, and this label corresponds to the total risk premium. Statistics reported under
“Unconditional” use the full estimated time series for each risk premium measure. Statlstlcs re orted under “Cond.
Means” report the means for each time series conditional on 30-day risk-neutral variance (M _)T |) falling below
it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third quartlle (“Hi”). These
correspond to periods of low, moderate, or high market volatility, respectively. Statistics are reported for risk
premium decompositions at 30, 60, 90, 180, and 360-day horizons, and are based on daily data from January, 1996
through June, 2019.

Panel A: RP\" . [A,] (%) Panel B: RP(")[A,]/RP][A] (%)
Cond. Means Unconditional Cond. Means Unconditional
Horizon Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.
(days)
A 3.28 7.10 18.22 8.93 7.59
30 Ag 1.22  3.17 10.36 4.48 4.93 37.53 44.53 55.80 45.60 9.76
A, 1.88 3.21  4.42 3.18 1.14 58.26 47.47 29.09 45.57 13.89
A, 0.13 0.60 3.22 1.14 2.22 421  8.00 15.11 8.83 8.22
A 4.07 8.18 18.57 9.75 6.96
60 Ag 2.03 4.52 1143 5.63 4.69 50.96 57.04 63.24 57.07 7.59
A, 1.67 220 2.05 2.03 0.59 43.13 29.59 13.59 28.97 13.00
A, 0.23 1.12 4.34 1.70 2.19 591 13.37 23.17 13.96 10.09
A 4.25 7.94 16.45 9.14 5.73
90 Ag 241 4.75 10.30 5.55 3.81 58.64 62.78 66.00 62.55 6.02
A, 1.34 1.38 0.92 1.25 0.49 33.43 19.57 7.10 19.92 11.74
A, 0.31 1.39 4.20 1.83 1.84 7.93 17.65 26.90 17.53 10.29
A 4.10 6.99 13.15 7.81 4.41
180 Ag 2.67 4.52 8.58 5.07 3.04 68.96 69.54 69.44 69.37 4.27
A, 0.62 0.41 0.19 0.40 0.26 16.46  7.07 1.56 8.04 6.72
A, 0.55 1.55  3.46 1.78 1.30 14.58 23.39 29.00 22.59 7.68
A 2.34 3.69 6.63 4.09 2.44
360 Ag 1.60 241 4.04 2.62 1.52 73.77 71.37 65.35 70.47 5.76
A, 0.11 0.06 0.06 0.07 0.07 513  1.97 0.72 2.44 2.43
A, 0.45 0.91 2.07 1.08 0.88 21.10 26.66 33.93 27.09 7.22
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Table IA.3
Unrestricted Data-Implied Market Risk Premium Decomposition Summary Statistics
(Mispricing Adjustment)

This table reports summary statistics for the unrestricted data-implied risk premium decomposition according to
Proposition 3 with n = 1 (i.e., the market risk premium). The decompositions use risk-neutral moments computed
using the mispricing adjustment described in Subsection [A.2.4. Preference parameters are also re-estimated using
these moments. Panel A reports statistics for the risk premium levels (annualized, in percent) and Panel B reports
statistics for the contributions of risk premia from each region to the total risk premium (as fractions of the
total risk premium, in percent). A,=[0,0.9], A.=[0.9,1.1], and A,=[1.1,4+0c0) and these labels correspond to the
downside, central, and upside risk premia, respectively. A = A; U A. U A, and this label corresponds to the
total risk premium. Statistics reported under “Unconditional” use the full estimated time series for each risk
premium measure. Statistics reported under “Cond. Means” report the means for each time series conditional on
30-day risk-neutral variance (MI@T [A]) falling below it’s first quartile (“Lo”), between its first and third quartiles
(“Mid”), or above its third quartile (“Hi”). These correspond to periods of low, moderate, or high market volatility,
respectively. Statistics are reported for risk premium decompositions at 30, 60, 90, 180, and 360-day horizons, and
are based on daily data from January, 1996 through June, 2019.

Panel A: RP(") . [A,] (%) Panel B: RP\"[A,]/RP][A] (%)
Cond. Means Unconditional Cond. Means Unconditional

Horizon Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.

(days)
A 1.43 3.37 8.80 4.24 3.77

30 Agq 0.17 0.87 4.05 1.49 2.28 10.79 23.13 40.19 24.31 12.31
A, 1.32 244  3.39 2.40 0.84 88.82 72.08 43.38 69.09 19.00
Ay 0.01 0.20 1.82 0.56 1.25 0.39 4.79 16.43 6.60 7.35
A 2.80 6.03 13.77 7.16 5.20

60 Agq 0.71 235 7.28 3.17 3.38 25.91 38.28 49.58 38.01 10.11
A, 1.87 264 2.85 2.50 0.45 70.90 47.73 23.52 47.47 19.00
A, 0.09 094 394 1.48 1.91 3.19 13.99 26.91 14.52 10.10
A 3.19 6.38 13.20 7.29 4.59

90 Agq 1.16 297 7.39 3.63 3.03 36.34 4587 53.82 45.48 8.09
A, 1.72 204 1.94 1.93 0.19 56.13 34.78 16.36 35.51 16.07
A, 024 1.34 4.02 1.73 1.71 7.53 19.35 29.83 19.01 9.72
A 3.27 592 11.38 6.62 3.88

180 Agq 1.73 3.37 6.94 3.85 2.60 52.86 56.70 59.83 56.52 5.22
A, 0.92 0.88 0.77 0.87 0.08 29.33 16.49  7.57 17.47 9.05
Ay 0.58 1.64 3.68 1.88 1.40 17.81 26.82 32.59 26.01 7.01
A 225 375 6.84 4.15 2.33

360 Agq 1.39 232 4.25 2.57 1.51 61.94 61.98 61.49 61.85 4.10
A, 027 026 0.25 0.26 0.04 12.67 771  3.99 8.02 3.97
A, 0.56 1.15 2.35 1.30 0.87 25.39 30.31 34.51 30.13 4.85
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Table IA.5
Data- versus Model-Implied State Variable Processes

This table reports summary statistics for state variable processes extracted from the data (according to the
methodology in Section 3) and based on model simulations. Panels A and B reports results for the Bansal and
Yaron (2004) and Bansal, Kiku, and Yaron (2012) models, respectively. Panel C reports results for the Bollerslev,
Tauchen, and Zhou (2009) model. Panel D reports results for the Drechsler and Yaron (2011) model. Panels
E and F report results for the Bekaert, Engstrom, and Ermolov (2020) models with and without preference
shocks, respectively. Panel G reports results for the Gabaix (2012) model. Panel H reports results for the Wachter
(2013) model. Models are simulated at the monthly frequency for 100 million periods and used to compute the
“Simulation-implied” statistics. State variables extracted from the data are available at the daily frequency. To
be consistent with model simulations, we compute 21 sets of each data-implied statistic from non-overlapping
daily data sampled every 21 days (since there approximately 21 trading days in each calendar month). The
“Data-implied” statistics are averages across each statistic from these 21 sets. 95% confidence intervals on the
simulated statistics are computed to correspond to confidence intervals we expect to see under the model null
given a random sample of 282 months (which corresponds to the number of months we observe in our data from
January, 1996 through June, 2019). They are based on randomly sampling 10,000 sets of 282 months of data from
the full 100 million simulated months for each model. The confidence intervals answer the question: “With 95%
confidence, would we expect to observe our data-implied statistics under the model null?” “SV1” and “SV2” under
the Correlation heading correspond with the first and second state variables from each model ordered according
to their appearance in the first column.

Variable Source Mean St. Dev. Autocorr. Corr.
SV1 SV2
Panel A: Bansal and Yaron (2004)
Ty Data-implied -2.1E-6 2.6E-3 0.91
Simulation-implied 9.7E-6 1.4E-3 0.96
[95% CI] [[1.7E-3, 1.8E-3] [8.2E-4, 2.2E-3] [0.92, 0.99]
o? Data-implied 6.1E-5 8.4E-5 0.80 0.56
Simulation-implied 6.1E-5 1.1E-5 0.97 0.00
[95% CI] [4.3E-5, 7.8E-5] [6.0E-6, 1.8E-5] [0.93, 0.99] | [-0.64, 0.65]
Panel B: Bansal, Kiku, and Yaron (2012)
Xy Data-implied -3.3E-5 5.5E-3 0.85
Simulation-implied 8.3E-6 1.2E-3 0.96
[95% CI] [-1.4E-3, 1.5E-3] [4.3E-4, 2.3E-3] [0.91, 0.99]
o? Data-implied 7.3E-5 6.5E-5 0.80 0.81
Simulation-implied 7.3E-5 1.6E-5 0.98 0.00
[95% CI] [1.2E-5, 1.7TE-4] [7.5E-6, 3.2E-5] [0.93, 1.00] | [-0.67, 0.68]
Panel C: Bollerslev, Tauchen, and Zhou (2009)
J;t Data-implied -4.6E-5 8.3E-3 0.78
Simulation-implied 4.6E-6 4.4E-3 0.96
[95% CI] [-5.4E-3, 5.4E-3] [2.5E-3, 7.6E-3] [0.91, 0.99]
Q Data-implied 1.4E-6 TA.112 2.8E-5 0.97 -0.73
Simulation-implied 1.3E-6 1.7E-6 0.76 0.00
[95% CI] [7.9E-7, 2.0E-6] [9.8E-7, 2.8E-6] [0.60, 0.88] | [-0.34, 0.34]




Table IA.5
Data- versus Model-Implied State Variable Processes (continued)

Variable Source Mean St. Dev. Autocorr. Corr.
SV1 SV2
Panel D: Drechsler and Yaron (2011)
Ty Data-implied 5.6E-6 2.7E-3 0.80
Simulation-implied -2.3E-6 1.1E-3 0.96
[95% CI] [-1.4E-3, 1.3E-3] [4.8E-4, 2.2E-3] [0.90, 0.99]
o Data-implied 1.20 1.50 0.90 0.79
Simulation-implied 1.05 0.42 0.97 0.00
[95% CI] [0.51, 1.69] [0.26, 0.68] [0.92, 0.99] | [-0.61, 0.63]
o? Data-implied 1.11 1.80 0.79 1.00 0.79
Simulation-implied 1.07 1.77 0.81 0.00 0.21
[95% CI] [0.35, 2.45] [0.42, 4.55] [0.67, 0.93] | [-0.46, 0.45] [-0.18, 0.54]
Panel E: Bekaert, Engstrom, and Ermolov (2020) (with Preference Shocks)
ng Data-implied 2.12 1.62 0.81
Simulation-implied 2.14 1.19 0.97
[95% CI] [0.38, 6.77] [0.26, 3.19] [0.93, 0.99]
G Data-implied 1.00 0.15 0.92 0.54
Simulation-implied 1.00 0.15 0.97 0.88
[95% CI] [0.77, 1.51] [0.04, 0.38] [0.93, 0.99] | [0.23, 1.00]
S Data-implied 5.4E-3 1.4E-2 0.75 0.83 0.70
Simulation-implied 3.7E-3 2.8E-3 0.55 0.00 0.08
[95% CI] [3.3E-3, 5.1E-3] [4.3E-5, 1.1E-2] [0.51, 0.73] | [-0.17, 0.24] [-0.13, 0.33]
Panel F: Bekaert, Engstrom, and Ermolov (2020) (without Preference Shocks)
ng Data-implied 0.08 0.11 0.79
Simulation-implied 0.08 0.05 0.97
[95% CI] [0.02, 0.25] [0.01, 0.14] [0.93, 0.99]
G Data-implied 1.00 0.18 0.90 0.77
Simulation-implied 1.00 0.13 0.97 0.98
[95% CI] [0.87, 1.38] [0.02, 0.39] [0.92, 0.99] | [0.85, 1.00]
Panel G: Gabaix (2012)
Ly Data-implied 0.70 0.59 0.80
Simulation-implied 0.69 0.16 0.97
[95% CI] [0.45, 1.01] [0.08, 0.29] [0.93, 0.99]
Panel H: Wachter (2013)
At Data-implied 3.0E-3 2.8E-3 0.80
Simulation-implied 2.9E-3 IA.118 573 0.97
[95% CI] [6.5FE-4, 8.1E-3] [4.6E-4, 3.6E-3] [0.93, 0.99]




Table TA.6
Bollerslev, Tauchen, and Zhou (2009)-Implied Market Risk Premium Decomposition Summary
Statistics

This table reports summary statistics for the model-implied risk premium decompositions based on Bollerslev,
Tauchen, and Zhou (2009) (“BTZ”) described in Section [A.7.3.2 with n = 1 (i.e., the market risk premium).
This table is analogous to Table 6 in the main draft, but just focused on the BTZ model. Panel A reports
statistics for the risk premium levels (annualized, in percent) and Panel B reports statistics for the contributions
of risk premia from each region to the total risk premium (as fractions of the total risk premium, in percent).
A;=[0,0.9], A.,=[0.9,1.1], and A,=[1.1, +00) and these labels correspond to the downside, central, and upside risk
premia, respectively. A = A; U A, U A, and this label corresponds to the total risk premium. Statistics reported
under “Unconditional” use the full estimated time series for each risk premium measure. Statistics reported under
“Cond. Means” report the means for each time series conditional on 30-day risk-neutral variance (M:@T [A]) falling
below it’s first quartile (“Lo”), between its first and third quartiles (“Mid”), or above its third quartile (“Hi”). These
correspond to periods of low, moderate, or high market volatility, respectively. Results are based on state variables
extracted from the data under each model using their original calibrations, which are monthly in all cases, and
use daily data from January, 1996 through June, 2019.

Panel A: RP") ;. [A,] (%) Panel B: RP\" [A,]/RPM . [A] (%)
Cond. Means Unconditional Cond. Means Unconditional
Class Model Region Lo Mid Hi Mean St. Dev. Lo Mid Hi Mean St. Dev.
A -8.52  -4.50 60.38 10.71 144.62
LRR BTZ Ag -0.02 -26.63 -38.18 -22.87 69.72 0.02 10.28 20.17 10.19 26.50
A, -946 1156 24.22 9.47 68.05 99.14 83.05 53.16 79.60 31.33
A, 0.96 10.58 74.34 24.11 65.91 0.84 6.67 26.67 10.21 21.55
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